1
|
Duggan E, Knight SP, Xue F, Romero-Ortuno R. Haemodynamic Parameters Underlying the Relationship between Sarcopenia and Blood Pressure Recovery on Standing. J Clin Med 2023; 13:18. [PMID: 38202023 PMCID: PMC10779883 DOI: 10.3390/jcm13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Sarcopenia, delayed blood pressure (BP) recovery following standing, and orthostatic hypotension (OH) pose significant clinical challenges associated with ageing. While prior studies have established a link between sarcopenia and impaired BP recovery and OH, the underlying haemodynamic mechanisms remain unclear. METHODS We enrolled 107 participants aged 50 and above from a falls and syncope clinic, conducting an active stand test with continuous non-invasive haemodynamic measurements. Hand grip strength and five-chair stand time were evaluated, and muscle mass was estimated using bioelectrical impedance analysis. Participants were categorised as non-sarcopenic or sarcopenic. Employing mixed-effects linear regression, we modelled the effect of sarcopenia on mean arterial pressure and heart rate after standing, as well as Modelflow®-derived parameters such as cardiac output, total peripheral resistance, and stroke volume, while adjusting for potential confounders. RESULTS Sarcopenia was associated with diminished recovery of mean arterial pressure during the 10-20 s period post-standing (β -0.67, p < 0.001). It also resulted in a reduced ascent to peak (0-10 s) and recovery from peak (10-20 s) of cardiac output (β -0.05, p < 0.001; β 0.06, p < 0.001). Furthermore, sarcopenia was associated with attenuated recovery (10-20 s) of total peripheral resistance from nadir (β -0.02, p < 0.001) and diminished recovery from peak (10-20 s) of stroke volume (β 0.54, p < 0.001). Notably, heart rate did not exhibit a significant association with sarcopenia status at any time interval post-standing. CONCLUSION The compromised BP recovery observed in sarcopenia appears to be driven by an initial reduction in the peak of cardiac output, followed by attenuated recovery of cardiac output from its peak and total peripheral resistance from its nadir. This cardiac output finding seems to be influenced by stroke volume rather than heart rate. Possible mechanisms for these findings include cardio-sarcopenia, the impact of sarcopenia on the autonomic nervous system, and/or the skeletal muscle pump.
Collapse
Affiliation(s)
- Eoin Duggan
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Falls and Syncope Unit (FASU), Mercer’s Institute for Successful Ageing, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Silvin P. Knight
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Feng Xue
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Roman Romero-Ortuno
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Falls and Syncope Unit (FASU), Mercer’s Institute for Successful Ageing, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
2
|
Lucci VEM, Parsons IT, Hockin BCD, Claydon VE. Evaluation of stroke volume estimation during orthostatic stress: the utility of Modelflow. Blood Press Monit 2023; 28:330-337. [PMID: 37661717 DOI: 10.1097/mbp.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Advanced blood pressure monitoring devices contain algorithms that permit estimation of stroke volume (SV). Modelflow (Finapres Medical Systems) is one common method to non-invasively estimate beat-to-beat SV. However, Modelflow accuracy during profound reductions in SV is unclear. We aimed to compare SV estimation by Modelflow and echocardiography, at rest and during orthostatic challenge. We tested 13 individuals (age 24 ± 2 years; 7 female) using combined head-up tilt and graded lower body negative pressure, continued until presyncope. SV was derived by both Modelflow and echocardiography on multiple occasions while supine, during orthostatic stress, and at presyncope. SV index (SVI) was determined by normalising SV for body surface area. Bias and limits of agreement were determined using Bland-Altman analyses. Two one-sided tests (TOST) examined equivalency. Across all timepoints, Modelflow estimates of SV (73.2 ± 1.6 ml) were strongly correlated with echocardiography estimates (66.1 ± 1.3 ml) (r = 0.56, P < 0.001) with a bias of +7.1 ± 21.1 ml. Bias across all timepoints was further improved when SV was indexed (+3.6 ± 12.0 ml.m -2 ). Likewise, when assessing responses relative to baseline, Modelflow estimates of SV (-23.4 ± 1.4%) were strongly correlated with echocardiography estimates (-19.2 ± 1.3%) (r = 0.76, P < 0.001), with minimal bias (-4.2 ± 13.1%). TOST testing revealed equivalency to within 15% of the clinical standard for SV and SVI, both expressed as absolute values and relative to baseline. Modelflow can be used to track changes in SV during profound orthostatic stress, with accuracy enhanced with correction relative to baseline values or body size. These data support the use of Modelflow estimates of SV for autonomic function testing.
Collapse
Affiliation(s)
- Vera-Ellen M Lucci
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Iain T Parsons
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham
- School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Brooke C D Hockin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
3
|
Stone T, Yanes Cardozo LL, Oluwatade TN, Leone CA, Burgos M, Okifo F, Pal L, Reckelhoff JF, Stachenfeld NS. Testosterone-associated blood pressure dysregulation in women with androgen excess polycystic ovary syndrome. Am J Physiol Heart Circ Physiol 2023; 325:H232-H243. [PMID: 37327000 PMCID: PMC10393337 DOI: 10.1152/ajpheart.00164.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
We tested the hypothesis that hyperandrogenemia in androgen excess polycystic ovary syndrome (AE-PCOS) is a primary driver in blood pressure (BP) dysregulation via altered sympathetic nervous system activity (SNSA), reduced integrated baroreflex gain and increased renin-angiotensin system (RAS) activation. We measured resting SNSA (microneurography), integrated baroreflex gain, and RAS with lower body negative pressure in obese insulin-resistant (IR) women with AE-PCOS [n = 8, 23 ± 4 yr; body mass index (BMI) = 36.3 ± 6.4 kg/m2] and obese IR controls (n = 7, control, 29 ± 7 yr; BMI = 34.9 ± 6.8 kg/m2), at baseline (BSL), after 4 days of gonadotropin-releasing hormone antagonist (ANT, 250 μg/day) and 4 days of ANT + testosterone (ANT + T, 5 mg/day) administration. Resting BP was similar between groups for systolic blood pressure (SBP; 137 ± 14 vs. 135 ± 14 mmHg, AE-PCOS, control) and diastolic BP (89 ± 21 vs. 76 ± 10 mmHg, AE-PCOS, control). BSL integrated baroreflex gain was similar between groups [1.4 ± 0.9 vs. 1.0 ± 1.3 forearm vascular resistance (FVR) U/mmHg], but AE-PCOS had lower SNSA (10.3 ± 2.0 vs. 14.4 ± 4.4 burst/100 heartbeats, P = 0.04). In AE-PCOS, T suppression increased integrated baroreflex gain, which was restored to BSL with ANT + T (4.3 ± 6.5 vs. 1.5 ± 0.8 FVR U/mmHg, ANT, and ANT + T, P = 0.04), with no effect in control. ANT increased SNSA in AE-PCOS (11.2 ± 2.4, P = 0.04). Serum aldosterone was greater in AE-PCOS versus control (136.5 ± 60.2 vs. 75.7 ± 41.4 pg/mL, AE-PCOS, control, P = 0.04) at BSL but was unaffected by intervention. Serum angiotensin-converting enzyme was greater in AE-PCOS versus control (101.9 ± 93.4 vs. 38.2 ± 14.7 pg/mL, P = 0.04) and reduced by ANT in AE-PCOS (77.7 ± 76.5 vs. 43.4 ± 27.3 µg/L, ANT, and ANT + T, P = 0.04) with no impact on control. Obese, IR women with AE-PCOS showed decreased integrated baroreflex gain and increased RAS activation compared with control.NEW & NOTEWORTHY Here we present evidence for an important role of testosterone in baroreflex control of blood pressure and renal responses to baroreceptor unloading in women with a common, high-risk androgen excess polycystic ovary syndrome (AE-PCOS) phenotype. These data indicate a direct effect of testosterone on the vascular system of women with AE-PCOS independent of body mass index (BMI) and insulin-resistant (IR). Our study indicates that hyperandrogenemia is a central underlining mechanism of heightened cardiovascular risk in women with PCOS.
Collapse
Affiliation(s)
- Tori Stone
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Division of Endocrinology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Toni N Oluwatade
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- College of Arts and Sciences, Yale University, New Haven, Connecticut, United States
| | - Cheryl A Leone
- John B. Pierce Laboratory, New Haven, Connecticut, United States
| | - Melanie Burgos
- John B. Pierce Laboratory, New Haven, Connecticut, United States
| | - Faith Okifo
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Jane F Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
4
|
Sayegh ALC, Fan JL, Vianna LC, Dawes M, Paton JFR, Fisher JP. Sex-differences in the sympathetic neurocirculatory responses to chemoreflex activation. J Physiol 2022; 600:2669-2689. [PMID: 35482235 PMCID: PMC9324851 DOI: 10.1113/jp282327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The purpose of this study was to determine whether there are sex differences in the cardiorespiratory and sympathetic neurocirculatory responses to central, peripheral, and combined central and peripheral chemoreflex activation. Ten women (29 ± 6 years, 22.8 ± 2.4 kg/m2: mean ± SD) and 10 men (30 ± 7 years, 24.8 ± 3.2 kg/m2) undertook randomized 5 min breathing trials of: room air (eucapnia), isocapnic hypoxia (10% oxygen (O2); peripheral chemoreflex activation), hypercapnic hyperoxia (7% carbon dioxide (CO2), 50% O2; central chemoreflex activation) and hypercapnic hypoxia (7% CO2, 10% O2; central and peripheral chemoreflex activation). Control trials of isocapnic hyperoxia (peripheral chemoreflex inhibition) and hypocapnic hyperoxia (central and peripheral chemoreflex inhibition) were also included. Muscle sympathetic nerve activity (MSNA; microneurography), mean arterial pressure (MAP; finger photoplethysmography) and minute ventilation (V˙E; pneumotachometer) were measured. Total MSNA (P = 1.000 and P = 0.616), MAP (P = 0.265) and V˙E (P = 0.587 and P = 0.472) were not different in men and women during eucapnia and during isocapnic hypoxia. Women exhibited attenuated increases in V˙E during hypercapnic hyperoxia (27.3 ± 6.3 vs. 39.5 ± 7.5 l/min, P < 0.0001) and hypercapnic hypoxia (40.9 ± 9.1 vs. 53.8 ± 13.3 l/min, P < 0.0001) compared with men. However, total MSNA responses were augmented in women (hypercapnic hyperoxia 378 ± 215 vs. 258 ± 107%, P = 0.017; hypercapnic hypoxia 607 ± 290 vs. 362 ± 268%, P < 0.0001). No sex differences in total MSNA, MAP or V˙E were observed during isocapnic hyperoxia and hypocapnic hyperoxia. Our results indicate that young women have augmented sympathetic responses to central chemoreflex activation, which explains the augmented MSNA response to combined central and peripheral chemoreflex activation. Key points Sex differences in the control of breathing have been well studied, but whether there are differences in the sympathetic neurocirculatory responses to chemoreflex activation between healthy women and men is incompletely understood. We observed that, compared with young men, young women displayed augmented increases in muscle sympathetic nerve activity during both hypercapnic hyperoxia (central chemoreflex activation) and hypercapnic hypoxia (central and peripheral chemoreflex activation) but had attenuated increases in minute ventilation. In contrast, no sex differences were found in either muscle sympathetic nerve activity or minute ventilation responses to isocapnic hypoxia (peripheral chemoreceptor stimulation). Young women have blunted ventilator, but augmented sympathetic responses, to central (hypercapnic hyperoxia) and combined central and peripheral chemoreflex activation (hypercapnic hypoxia), compared with young men. The possible causative association between the reduced ventilation and heightened sympathetic responses in young women awaits validation.
Collapse
Affiliation(s)
- Ana Luiza C Sayegh
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Jui-Lin Fan
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Mathew Dawes
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - James P Fisher
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
5
|
Matsukawa K, Asahara R, Uzumaki M, Hashiguchi Y, Ishii K, Wang J, Smith SA. Central command-related increases in blood velocity of anterior cerebral artery and prefrontal oxygenation at the onset of voluntary tapping. Am J Physiol Heart Circ Physiol 2021; 321:H518-H531. [PMID: 34328343 DOI: 10.1152/ajpheart.00062.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anterior cerebral artery (ACA) supplies blood predominantly to the frontal lobe including the prefrontal cortex. Our laboratory reported that prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) increased before and at exercise onset, as long as exercise is arbitrarily started. Moreover, the increased prefrontal oxygenation seems independent of both exercise intensity and muscle mass. If so, mean blood velocity of the ACA (ACABV) should increase with "very light motor effort," concomitantly with the preexercise and initial increase in prefrontal Oxy-Hb. This study aimed to examine the responses in ACABV and vascular conductance index (ACAVCI) of the ACA as well as prefrontal Oxy-Hb during arbitrary or cued finger tapping in 12 subjects, an activity with a Borg scale perceived exertion rating of 7 (median). With arbitrary start, ACABV increased at tapping onset (14 ± 9%) via an elevation in ACAVCI. Likewise, prefrontal Oxy-Hb increased at the onset of tapping with a time course resembling that of ACABV. A positive cross correlation between the initial changes in ACABV and prefrontal Oxy-Hb was found significant in 67% of subjects, having a time lag of 2 s, whereas a positive linear regression between them was significant in 75% of subjects. When tapping was forced to start by cue, the initial increases in ACABV, ACAVCI, and prefrontal Oxy-Hb were delayed and blunted as compared with an arbitrary start. Thus, active vasodilatation of the ACA vascular bed occurs at tapping onset, as long as tapping is arbitrarily started, and contributes to immediate increases in blood flow and prefrontal oxygenation.NEW & NOTEWORTHY Anterior cerebral artery blood velocity and vascular conductance index along with prefrontal oxygenated-hemoglobin concentration all increased at the onset of finger tapping, peaking immediately after tapping onset, as long as tapping was arbitrarily started. Positive cross correlation and linear regression between the increases in ACABV and prefrontal Oxy-Hb were significant in 67%-75% of subjects. Active vasodilatation of the ACA vascular bed occurs with arbitrary tapping onset and contributes to increased ACABV and prefrontal oxygenation.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryota Asahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Minami Uzumaki
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiki Hashiguchi
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Ishii
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Jijia Wang
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott A Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
de Vries CJ, DeLorey DS. Effect of acute dietary nitrate supplementation on sympathetic vasoconstriction at rest and during exercise. J Appl Physiol (1985) 2019; 127:81-88. [PMID: 31095461 DOI: 10.1152/japplphysiol.01053.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dietary nitrate ( NO3- ) supplementation has been shown to reduce resting blood pressure. However, the mechanism responsible for the reduction in blood pressure has not been identified. Dietary NO3- supplementation may increase nitric oxide (NO) bioavailability, and NO has been shown to inhibit sympathetic vasoconstriction in resting and contracting skeletal muscle. Therefore, the purpose of this study was to investigate the hypothesis that acute dietary NO3- supplementation would attenuate sympathetic vasoconstrictor responsiveness at rest and during exercise. In a double-blind randomized crossover design, 12 men (23 ± 5 yr) performed a cold-pressor test (CPT) at rest and during moderate- and heavy-intensity alternate-leg knee-extension exercise after consumption of NO3- rich beetroot juice (~12.9 mmol NO3- ) or a NO3- -depleted placebo (~0.13 mmol NO3- ). Venous blood was sampled before and 2.5 h after the consumption of beetroot juice for the measurement of total plasma nitrite/ NO3- [NOx]. Beat-by-beat blood pressure was measured by Finometer. Leg blood flow was measured at the femoral artery via Doppler ultrasound, and leg vascular conductance (LVC) was calculated. Sympathetic vasoconstrictor responsiveness was calculated as the percentage decrease in LVC in response to the CPT. Total plasma [NOx] was greater (P < 0.001) in the NO3- (285 ± 120 µM) compared with the placebo (65 ± 30 µM) condition. However, mean arterial blood pressure and plasma catecholamines were not different (P > 0.05) between NO3- and placebo conditions at rest or during moderate- and heavy-intensity exercise. Sympathetic vasoconstrictor responsiveness (Δ% LVC) was not different (P > 0.05) between NO3- and placebo conditions at rest ( NO3- : -33 ± 10%; placebo: -35 ± 11%) or during moderate ( NO3- : -18 ± 8%; placebo: -20 ± 10%)- and heavy ( NO3- : -12 ± 8%; placebo: -11 ± 9%)-intensity exercise. These data demonstrate that acute dietary NO3- supplementation does not alter sympathetic vasoconstrictor responsiveness at rest or during exercise in young healthy males. NEW & NOTEWORTHY Dietary nitrate may increase nitric oxide bioavailability, and nitric oxide has been shown to attenuate sympathetic vasoconstriction in resting and contracting skeletal muscle and enhance functional sympatholysis. However, the effect of dietary nitrate on sympathetic vasoconstrictor responsiveness is unknown. Acute dietary nitrate supplementation did not alter blood pressure or sympathetic vasoconstrictor responsiveness at rest or during exercise in young healthy males.
Collapse
Affiliation(s)
- Christopher J de Vries
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| | - Darren S DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
7
|
Gibbons TD, Zuj KA, Peterson SD, Hughson RL. Comparison of pulse contour, aortic Doppler ultrasound and bioelectrical impedance estimates of stroke volume during rapid changes in blood pressure. Exp Physiol 2019; 104:368-378. [PMID: 30582758 DOI: 10.1113/ep087240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/18/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Pulse contour analysis of the finger arterial pressure by Windkessel modelling is commonly used to estimate stroke volume continuously. But is it valid during dynamic changes in blood pressure? What is the main finding and its importance? Second-by-second analysis revealed that pulse contour analysis underestimated stroke volume by up to 25% after standing from a squat, and 16% after standing thigh-cuff release, when compared with aortic Doppler ultrasound estimates. These results reveal that pulse contour analysis of stroke volume should be interpreted with caution during rapid changes in physiological state. ABSTRACT Dynamic measurements of stroke volume (SV) and cardiac output provide an index of central haemodynamics during transitional states, such as postural changes and onset of exercise. The most widely used method to assess dynamic fluctuations in SV is the Modelflow method, which uses the arterial blood pressure waveform along with age- and sex-specific aortic properties to compute beat-to-beat estimates of aortic flow. Modelflow has been validated against more direct methods in steady-state conditions, but not during dynamic changes in physiological state, such as active orthostatic stress testing. In the present study, we compared the dynamic SV responses from Modelflow (SVMF ), aortic Doppler ultrasound (SVU/S ) and bioelectrical impedance analysis (SVBIA ) during two different orthostatic stress tests, a squat-to-stand (S-S) transition and a standing bilateral thigh-cuff release (TCR), in 15 adults (six females). Second-by-second analysis revealed that when compared with estimates of SV by aortic Doppler ultrasound, Modelflow underestimated SV by up to 25% from 3 to 11 s after standing from the squat position and by up to 16% from 3 to 7 s after TCR (P < 0.05). The SVMF and SVBIA were similar during the first minute of the S-S transition, but were different 3 s after TCR and at intermittent time points between 34 and 44 s (P < 0.05). These findings indicate that the physiological conditions elicited by orthostatic stress testing violate some of the inherent assumptions of Modelflow and challenge models used to interpret bioelectrical impedance responses, resulting in an underestimation in SV during rapid changes in physiological state.
Collapse
Affiliation(s)
- Travis D Gibbons
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Kathryn A Zuj
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Sean D Peterson
- Department of Mechanical and Mechatronic Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Richard L Hughson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
| |
Collapse
|
8
|
James JE, Baldursdottir B, Johannsdottir KR, Valdimarsdottir HB, Sigfusdottir ID. Adolescent habitual caffeine consumption and hemodynamic reactivity during rest, psychosocial stress, and recovery. J Psychosom Res 2018; 110:16-23. [PMID: 29764601 DOI: 10.1016/j.jpsychores.2018.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Most adolescents regularly consume caffeine. Whereas observational studies have suggested that coffee may be cardio-protective, pharmacological experimentation with adults shows that caffeine at dietary doses increases blood pressure, thereby implicating regular caffeine consumption as a potential source of harm for cardiovascular health. The present study was in response to the dearth of caffeine research among younger consumers. It was hypothesised that compared to the consumption of little or no caffeine, adolescents who habitually consume caffeine have overall higher blood pressure and increased vascular resistance. METHOD Using a quasi-experimental design, continuous measurements of blood pressure, cardiac output, and total peripheral resistance were taken non-invasively from adolescents (n = 333) aged 14-15 years and 18-19 years who reported "low", "moderate", or "high" levels of caffeine intake. Measurements were conducted when participants generally had negligible or low systematic caffeine levels while at rest, during stress, and during recovery from stress. RESULTS Whereas habitual caffeine consumption did not predict blood pressure level, higher caffeine intake was associated with modestly increased vascular resistance during all phases of the experiment (i.e., at rest, during stress, and during recovery from stress). CONCLUSIONS Present findings are important because they suggest that early exposure to caffeine may lead to persistent increases in vascular resistance, which in turn is an acknowledged risk factor for the development of hypertension. These results highlight the need for further studies of adolescents to determine the robustness of any persistent caffeine-related hemodynamic effects, and the implications such effects could have for long-term cardiovascular health.
Collapse
|
9
|
Ichinose M, Matsumoto M, Fujii N, Yoshitake N, Nishiyasu T. Voluntary apnea during dynamic exercise activates the muscle metaboreflex in humans. Am J Physiol Heart Circ Physiol 2017; 314:H434-H442. [PMID: 29101169 DOI: 10.1152/ajpheart.00367.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voluntary apnea during dynamic exercise evokes marked bradycardia, peripheral vasoconstriction, and pressor responses. However, the mechanism(s) underlying the cardiovascular responses seen during apnea in exercising humans is unknown. We therefore tested the hypothesis that the muscle metaboreflex contributes to the apnea-induced pressor response during dynamic exercise. Thirteen healthy subjects participated in apnea and control trials. In both trials, subjects performed a two-legged dynamic knee extension exercise at a workload that elicited heart rates at ~100 beats/min. In the apnea trial, after reaching a steady state, subjects began voluntary apnea. Immediately after cessation of the apnea, arterial occlusion was initiated at both thighs and the subjects stopped exercising. The occlusion was sustained for 3 min in the postexercise period. In the control trial, the occlusion was started without subjects performing the apnea. The apnea induced marked bradycardia, pressor responses, and decreases in arterial O2 saturation, cardiac output, and total vascular conductance. In addition, arterial blood pressure was significantly higher and total vascular conductance was significantly lower in the apnea trials than the control trials throughout the occlusion period. In separate sessions, we measured apnea-induced changes in exercising leg blood flow in the same subjects. Leg blood flow was significantly reduced by apnea and reached the resting level at the peak of the apnea response. We conclude that the muscle metaboreflex is activated by the decrease in O2 delivery to the working muscle during apnea in exercising humans and contributes to the large pressor response. NEW & NOTEWORTHY We demonstrated that apnea during dynamic exercise activates the muscle metaboreflex in humans. This result indicates that a reduction in O2 delivery to working muscle triggers the muscle metaboreflex during apnea. Activation of the muscle metaboreflex is one of the mechanisms underlying the marked apnea-induced pressor response.
Collapse
Affiliation(s)
- Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University , Tokyo , Japan
| | - Mayumi Matsumoto
- Institute of Health and Sport Sciences, University of Tsukuba , Ibaraki , Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba , Ibaraki , Japan
| | - Narumi Yoshitake
- Institute of Health and Sport Sciences, University of Tsukuba , Ibaraki , Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba , Ibaraki , Japan
| |
Collapse
|
10
|
Psychophysiological assessment of an adaptive asynchronous human–machine system with the dual-task method. ARTIFICIAL LIFE AND ROBOTICS 2017. [DOI: 10.1007/s10015-017-0353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ishii K, Matsukawa K, Liang N, Endo K, Idesako M, Asahara R, Kadowaki A, Wakasugi R, Takahashi M. Central command generated prior to arbitrary motor execution induces muscle vasodilatation at the beginning of dynamic exercise. J Appl Physiol (1985) 2016; 120:1424-33. [DOI: 10.1152/japplphysiol.00103.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the role of central command, generated prior to arbitrary motor execution, in cardiovascular and muscle blood flow regulation during exercise. Thirty two subjects performed 30 s of two-legged cycling or 1 min of one-legged cycling (66 ± 4% and 35% of the maximal exercise intensity, respectively), which was started arbitrarily or abruptly by a verbal cue (arbitrary vs. cued start). We measured the cardiovascular variables during both exercises and the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of noncontracting vastus lateralis muscles as index of tissue blood flow and femoral blood flow to nonexercising leg during one-legged cycling. Two-legged cycling with arbitrary start caused a decrease in total peripheral resistance (TPR), which was smaller during the exercise with cued start. The greater reduction of TPR with arbitrary start was also recognized at the beginning of one-legged cycling. Oxy-Hb of noncontracting muscle increased by 3.6 ± 1% ( P < 0.05) during one-legged cycling with arbitrary start, whereas such increase in Oxy-Hb was absent with cued start. The increases in femoral blood flow and vascular conductance of nonexercising leg were evident ( P < 0.05) at 10 s from the onset of one-legged cycling with arbitrary start, whereas those were smaller or absent with cued start. It is likely that when voluntary exercise is started arbitrarily, central command is generated prior to motor execution and then contributes to muscle vasodilatation at the beginning of exercise. Such centrally induced muscle vasodilatation may be weakened and/or masked in the case of exercise with cued start.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Integrative Physiology and
| | | | - Nan Liang
- Department of Integrative Physiology and
| | - Kana Endo
- Department of Integrative Physiology and
| | | | | | | | | | - Makoto Takahashi
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Sato K, Oue A, Yoneya M, Sadamoto T, Ogoh S. Heat stress redistributes blood flow in arteries of the brain during dynamic exercise. J Appl Physiol (1985) 2016; 120:766-73. [DOI: 10.1152/japplphysiol.00353.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/31/2016] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise ( P < 0.05) and thereafter gradually decreased. ICA COND was significantly decreased ( P < 0.05), whereas VA COND remained unchanged throughout Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition ( P < 0.01). During Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension ( r = 0.84), whereas VA BF appears to be affected by a change in cardiac output ( r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF ( r = −0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress.
Collapse
Affiliation(s)
- Kohei Sato
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan; and
| | - Anna Oue
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan; and
| | - Marina Yoneya
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan; and
| | - Tomoko Sadamoto
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan; and
| | - Shigehiko Ogoh
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan; and
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
| |
Collapse
|
13
|
Takahashi M, Nakamoto T, Matsukawa K, Ishii K, Watanabe T, Sekikawa K, Hamada H. Cardiac parasympathetic outflow during dynamic exercise in humans estimated from power spectral analysis of P-P interval variability. Exp Physiol 2015; 101:397-409. [PMID: 26690240 DOI: 10.1113/ep085420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/03/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Should we use the high-frequency (HF) component of P-P interval as an index of cardiac parasympathetic nerve activity during moderate exercise? What is the main finding and its importance? The HF component of P-P interval variability remained even at a heart rate of 120-140 beats min(-1) and was further reduced by atropine, indicating incomplete cardiac vagal withdrawal during moderate exercise. The HF component of R-R interval is invalid as an estimate of cardiac parasympathetic outflow during moderate exercise; instead, the HF component of P-P interval variability should be used. The high-frequency (HF) component of R-R interval variability has been widely used as an indirect estimate of cardiac parasympathetic (vagal) outflow to the sino-atrial node of the heart. However, we have recently found that the variability of the R-R interval becomes much smaller during dynamic exercise than that of the P-P interval above a heart rate (HR) of ∼100 beats min(-1). We hypothesized that cardiac parasympathetic outflow during dynamic exercise with a higher intensity may be better estimated using the HF component of P-P interval variability. To test this hypothesis, the HF components of both P-P and R-R interval variability were analysed using a Wavelet transform during dynamic exercise. Twelve subjects performed ergometer exercise to increase HR from the baseline of 69 ± 3 beats min(-1) to three different levels of 100, 120 and 140 beats min(-1). We also examined the effect of atropine sulfate on the HF components in eight of the 12 subjects during exercise at an HR of 140 beats min(-1) . The HF component of P-P interval variability was significantly greater than that of R-R interval variability during exercise, especially at the HRs of 120 and 140 beats min(-1). The HF component of P-P interval variability was more reduced by atropine than that of R-R interval variability. We conclude that cardiac parasympathetic outflow to the sino-atrial node can be estimated better by the HF component of P-P interval variability during exercise and that cardiac parasympathetic nerve activity exists during moderate dynamic exercise.
Collapse
Affiliation(s)
- Makoto Takahashi
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Nakamoto
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tae Watanabe
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyokazu Sekikawa
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Ishii K, Matsukawa K, Liang N, Endo K, Idesako M, Hamada H, Kataoka T, Ueno K, Watanabe T, Takahashi M. Differential contribution of ACh-muscarinic and β-adrenergic receptors to vasodilatation in noncontracting muscle during voluntary one-legged exercise. Physiol Rep 2014; 2:e12202. [PMID: 25413322 PMCID: PMC4255809 DOI: 10.14814/phy2.12202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022] Open
Abstract
We have demonstrated the centrally induced cholinergic vasodilatation in skeletal muscle at the early period of voluntary one-legged exercise and during motor imagery in humans. The purpose of this study was to examine whether central command may also cause β-adrenergic vasodilatation during the exercise and motor imagery. Relative changes in oxygenated hemoglobin concentration (Oxy-Hb) of bilateral vastus lateralis (VL) muscles, as index of tissue blood flow, and femoral blood flow to nonexercising limb were measured during one-legged cycling and mental imagery of the exercise for 1 min before and after propranolol (0.1 mg/kg iv). The Oxy-Hb of noncontracting muscle increased (P < 0.05) at the early period of exercise and the increase was sustained throughout exercise, whereas the Oxy-Hb of contracting muscle increased at the early period but thereafter decreased. We subtracted the Oxy-Hb response with propranolol from the control response in individual subjects to identify the propranolol-sensitive component of the Oxy-Hb response during exercise. In both noncontracting and contracting VL muscles, the increase in Oxy-Hb at the early period of one-legged exercise did not involve a significant propranolol-sensitive component. However, as the exercise proceeded, the propranolol-sensitive component of the Oxy-Hb response was developed during the later period of exercise. Propranolol also failed to affect the initial increases in femoral blood flow and vascular conductance of nonexercising leg but significantly attenuated (P < 0.05) their later increases during exercise. Subsequent atropine (10-15 μg/kg iv) abolished the initial increases in Oxy-Hb of both VL muscles. Mental imagery of the one-legged exercise caused the bilateral increases in Oxy-Hb, which were not altered by propranolol but abolished by subsequent atropine. It is likely that the rapid cholinergic and delayed β-adrenergic vasodilator mechanisms cooperate to increase muscle blood flow during exercise.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nan Liang
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Endo
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuhiro Idesako
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Kataoka
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazumi Ueno
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tae Watanabe
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Takahashi
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Lacewell AN, Buck TM, Romero SA, Halliwill JR. Postexercise syncope: Wingate syncope test and effective countermeasure. Exp Physiol 2013; 99:172-86. [PMID: 24078670 DOI: 10.1113/expphysiol.2013.075333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Altered systemic haemodynamics following exercise can compromise cerebral perfusion and result in syncope. As the Wingate anaerobic test often induces presyncope, we hypothesized that a modified Wingate test could form the basis of a novel model for the study of postexercise syncope and a test bed for potential countermeasures. Along these lines, breathing through an impedance threshold device has been shown to increase tolerance to hypovolaemia, and could prove beneficial in the setting of postexercise syncope. Therefore, we hypothesized that a modified Wingate test followed by head-up tilt would produce postexercise syncope, and that breathing through an impedance threshold device (countermeasure) would prevent postexercise syncope in healthy individuals. Nineteen recreationally active men and women underwent a 60 deg head-up tilt during recovery from the Wingate test while arterial pressure, heart rate, end-tidal CO2 and cerebral tissue oxygenation were measured on a control day and a countermeasure day. The duration of tolerable tilt was increased by a median time of 3 min 48 s with countermeasure in comparison to the control (P < 0.05), and completion of the tilt test increased from 42 to 67% with the countermeasure. During the tilt, mean arterial pressure was greater (108.0 ± 4.1 versus 100.4 ± 2.4 mmHg; P < 0.05) with the countermeasure in comparison to the control. These data suggest that the Wingate syncope test produces a high incidence of presyncope, which is sensitive to countermeasures such as inspiratory impedance.
Collapse
Affiliation(s)
- Alisha N Lacewell
- J. R. Halliwill: 122 Esslinger Hall, 1240 University of Oregon, Eugene, OR 97403-1240, USA.
| | | | | | | |
Collapse
|
16
|
Wenner MM, Haddadin AS, Taylor HS, Stachenfeld NS. Mechanisms contributing to low orthostatic tolerance in women: the influence of oestradiol. J Physiol 2013; 591:2345-55. [PMID: 23401618 DOI: 10.1113/jphysiol.2012.247882] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The impact of 17β-oestradiol (E2) exposure on autonomic control of orthostasis in young women is unclear. We tested the hypothesis that autonomic cardiovascular regulation is more sensitive to E2 exposure in women with low orthostatic tolerance. Women underwent an initial maximal lower body negative pressure (LBNP) test to place them into a low (LT, n = 7, 22 ± 1 years old, body mass index 22 ± 1 kg m(-2)) or a high orthostatic tolerance group (HT, n = 7, 22 ± 1 years old, body mass index 24 ± 1 kg m(-2)). We then suppressed endogenous reproductive hormone production using a gonadotrophin-releasing hormone antagonist (GnRHant) for 10 days, with E2 administration during the last 7 days of GnRHant. We measured R-R interval and beat-by-beat blood pressure during the modified Oxford protocol, and changes in heart rate, blood pressure and forearm vascular resistance (FVR) during submaximal LBNP. During submaximal LBNP, FVR increased in HT (ANOVA P < 0.05) but not in LT (ANOVA P > 0.05), and stroke volume was lower in LT relative to HT at all levels of LBNP (P < 0.05). Compared with GnRHant, E2 administration shifted FVR lower in LT (ANOVA P < 0.05), with no effect in HT. Administration of E2 increased baroreflex control of heart rate (derived from the modified Oxford protocol) in LT (GnRHant 10.7 ± 2.5 ms mmHg(-1) vs. E2 16.1 ± 2.4 ms mmHg(-1), P < 0.05) but not in HT (GnRHant 13.4 ± 1.9 ms mmHg(-1) vs. E2 15.3 ± 2.4 ms mmHg(-1), n.s.). In conclusion, blunted peripheral vasoconstriction and lower stroke volume contribute to compromised orthostatic tolerance in women; this inability to vasoconstrict is further exacerbated by exposure to E2. Furthermore, E2 administration increases baroreflex-mediated heart rate responses to orthostasis in low orthostatic tolerant women, which is likely to be a compensatory mechanism for the blunted peripheral vascular resistance and lower central volume.
Collapse
Affiliation(s)
- Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA.
| | | | | | | |
Collapse
|
17
|
Francescato M, Cettolo V, di Prampero P. Oxygen uptake kinetics at work onset: Role of cardiac output and of phosphocreatine breakdown. Respir Physiol Neurobiol 2013; 185:287-95. [DOI: 10.1016/j.resp.2012.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 12/16/2022]
|
18
|
Lucas RAI, Ainslie PN, Morrison SA, Cotter JD. Compression leggings modestly affect cardiovascular but not cerebrovascular responses to heat and orthostatic stress in young and older adults. AGE (DORDRECHT, NETHERLANDS) 2012; 34:439-49. [PMID: 21526339 PMCID: PMC3312639 DOI: 10.1007/s11357-011-9250-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 04/10/2011] [Indexed: 05/17/2023]
Abstract
We tested the hypothesis that wearing commercially available compression leggings would attenuate postural reductions in mean arterial blood pressure (MAP) and cerebral perfusion during heat stress, particularly in older adults. Six older (70 years ± 4) and six younger (29 years ± 4) males were heated (esophageal temperature raised 0.5°C) in a water-perfused suit whilst wearing compression or control leggings (>1 week apart, randomized order). Blood flow velocity in the middle cerebral artery (MCAv), blood pressure (photoplethysmography), total peripheral resistance (TPR; ModelFlow) and the partial pressure of end-tidal carbon dioxide were measured continuously before and during 3-min standing in each thermal state. When supine, compression leggings did not change any cardiorespiratory variables in either age group or thermal condition (P > 0.05). Upon standing, wearing compression leggings delayed (~15%; P = 0.044) the maximal drop (nadir) in MAP irrespective of age or thermal condition. During the last minute of standing, wearing compression leggings in normothermia increased TPR (+16%) in older participants but dropped TPR (-8%) in younger participants (P = 0.004 compression × age group). When standing and heated, wearing compression leggings lowered TPR in older and younger participants (~43%; P < 0.01) without changing MAP or MCAv (P > 0.05). In older adults, when standing, compression leggings maintained MAP by elevating TPR. In contrast, under combined heat and orthostatic stress, wearing compression leggings dropped TPR in both older and younger adults, though MAP and MCAv were maintained.
Collapse
|
19
|
Minimally- and non-invasive assessment of maternal cardiac output: go with the flow! Int J Obstet Anesth 2011; 20:330-40. [DOI: 10.1016/j.ijoa.2011.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 10/17/2022]
|
20
|
Liang N, Nakamoto T, Mochizuki S, Matsukawa K. Differential contribution of central command to the cardiovascular responses during static exercise of ankle dorsal and plantar flexion in humans. J Appl Physiol (1985) 2011; 110:670-80. [DOI: 10.1152/japplphysiol.00740.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine whether central command contributes differently to the cardiovascular responses during voluntary static exercise engaged by different muscle groups, we encouraged healthy subjects to perform voluntary and electrically evoked involuntary static exercise of ankle dorsal and plantar flexion. Each exercise was conducted with 25% of the maximum voluntary force of the right ankle dorsal and plantar flexion, respectively, for 2 min. Heart rate (HR) and mean arterial blood pressure (MAP) were recorded, and stroke volume, cardiac output (CO), and total peripheral resistance were calculated. With voluntary exercise, HR, MAP, and CO significantly increased during dorsal flexion (the maximum increase, HR: 12 ± 2.3 beats/min; MAP: 14 ± 2.0 mmHg; CO: 1 ± 0.2 l/min), whereas only MAP increased during plantar flexion (the maximum increase, 6 ± 2.0 mmHg). Stroke volume and total peripheral resistance were unchanged throughout the two kinds of voluntary static exercise. With involuntary exercise, there were no significant changes in all cardiovascular variables, irrespective of dorsal or plantar flexion. Furthermore, before the force onset of voluntary static exercise, HR and MAP started to increase without muscle contraction, whereas they had no significant changes with involuntary exercise at the moment. The present findings indicate that differential contribution of central command is responsible for the different cardiovascular responses to static exercise, depending on the strength of central control of the contracting muscle.
Collapse
Affiliation(s)
- Nan Liang
- Department of Physiology, Graduate School of Health Sciences, and
- Center for Advanced Practice and Research of Rehabilitation, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Tomoko Nakamoto
- Department of Physiology, Graduate School of Health Sciences, and
| | - Seina Mochizuki
- Department of Physiology, Graduate School of Health Sciences, and
| | - Kanji Matsukawa
- Department of Physiology, Graduate School of Health Sciences, and
- Center for Advanced Practice and Research of Rehabilitation, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
21
|
Shibasaki M, Wilson TE, Bundgaard-Nielsen M, Seifert T, Secher NH, Crandall CG. Modelflow underestimates cardiac output in heat-stressed individuals. Am J Physiol Regul Integr Comp Physiol 2010; 300:R486-91. [PMID: 21084673 DOI: 10.1152/ajpregu.00505.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An estimation of cardiac output can be obtained from arterial pressure waveforms using the Modelflow method. However, whether the assumptions associated with Modelflow calculations are accurate during whole body heating is unknown. This project tested the hypothesis that cardiac output obtained via Modelflow accurately tracks thermodilution-derived cardiac outputs during whole body heat stress. Acute changes of cardiac output were accomplished via lower-body negative pressure (LBNP) during normothermic and heat-stressed conditions. In nine healthy normotensive subjects, arterial pressure was measured via brachial artery cannulation and the volume-clamp method of the Finometer. Cardiac output was estimated from both pressure waveforms using the Modeflow method. In normothermic conditions, cardiac outputs estimated via Modelflow (arterial cannulation: 6.1 ± 1.0 l/min; Finometer 6.3 ± 1.3 l/min) were similar with cardiac outputs measured by thermodilution (6.4 ± 0.8 l/min). The subsequent reduction in cardiac output during LBNP was also similar among these methods. Whole body heat stress elevated internal temperature from 36.6 ± 0.3 to 37.8 ± 0.4°C and increased cardiac output from 6.4 ± 0.8 to 10.9 ± 2.0 l/min when evaluated with thermodilution (P < 0.001). However, the increase in cardiac output estimated from the Modelflow method for both arterial cannulation (2.3 ± 1.1 l/min) and Finometer (1.5 ± 1.2 l/min) was attenuated compared with thermodilution (4.5 ± 1.4 l/min, both P < 0.01). Finally, the reduction in cardiac output during LBNP while heat stressed was significantly attenuated for both Modelflow methods (cannulation: -1.8 ± 1.2 l/min, Finometer: -1.5 ± 0.9 l/min) compared with thermodilution (-3.8 ± 1.19 l/min). These results demonstrate that the Modelflow method, regardless of Finometer or direct arterial waveforms, underestimates cardiac output during heat stress and during subsequent reductions in cardiac output via LBNP.
Collapse
Affiliation(s)
- Manabu Shibasaki
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave., Dallas, TX 75231, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kaltoft N, Hobolth L, Møller S. Non-invasive measurement of cardiac output by Finometer in patients with cirrhosis. Clin Physiol Funct Imaging 2010; 30:230-3. [DOI: 10.1111/j.1475-097x.2010.00932.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Using the Finometer to examine sex differences in hemodynamic responses to orthostasis in older people. Blood Press Monit 2010; 15:8-17. [DOI: 10.1097/mbp.0b013e3283353199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Dyson KS, Shoemaker JK, Arbeille P, Hughson RL. Modelflow estimates of cardiac output compared with Doppler ultrasound during acute changes in vascular resistance in women. Exp Physiol 2010; 95:561-8. [PMID: 20080867 DOI: 10.1113/expphysiol.2009.050815] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We compared Modelflow (MF) estimates of cardiac stroke volume (SV) from the finger pressure-pulse waveform (Finometer) with pulsed Doppler ultrasound (DU) of the ascending aorta during acute changes in total peripheral resistance (TPR) in the supine and head-up-tilt (HUT) postures. Twenty-four women were tested during intravenous infusion of 0.005 or 0.01 microg kg(-1) min(-1) isoprenaline, 10 or 50 ng kg(-1) min(-1) noradrenaline and 0.3 mg sublingual nitroglycerine. Responses to static hand-grip exercise (SHG), graded lower body negative pressure (LBNP, from 20 to 45 mmHg) and 45 deg HUT were evaluated on separate days. Bland-Altman analysis indicated that SV(MF) yielded lower estimates than SV(DU) during infusion of 0.01 microg kg(-1) min(-1) isoprenaline (SV(MF) 92.7 +/- 15.5 versus SV(DU) 104.3 +/- 22.9 ml, P = 0.03) and SHG (SV(MF) 78.8 +/- 12.0 versus SV(DU) 106.1 +/- 28.5 ml, P < 0.01), while larger estimates were recorded with SV(MF) during 45 mmHg LBNP (SV(MF) 52.6 +/- 10.7 versus SV(DU) 46.2 +/- 14.5 ml, P = 0.04) and HUT (SV(MF) 59.3 +/- 13.6 versus SV(DU) 45.2 +/- 11.3 ml, P < 0.01). Linear regression analysis revealed a relationship (r(2) = 0.41, P < 0.01) between the change in TPR from baseline and the between-methods discrepancy in SV measurements. This relationship held up under all of the experimental protocols (regression for fixed effects, P = 0.46). These results revealed a discrepancy in MF estimates of SV, in comparison with those measured by DU, during acute changes in TPR.
Collapse
Affiliation(s)
- Kenneth S Dyson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
25
|
Skin cooling aids cerebrovascular function more effectively under severe than moderate heat stress. Eur J Appl Physiol 2009; 109:101-8. [PMID: 19946700 DOI: 10.1007/s00421-009-1298-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
Abstract
Skin surface cooling has been shown to improve orthostatic tolerance; however, the influence of severe heat stress on cardiovascular and cerebrovascular responses to skin cooling remains unknown. Nine healthy males, resting supine in a water-perfusion suit, were heated to +1.0 and +2.0 degrees C elevation in body core temperature (T (c)). Blood flow velocity in the middle cerebral artery (transcranial Doppler ultrasound), mean arterial pressure (MAP; photoplethysmography), stroke volume (SV; Modelflow), total peripheral resistance (TPR; Modelflow), heart rate (HR; ECG) and the partial pressure of end-tidal carbon dioxide (P(ET)CO(2)) were measured continuously during 1-min baseline and 3-min lower body negative pressure (LBNP, -15 mm Hg) when heated without and again with skin surface cooling. Nine participants tolerated +1 degrees C and six participants reached +2 degrees C. Skin cooling elevated (P = 0.004) MAP ~4% during baseline and LBNP at +1 degrees C T (c). During LBNP, skin cooling increased SV (9%; P = 0.010) and TPR (0.9 mm Hg L(-1) min, P = 0.013) and lowered HR (13 b min(-1), P = 0.012) at +1 degrees C T (c) and +2 degrees C T (c) collectively. At +2 degrees C T (c), skin cooling elevated P(ET)CO(2) ~4.3 mm Hg (P = 0.011) and therefore reduced cerebral vascular resistance ~0.1 mm Hg cm(-1) s at baseline and LBNP (P = 0.012). In conclusion, skin cooling under severe heating and mild orthostatic stress maintained cerebral blood flow more effectively than it did under moderate heating, in conjunction with elevated carbon dioxide pressure, SV and arterial resistance.
Collapse
|
26
|
Tsuchimochi H, Nakamoto T, Matsukawa K. Centrally evoked increase in adrenal sympathetic outflow elicits immediate secretion of adrenaline in anaesthetized rats. Exp Physiol 2009; 95:93-106. [PMID: 19700518 DOI: 10.1113/expphysiol.2009.048553] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine whether feedforward control by central command activates preganglionic adrenal sympathetic nerve activity (AdSNA) and releases catecholamines from the adrenal medulla, we investigated the effects of electrical stimulation of the hypothalamic locomotor region on preganglionic AdSNA and secretion rate of adrenal catecholamines in anaesthetized rats. Pre- or postganglionic AdSNA was verified by temporary sympathetic ganglionic blockade with trimethaphan. Adrenal venous blood was collected every 30 s to determine adrenal catecholamine output and blood flow. Hypothalamic stimulation for 30 s (50 Hz, 100-200 microA) induced rapid activation of preganglionic AdSNA by 83-181% depending on current intensity, which was followed by an immediate increase of 123-233% in adrenal adrenaline output. Hypothalamic stimulation also increased postganglionic AdSNA by 42-113% and renal sympathetic nerve activity by 94-171%. Hypothalamic stimulation induced preferential secretion of adrenal adrenaline compared with noradrenaline, because the ratio of adrenaline to noradrenaline increased greatly during hypothalamic stimulation. As soon as the hypothalamic stimulation was terminated, preganglionic AdSNA returned to the prestimulation level in a few seconds, and the elevated catecholamine output decayed within 30-60 s. Adrenal blood flow and vascular resistance were not affected or slightly decreased by hypothalamic stimulation. Thus, it is likely that feedforward control of catecholamine secretion from the adrenal medulla plays a role in conducting rapid hormonal control of the cardiovascular system at the beginning of exercise.
Collapse
Affiliation(s)
- Hirotsugu Tsuchimochi
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
27
|
Fu Q, Shibata S, Hastings JL, Prasad A, Palmer MD, Levine BD. Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans. Am J Physiol Heart Circ Physiol 2008; 296:H480-8. [PMID: 19074678 DOI: 10.1152/ajpheart.00184.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low levels (i.e., </=20 mmHg) of lower body negative pressure (LBNP) have been utilized to unload "selectively" cardiopulmonary baroreceptors in humans, since steady-state mean arterial pressure and heart rate (HR) have been found unchanged at such levels. However, transient reductions in blood pressure (BP), followed by reflex compensation, may occur without detection, which could unload arterial baroreceptors. The purposes of this study were to test the hypothesis that the arterial baroreflex is engaged even during low levels of LBNP and to determine the time course of changes in hemodynamics. Fourteen healthy individuals (age range 20-54 yr) were studied. BP (Portapres and Suntech), HR (ECG), pulmonary capillary wedge pressure (PCWP) or pulmonary artery diastolic pressure (PDP) and right atrial pressure (RAP) (Swan-Ganz catheter) and hemodynamics (Modelflow) were recorded continuously at baseline and -15- and -30-mmHg LBNP for 6 min each. Application of -15-mmHg LBNP resulted in rapid and sustained falls in RAP and PCWP or PDP, progressive decreases in cardiac output and stroke volume, followed subsequently by transient reductions in both systolic and diastolic BP, which were then restored through the arterial baroreflex feedback mechanism after approximately 15 heartbeats. Additional studies were performed in five subjects using even lower levels of LBNP, and this transient reduction in BP was observed in three at -5- and in all at -10-mmHg LBNP. The delay for left ventricular stroke volume to fall at -15-mmHg LBNP was about 10 cardiac cycles. An increase in systemic vascular resistance was detectable after 20 heartbeats during -15-mmHg LBNP. Steady-state BP and HR remained unchanged during mild LBNP. However, BP decreased, while HR increased, at -30-mmHg LBNP. These results suggest that arterial baroreceptors are consistently unloaded during low levels (i.e., -10 and -15 mmHg) of LBNP in humans. Thus "selective" unloading of cardiopulmonary baroreceptors cannot be presumed to occur during these levels of mild LBNP.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
28
|
Takahashi M, Matsukawa K, Nakamoto T, Tsuchimochi H, Sakaguchi A, Kawaguchi K, Onari K. Control of heart rate variability by cardiac parasympathetic nerve activity during voluntary static exercise in humans with tetraplegia. J Appl Physiol (1985) 2007; 103:1669-77. [PMID: 17761788 DOI: 10.1152/japplphysiol.00503.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heart rate (HR) is controlled solely by via cardiac parasympathetic outflow in tetraplegic individuals, who lack supraspinal control of sympathetic outflows and circulating catecholamines but have intact vagal pathways. A high-frequency component (HF; at 0.15–0.40 Hz) of the power spectrum of HR variability and its relative value against total power (HF/Total) were assessed using a wavelet transform to identify cardiac parasympathetic outflow. The relative contribution of cardiac parasympathetic and sympathetic outflows to controlling HR was estimated by comparing the HF/Total-HR relationship between age-matched tetraplegic and normal men. Six tetraplegic men with complete cervical spinal cord injury performed static arm exercise at 35% of the maximal voluntary contraction until exhaustion. Although resting cardiac output and arterial blood pressure were lower in tetraplegic than normal subjects, HR, HF, and HF/Total were not statistically different between the two groups. When tetraplegic subjects developed the same force during exercise as normal subjects, HF and HF/Total decreased to 67–90% of the preexercise control and gradually recovered 1.5 min after exercise. The amount and time course of the changes in HF/Total during and after exercise coincided well between both groups. In contrast, the increase in HR at the start of exercise was blunted in tetraplegic compared with normal subjects, and the HR recovery following exercise was also delayed. It is likely that, although the withdrawal response of cardiac parasympathetic outflow is preserved in tetraplegic subjects, sympathetic decentralization impairs the rapid acceleration of HR at the onset of exercise and the rapid deceleration following exercise.
Collapse
Affiliation(s)
- Makoto Takahashi
- Dept. of Sports Medicine, Graduate School of Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Cettolo V, Cautero M, Tam E, Francescato MP. Mitochondrial coupling in humans: assessment of the P/O2 ratio at the onset of calf exercise. Eur J Appl Physiol 2007; 99:593-604. [PMID: 17206437 DOI: 10.1007/s00421-006-0382-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
Coupling of oxidation to ATP synthesis (P/O2 ratio) is a critical step in the conversion of carbon substrates to fuel (ATP) for cellular activity. The ability to quantitatively assess mitochondrial coupling in vivo can be a valuable tool for basic research and clinical purposes. At the onset of a square wave moderate exercise, the ratio between absolute amount of phosphocreatine split and O2 deficit (corrected for the amount of O2 released from the body O2 stores and in the absence of lactate production), is the mirror image of the P/O2 ratio. To calculate this value, cardiac output (Q), whole body O2 uptake (VO2), O2 deficit (O2(def)) and high-energy phosphates concentration (by 31P-NMR spectroscopy) in the calf muscles were measured on nine healthy volunteers at rest and during moderate intensity plantar flexion exercise (3.44 +/- 0.73 W per unit active muscle mass). Q and VO2 increased (from 4.68 +/- 1.56 to 5.83 +/- 1.59 l min(-1) and from 0.28 +/- 0.05 to 0.48 +/- 0.09 l min(-1), respectively), while phosphocreatine (PCr) concentration decreased significantly (22 +/- 6%) from rest to steady-state exercise. For each volunteer, "gross" O2(def) was corrected for the individual changes in the venous blood O2 stores (representing 49.9 +/- 9.5% of the gross O2(def)) yielding the "net" O2(def). Resting PCr concentration was estimated from the appropriate spectroscopy data. The so calculated P/O2 ratio amounted on average to 4.24 +/- 0.13 and was, in all nine subjects, very close to the literature values obtained directly on intact skeletal muscle. This unfolds the prospect of a non-invasive tool to quantitatively study mitochondrial coupling in vivo.
Collapse
Affiliation(s)
- V Cettolo
- Dipartimento di Scienze e Tecnologie Biomediche, M.A.T.I. Centre of Excellence, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | | | | | | |
Collapse
|
30
|
Nakamoto T, Matsukawa K. Variability of Ventricular Excitation Interval Does Not Reflect Fluctuation in Atrial Excitation Interval during Exercise in Humans: AV Nodal Function as Stabilizer. J Physiol Sci 2006; 56:67-77. [PMID: 16779914 DOI: 10.2170/physiolsci.rp002705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have recently reported that the atrioventricular (AV) nodal mechanism functions to cancel fluctuation in the atrial excitation interval during a stair-stepping exercise. However, it remained unknown at which level of heart rate (HR) this mechanism started to operate and whether fluctuation in the interval might influence AV conduction over the following beats. To solve these questions, the variability of PP, RR, and PR intervals and their interrelationships were analyzed throughout ergometer exercise in eight subjects. The variability of the RR interval decreased to 0.7% of the control at 160 beats/min during exercise, much more than the PP interval variability, which decreased to 10%, despite the same shortened average interval. In contrast, the PR interval variability tended to increase by 87% during exercise, but the mean PR interval decreased. A strong inverse relationship between PP and the subsequent change in PR [deltaPR] intervals became evident during exercise, implying that the deltaPR interval canceled fluctuation in the PP interval. However, there was little correlation between the RR and deltaPR intervals and between the PP interval and the next PR intervals in the forthcoming beat. When the slope of the PP-deltaPR relationship, considered as sensitivity of the AV nodal function opposing an alteration in the PP interval, was plotted against the PP interval, the AV nodal function curve was approximated to a sigmoidal curve having a threshold of PP interval near 650 ms and a maximum plateau level of the slope near 1.0. We conclude that when HR exceeds 90-100 beats/min during dynamic exercise, the AV nodal mechanism will function to cancel fluctuation in the PP interval within one beat and keep the RR interval constant.
Collapse
Affiliation(s)
- Tomoko Nakamoto
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551 Japan
| | | |
Collapse
|
31
|
Ishiguro T, Umezu A, Yasuda Y, Horihata S, Kardec Barros A. Modified scaled Fourier linear combiner in thoracic impedance cardiography. Comput Biol Med 2005; 36:997-1013. [PMID: 16081060 DOI: 10.1016/j.compbiomed.2005.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 05/11/2005] [Indexed: 11/30/2022]
Abstract
New filtering algorithms; a modified scaled Fourier linear combiner (mSFLC) and a modified ensemble averaging (mEA) are proposed to remove the phase distortion of the impedance waveform caused by SFLC. Performance of the filters is assessed from the shape of the filtered waveform and the estimation of systolic time intervals. It was found that the mSFLC and mEA could compensate for drawbacks of the SFLC and precisely reproduce the impedance waveforms; however, misinterpretation and attenuation in the cardiac variables may be caused when abrupt changes or irregularities occur in the source waveform.
Collapse
|
32
|
Nakamoto T, Matsukawa K, Murata J, Komine H. Beat-to-Beat Modulation of Atrioventricular Conduction during Dynamic Exercise in Humans. ACTA ACUST UNITED AC 2005; 55:37-51. [PMID: 15796788 DOI: 10.2170/jjphysiol.r2089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A complex balance between extrinsic neural and intrinsic mechanisms is responsible for regulating atrioventricular (AV) conduction. We hypothesized that atrial excitation interval is shortened during dynamic exercise by extrinsic cardiac autonomic activity and that if AV conduction time responds inversely to fluctuation in atrial rhythm, ventricular excitation interval will be maintained at the predetermined cardiac cycle length. To examine such inverse relationship between PP interval and the subsequent change in PR interval (DeltaPR), we analyzed the beat-to-beat changes in PP, PR, and RR intervals during stair-stepping exercise for 10 min in 11 sedentary and 9 trained subjects. In the sedentary group, the average PR interval significantly shortened during exercise, in parallel with the reduction in the average PP and RR intervals. The variance of PP and RR intervals was also significantly decreased during exercise. The reduction in the variance of RR interval was, however, much greater than that of PP interval, implying that AV conduction time changes inversely to fluctuation in atrial excitation rhythm. Indeed, the variance of PR interval was augmented during exercise and there was a clear inverse relationship between PP and DeltaPR intervals. Although trained subjects were characterized by their lower heart rate response during dynamic exercise, the responses in the variability of PP, PR, and RR intervals were fundamentally identical with those in sedentary subjects. We conclude that the AV nodal mechanism that operates at a higher level of heart rate during dynamic exercise may cancel fluctuation in atrial excitation interval and keep ventricular excitation rhythm at the predetermined cardiac cycle length.
Collapse
Affiliation(s)
- Tomoko Nakamoto
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Minami-ku, Hiroshima, 734-8551 Japan
| | | | | | | |
Collapse
|
33
|
Takahashi M, Sakaguchi A, Matsukawa K, Komine H, Kawaguchi K, Onari K. Cardiovascular control during voluntary static exercise in humans with tetraplegia. J Appl Physiol (1985) 2004; 97:2077-82. [PMID: 15310746 DOI: 10.1152/japplphysiol.00546.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was 1) to investigate whether an increase in heart rate (HR) at the onset of voluntary static arm exercise in tetraplegic subjects was similar to that of normal subjects and 2) to identify how the cardiovascular adaptation during static exercise was disturbed by sympathetic decentralization. Mean arterial blood pressure (MAP) and HR were noninvasively recorded during static arm exercise at 35% of maximal voluntary contraction in six tetraplegic subjects who had complete cervical spinal cord injury (C(6)-C(7)). Stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) were estimated by using a Modelflow method simulating aortic input impedance from arterial blood pressure waveform. In tetraplegic subjects, the increase in HR at the onset of static exercise was blunted compared with age-matched control subjects, whereas the peak increase in HR at the end of exercise was similar between the two groups. CO increased during exercise with no or slight decrease in SV. MAP increased approximately one-third above the control pressor response but TPR did not rise at all throughout static exercise, indicating that the slight pressor response is determined by the increase in CO. We conclude that the cardiovascular adaptation during voluntary static arm exercise in tetraplegic subjects is mainly accomplished by increasing cardiac pump output according to the tachycardia, which is controlled by cardiac vagal outflow, and that sympathetic decentralization causes both absent peripheral vasoconstriction and a decreased capacity to increase HR, especially at the onset of exercise.
Collapse
Affiliation(s)
- Makoto Takahashi
- Department of Sports Medicine, Graduate School of Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|