1
|
Bale BF, Doneen AL, Leimgruber PP, Vigerust DJ. The critical issue linking lipids and inflammation: Clinical utility of stopping oxidative stress. Front Cardiovasc Med 2022; 9:1042729. [PMID: 36439997 PMCID: PMC9682196 DOI: 10.3389/fcvm.2022.1042729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
The formation of an atheroma begins when lipoproteins become trapped in the intima. Entrapped lipoproteins become oxidized and activate the innate immune system. This immunity represents the primary association between lipids and inflammation. When the trapping continues, the link between lipids and inflammation becomes chronic and detrimental, resulting in atherosclerosis. When entrapment ceases, the association between lipids and inflammation is temporary and healthy, and the atherogenic process halts. Therefore, the link between lipids and inflammation depends upon lipoprotein retention in the intima. The entrapment is due to electrostatic forces uniting apolipoprotein B to polysaccharide chains on intimal proteoglycans. The genetic transformation of contractile smooth muscle cells in the media into migratory secretory smooth muscle cells produces the intimal proteoglycans. The protein, platelet-derived growth factor produced by activated platelets, is the primary stimulus for this genetic change. Oxidative stress is the main stimulus to activate platelets. Therefore, minimizing oxidative stress would significantly reduce the retention of lipoproteins. Less entrapment decreases the association between lipids and inflammation. More importantly, it would halt atherogenesis. This review will analyze oxidative stress as the critical link between lipids, inflammation, and the pathogenesis of atherosclerosis. Through this perspective, we will discuss stopping oxidative stress to disrupt a harmful association between lipids and inflammation. Numerous therapeutic options will be discussed to mitigate oxidative stress. This paper will add a new meaning to the Morse code distress signal SOS-stopping oxidative stress.
Collapse
Affiliation(s)
- Bradley Field Bale
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
| | - Amy Lynn Doneen
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
| | - Pierre P. Leimgruber
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
- Department of Medical Education and Clinical Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - David John Vigerust
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
2
|
Dugbartey GJ, Alornyo KK, N'guessan BB, Atule S, Mensah SD, Adjei S. Supplementation of conventional anti-diabetic therapy with alpha-lipoic acid prevents early development and progression of diabetic nephropathy. Biomed Pharmacother 2022; 149:112818. [PMID: 35286963 DOI: 10.1016/j.biopha.2022.112818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Current pharmacological interventions only retard DN progression. Alpha-lipoic acid (ALA) is a potent antioxidant with beneficial effect in other diabetic complications. This study investigates whether ALA supplementation prevents early development and progression of DN. METHOD Fifty-eight male Sprague-Dawley rats were randomly assigned to healthy control and diabetic groups and subjected to overnight fasting. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). On day 3 after T2DM induction, diabetic rats received oral daily administration of ALA (60 mg/kg), gliclazide (15 mg/kg), ramipril (10 mg/kg) or drug combinations for 6 weeks. Untreated diabetic rats served as diabetic control. Blood, kidneys and pancreas were harvested for biochemical and histological analyses. RESULT Induction of T2DM resulted in hypoinsulinemia, hyperglycemia and renal pathology. ALA supplementation maintained β-cell function, normoinsulinemia and normoglycemia in diabetic rats, and prevented renal pathology (PAS, KIM-1, plasma creatinine, total protein, blood urea nitrogen, uric acid and urine albumin/creatinine ratio) and triglycerides level compared to diabetic control (p < 0.001). Additionally, ALA supplementation significantly prevented elevated serum and tissue malondialdehyde, collagen deposition, α-SMA expression, apoptosis and serum IL-1β and IL-6 levels while it markedly increased renal glutathione content and plasma HDL-C compared to diabetic control group (p < 0.001). CONCLUSION ALA supplementation prevents early development and progression of DN by exerting anti-hyperglycemic, antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic effects. Our findings provide additional option for clinical treatment of DN in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Benoit B N'guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel D Mensah
- Department of Pathology, University of Ghana Dental School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
3
|
Effects of Ramipril and Telmisartan on Plasma Concentrations of Low Molecular Weight and Protein Thiols and Carotid Intima Media Thickness in Patients with Chronic Kidney Disease. DISEASE MARKERS 2016; 2016:1821596. [PMID: 27881888 PMCID: PMC5110866 DOI: 10.1155/2016/1821596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/13/2023]
Abstract
Hypertension, a common feature in chronic kidney disease (CKD), is an independent risk factor for CKD progression and cardiovascular disease. Although inhibitors of the renin-angiotensin system (RAS) exert salutary effects on blood pressure control and proteinuria in CKD patients, their activity towards traditional and novel oxidative markers is largely unknown. We studied the effects of 6-month treatment with telmisartan versus a combination of telmisartan and ramipril on plasma concentrations of low molecular mass (LMW, including homocysteine and cysteine) and protein thiols (PSH) plasma concentration and their relationships with carotid intima media thickness (IMT), in 24 hypertensive CKD patients (age 60 ± 12 years, 8 females and 16 males). Pretreatment PSH concentrations were independently associated with IMT (r = −0.42, p = 0.039). Neither treatment affected plasma LMW thiols, in both reduced and total form. By contrast, both treatments increased PSH plasma concentrations and reduced IMT, although significant differences were only observed in the combined treatment group. Our results suggest that the beneficial effects of combined RAS inhibitor treatment on IMT in hypertensive CKD patients may be mediated by a reduction of oxidative stress markers, particularly PSH.
Collapse
|
4
|
Lee JO, Auger C, Park DH, Kang M, Oak MH, Kim KR, Schini-Kerth VB. An ethanolic extract of Lindera obtusiloba stems, YJP-14, improves endothelial dysfunction, metabolic parameters and physical performance in diabetic db/db mice. PLoS One 2013; 8:e65227. [PMID: 23755196 PMCID: PMC3670856 DOI: 10.1371/journal.pone.0065227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/24/2013] [Indexed: 01/08/2023] Open
Abstract
Lindera obtusiloba is a medicinal herb traditionally used in Asia for improvement of blood circulation, treatment of inflammation, and prevention of liver damage. A previous study has shown that an ethanolic extract of Lindera obtusiloba stems (LOE) has vasoprotective and antihypertensive effects. The possibility that Lindera obtusiloba improves endothelial function and metabolic parameters in type 2 diabetes mellitus (T2DM) remains to be examined. Therefore, the aim of the present study was to determine the potential of LOE to prevent the development of an endothelial dysfunction, and improve metabolic parameters including hyperglycemia, albuminuria and physical exercise capacity in db/db mice, an experimental model of T2DM. The effect of LOE (100 mg/kg/day by gavage for 8 weeks) on these parameters was compared to that of an oral antidiabetic drug, pioglitazone (30 mg/kg/day by gavage). Reduced blood glucose level, body weight and albumin-creatinine ratio were observed in the group receiving LOE compared to the control db/db group. The LOE treatment improved endothelium-dependent relaxations, abolished endothelium-dependent contractions to acetylcholine in the aorta, and normalized the increased vascular oxidative stress and expression of NADPH oxidase, cyclooxygenases, angiotensin II, angiotensin type 1 receptors and peroxynitrite and the decreased expression of endothelial NO synthase in db/db mice. The angiotensin-converting enzyme (ACE) activity was reduced in the LOE group compared to that in the control db/db group. LOE also inhibited the activity of purified ACE, COX-1 and COX-2 in a dose-dependent manner. In addition, LOE improved physical exercise capacity. Thus, the present findings indicate that LOE has a beneficial effect on the vascular system in db/db mice by improving endothelium-dependent relaxations and vascular oxidative stress most likely by normalizing the angiotensin system, and also on metabolic parameters, and these effects are associated with an enhanced physical exercise capacity.
Collapse
MESH Headings
- Albuminuria/prevention & control
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Animals
- Aorta/drug effects
- Aorta/physiopathology
- Blood Glucose/metabolism
- Body Weight/drug effects
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Ethanol/chemistry
- Exercise Tolerance/drug effects
- Gene Expression/drug effects
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/pharmacology
- Lindera/chemistry
- Male
- Mice
- Mice, Transgenic
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Pioglitazone
- Plant Extracts/pharmacology
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Jung-Ok Lee
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Research and Development Center, Hanwha Pharma. Co., Ltd., Chuncheon, Republic of Korea
| | - Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Dong Hyun Park
- Research Center, YangJi Chemicals, Suwon, Republic of Korea
| | - Moonkyu Kang
- Research and Development Center, Hanwha Pharma. Co., Ltd., Chuncheon, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, Muan, Jeonam, Republic of Korea
| | - Kyoung Rak Kim
- Research and Development Center, Hanwha Pharma. Co., Ltd., Chuncheon, Republic of Korea
| | - Valérie B. Schini-Kerth
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
5
|
Chang ACY, Patenaude A, Lu K, Fuller M, Ly M, Kyle A, Golbidi S, Wang Y, Walley K, Minchinton A, Laher I, Karsan A. Notch-dependent regulation of the ischemic vasodilatory response--brief report. Arterioscler Thromb Vasc Biol 2013; 33:510-2. [PMID: 23288167 DOI: 10.1161/atvbaha.112.300840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We have recently described that Notch activates nitric oxide (NO) signaling in the embryonic endocardium. Both Notch signaling and NO signaling have been shown to be important during adult arteriogenesis. Notch has been shown to be required for remodeling of the collateral vessels, whereas NO is required for the initial vasodilatory response to ischemia. Whether Notch also has an impact on the vasodilatory phase of arteriogenesis after ischemia is not known. We tested the hypothesis that endothelial cell-Notch function is required for NO induction and vasodilation, in response to ischemia in the adult vasculature. METHODS AND RESULTS We observed a significant decrease in NO levels in the dorsal aorta using a mouse model where Notch was inhibited in endothelial cell in a Tet-inducible fashion. In a femoral artery ligation model, inhibition of endothelial cell-Notch reduced reperfusion and NO generation, as quantified by laser Doppler perfusion imaging and by phosphoendothelial NO synthase, nitrotyrosine, and phosphovasodilator-stimulated phosphoprotein staining, respectively. CONCLUSIONS Endothelial Notch activation is required for NO production and reactive vasodilation in a femoral artery ligation model.
Collapse
Affiliation(s)
- Alex C Y Chang
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Potentiation of vascular oxidative stress and nitric oxide-mediated endothelial dysfunction by high-fat diet in a mouse model of estrogen deficiency and hyperandrogenemia. ACTA ACUST UNITED AC 2012; 3:295-305. [PMID: 20409973 DOI: 10.1016/j.jash.2009.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is associated with increased cardiovascular risk due, in part, to hypertension, endothelial dysfunction, obesity, and hypercholesterolemia. Underlying mechanisms for this remain unclear. Here, we investigated whether high-fat intake aggravates vascular dysfunction through oxidative stress and inflammation, which could predispose to cardiovascular injury in conditions of estrogen deficiency, such as menopause. We studied female homozygous follitropin receptor knock out (FORKO) mice, which have hormonal features of clinical menopause and hypertension and wild-type (WT) and heterozygote mice (HTZ), fed a standard or high-fat diet for 4 months. Vascular function and structure were evaluated in arterial segments by pressurized myography. Acetylcholine (ACh)-induced vasodilation was reduced in FORKO vs. WT mice (P < .001). N(varpi)-nitro-l-arginine-methyl-ester inhibited Ach-induced relaxation in all groups on normal chow and in WT and HTZ on high-fat diet (FD) but had no effect in fat-fed FORKO mice. Antioxidant cocktail (superoxide dismutase, catalase, Tempol) increased ACh responses only in high-fat diet FORKO mice (P < .05). Vascular media-to-lumen ratio was increased and reactive oxygen species (ROS) generation, nitrotyrosine formation, and plasma nitrite levels were augmented in fat-fed FORKO vs. FORKO on normal chow. High-fat diet did not influence vascular inflammatory responses in any group. Our data demonstrate that FORKO mice have altered nitric oxide-sensitive vasorelaxation and vascular remodeling, which are aggravated by high-fat diet. Underlying mechanisms for this may involve decreased NO formation and increased generation of ROS and nitrotyrosine. These findings suggest that high-fat intake potentiates vascular damage in estrogen-deficient states, an effect involving increased oxidative stress.
Collapse
|
7
|
Huynh K, Kiriazis H, Du XJ, Love JE, Jandeleit-Dahm KA, Forbes JM, McMullen JR, Ritchie RH. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 2012; 55:1544-53. [PMID: 22374176 DOI: 10.1007/s00125-012-2495-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/16/2012] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS An increase in the production of reactive oxygen species is commonly thought to contribute to the development of diabetic cardiomyopathy. This study aimed to assess whether administration of the antioxidant coenzyme Q(10) would protect the diabetic heart against dysfunction and remodelling, using the db/db mouse model of type 2 diabetes. Furthermore, we aimed to compare the efficacy of coenzyme Q(10) to that of the ACE inhibitor ramipril. METHODS Six-week-old non-diabetic db/+ mice and diabetic db/db mice received either normal drinking water or water supplemented with coenzyme Q(10) for 10 weeks. Endpoint cardiac function was assessed by echocardiography and catheterisation. Ventricular tissue was collected for histology, gene expression and protein analysis. RESULTS Untreated db/db diabetic mice exhibited hyperglycaemia, accompanied by diastolic dysfunction and adverse structural remodelling, including cardiomyocyte hypertrophy, myocardial fibrosis and increased apoptosis. Systemic lipid peroxidation and myocardial superoxide generation were also elevated in db/db mice. Coenzyme Q(10) and ramipril treatment reduced superoxide generation, ameliorated diastolic dysfunction and reduced cardiomyocyte hypertrophy and fibrosis in db/db mice. Phosphorylation of Akt, although depressed in untreated db/db mice, was restored with coenzyme Q(10) administration. We postulate that preservation of cardioprotective Akt signalling may be a mechanism by which coenzyme Q(10)-treated db/db mice are protected from pathological cardiac hypertrophy. CONCLUSIONS/INTERPRETATION These data demonstrate that coenzyme Q(10) attenuates oxidative stress and left ventricular diastolic dysfunction and remodelling in the diabetic heart. Addition of coenzyme Q(10) to the current therapy used in diabetic patients with diastolic dysfunction warrants further investigation.
Collapse
Affiliation(s)
- K Huynh
- Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Steckelings UM, Rompe F, Kaschina E, Unger T. The evolving story of the RAAS in hypertension, diabetes and CV disease - moving from macrovascular to microvascular targets. Fundam Clin Pharmacol 2009; 23:693-703. [DOI: 10.1111/j.1472-8206.2009.00780.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|