1
|
Malecka-Baturo K, Grabowska I. Efficiency of electrochemical immuno- vs. apta(geno)sensors for multiple cancer biomarkers detection. Talanta 2025; 281:126870. [PMID: 39298804 DOI: 10.1016/j.talanta.2024.126870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The interest in biosensors technology has been constantly growing over the last few years. It is still the biggest challenge to design biosensors able to detect two or more analytes in a single measurement. Electrochemical methods are frequently used for this purpose, mainly due to the possibility of applying two or more different redox labels characterized by independent and distinguished electrochemical signals. In addition to antibodies, nucleic acids (aptamers) have been increasingly used as bioreceptors in the construction of such sensors. Within this review paper, we have collected the examples of electrochemical immuno- and geno(apta)sensors for simultaneous detection of multiple analytes. Based on many published literature examples, we have emphasized the recent application of multiplexed platforms for detection of cancer biomarkers. It has allowed us to compare the progress in design strategies, including novel nanomaterials and amplification of signals, to get as low as possible limits of detection. We have focused on multi-electrode and multi-label strategies based on redox-active labels, such as ferrocene, anthraquinone, methylene blue, thionine, hemin and quantum dots, or metal ions such as Ag+, Pb2+, Cd2+, Zn2+, Cu2+ and others. We have finally discussed the possible way of development, challenges and prospects in the area of multianalyte electrochemical immuno- and geno(apta)sensors.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
2
|
Domsicova M, Korcekova J, Poturnayova A, Breier A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int J Mol Sci 2024; 25:6833. [PMID: 38999943 PMCID: PMC11240909 DOI: 10.3390/ijms25136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting. Furthermore, they can be easily modified with various labels or functional groups, tailoring them for diverse applications. Even more uniquely, aptamers can be regenerated after use, making aptasensors a cost-effective and sustainable alternative compared to disposable biosensors. This review delves into the inherent properties of aptamers that make them advantageous in established diagnostic methods. Furthermore, we will examine some of the limitations of aptamers, such as the need to engage in bioinformatics procedures in order to understand the relationship between the structure of the aptamer and its binding abilities. The objective is to develop a targeted design for specific targets. We analyse the process of aptamer selection and design by exploring the current landscape of aptamer utilisation across various industries. Here, we illuminate the potential advantages and applications of aptamers in a range of diagnostic techniques, with a specific focus on quartz crystal microbalance (QCM) aptasensors and their integration into the well-established ELISA method. This review serves as a comprehensive resource, summarising the latest knowledge and applications of aptamers, particularly highlighting their potential to revolutionise diagnostic approaches.
Collapse
Affiliation(s)
- Michaela Domsicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Jana Korcekova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Alexandra Poturnayova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Albert Breier
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
3
|
Liu X, Shi Q, Qi P, Wang Z, Zhang T, Zhang S, Wu J, Guo Z, Chen J, Zhang Q. Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis. Asian J Pharm Sci 2024; 19:100910. [PMID: 38948397 PMCID: PMC11214190 DOI: 10.1016/j.ajps.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 07/02/2024] Open
Abstract
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
Collapse
Affiliation(s)
- Xuyao Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Shi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Qi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ziming Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Tongyue Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Lai X, Yao F, An Y, Li X, Yang XD. Novel Nanotherapeutics for Cancer Immunotherapy by PD-L1-Aptamer-Functionalized and Fexofenadine-Loaded Albumin Nanoparticles. Molecules 2023; 28:molecules28062556. [PMID: 36985529 PMCID: PMC10056566 DOI: 10.3390/molecules28062556] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Immune checkpoint blockade (ICB) is an important strategy for cancer treatment and has achieved remarkable clinical results. Further enhancement of the efficacy of ICB therapy with a new technical approach is of potential medical importance. In this study, we constructed a novel nanotherapeutic agent (PDL1-NP-FEXO) for cancer immunotherapy by attaching PD-L1 aptamers to albumin nanoparticles that were loaded with H1-antihitamine fexofenadine (FEXO). FEXO has been reported to enhance the immunotherapy response by reducing the immunosuppressive M2-like macrophages in the tumor microenvironment. The albumin nanoparticle was fabricated using a self-assembly method. A dynamic light scattering (DLS) study revealed that the average size of PD-L1 aptamer-modified nanoparticle without FEXO (PDL1-NP) was 135.5 nm, while that of PDL1-NP-FEXO was 154.6 nm. Similar to free PD-L1 aptamer, PDL1-NP could also bind with PD-L1-expressing tumor cells (MDA-MB-231). Of note, compared with free PD-L1 aptamer, PDL1-NP significantly boosted tumor inhibition in CT26-bearing mice. Moreover, PDL1-NP-FEXO further enhanced the antitumor efficacy vs. PDL1-NP in an animal model, without raising systemic toxicity. These results indicate that PDL1-NP-FEXO represents a promising strategy to improve ICB efficacy and may have application potential in cancer immunotherapy.
Collapse
|
5
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
6
|
Wei Z, Zhou Y, Wang R, Wang J, Chen Z. Aptamers as Smart Ligands for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2022; 14:2561. [PMID: 36559056 PMCID: PMC9781707 DOI: 10.3390/pharmaceutics14122561] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Undesirable side effects and multidrug tolerance are the main holdbacks to the treatment of cancer in conventional chemotherapy. Fortunately, targeted drug delivery can improve the enrichment of drugs at the target site and reduce toxicity to normal tissues and cells. A targeted drug delivery system is usually composed of a nanocarrier and a targeting component. The targeting component is called a "ligand". Aptamers have high target affinity and specificity, which are identified as attractive and promising ligands. Therefore, aptamers have potential application in the development of smart targeting systems. For instance, aptamers are able to efficiently recognize tumor markers such as nucleolin, mucin, and epidermal growth factor receptor (EGFR). Besides, aptamers can also identify glycoproteins on the surface of tumor cells. Thus, the aptamer-mediated targeted drug delivery system has received extensive attention in the application of cancer therapy. This article reviews the application of aptamers as smart ligands for targeted drug delivery in cancer therapy. Special interest is focused on aptamers as smart ligands, aptamer-conjugated nanocarriers, aptamer targeting strategy for tumor microenvironment (TME), and aptamers that are specified to crucial cancer biomarkers for targeted drug delivery.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
7
|
González-González RB, Flores-Contreras EA, González-González E, Torres Castillo NE, Parra-Saldívar R, Iqbal HMN. Biosensor Constructs for the Monitoring of Persistent Emerging Pollutants in Environmental Matrices. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | | | | | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
8
|
Shiu SCC, Whitehouse WL, Tanner JA. Designing aptamer-enabled DNA polyhedra using paper origami. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Hamidi S. Recent Advances in Solid-Phase Extraction as a Platform for Sample Preparation in Biomarker Assay. Crit Rev Anal Chem 2022; 53:199-210. [PMID: 35192409 DOI: 10.1080/10408347.2021.1947771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Low levels of biomarkers and the complexity of bio sample make the analytical assay of several biomarkers a challenging issue. Suitable sample preparation run remain a vital part of the puzzle of diagnostic level. Enhancing the detection limit of bioanalytical methods start during the sample preparation procedure. A robust sample preparation method is needed to evaluate the number of biomarkers. As worldwide environmental issues attract expanding consideration, all the more harmless to the ecosystem investigations are liked. Solid-phase extraction (SPE) is an appealing strategy among the sample treatment methods due to the versatility of sorbent materials, less solvent consumption, and compatibility with analytical devices. Miniaturization of the SPE gives the chance to integrate the other analytical steps in a single run, known as an easy-to-use and effective method. SPE utilizes various SPE sorbent beds such as packed beads, porous polymer monoliths, molecularly imprinted polymers, membranes, or other magnetic form microstructures to achieve high surface-to-volume ratio and appropriate chemical properties effective extraction. Also, SPE is the methodology of interest to fulfill high recovery and efficiency demands. In this review, we intend to explain more recent methods for the rational design of SPE and miniaturized SPE to determine biomarkers from biological media. The headlines are subdivided into (1) packing materials in SPE, (2) setups for sample preparation by magnetic SPE, and (3) and future perspective for the application of SPE in sample preparation for analysis of biomarkers.
Collapse
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
An Y, Li X, Yao F, Duan J, Yang XD. Novel Complex of PD-L1 Aptamer and Albumin Enhances Antitumor Efficacy In Vivo. Molecules 2022; 27:1482. [PMID: 35268583 PMCID: PMC8911819 DOI: 10.3390/molecules27051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
The PD-1/PD-L1 pathway blockade can generate a good clinical response by reducing immunosuppression and provoking durable antitumor immunity. In addition to antibodies, aptamers can also block the interaction between PD-1 and PD-L1. For the in vivo application, however, free aptamers are usually too small in size and quickly removed from blood via glomerular filtration. To avoid renal clearance of aptamer, we conjugated the PD-L1 aptamer to albumin to form a larger complex (BSA-Apt) and evaluated whether BSA-Apt would enhance the in vivo antitumor efficacy. The PD-L1 aptamer was thiol-modified and conjugated to the amino group of BSA via a SMCC linker. The average size of BSA-Apt was 11.65 nm, which was above the threshold for renal clearance. Functionally, BSA-Apt retained the capability of the PD-L1 aptamer to bind with PDL1-expressing tumor cells. Moreover, both the free aptamer and BSA-Apt augmented the PBMC-induced antitumor cytotoxicity in vitro. Furthermore, BSA-Apt generated a significantly stronger antitumor efficacy than the free PD-L1 aptamer in vivo without raising systemic toxicity. The results indicate that conjugating the PD-L1 aptamer to albumin may serve as a promising strategy to improve the in vivo functionality of the aptamer and that BSA-Apt may have application potential in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Xian-Da Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (Y.A.); (X.L.); (F.Y.); (J.D.)
| |
Collapse
|
11
|
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol 2022; 3:201-219. [PMID: 35360891 PMCID: PMC8826509 DOI: 10.1039/d1cb00190f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Specific post-translational modification (PTM) states of a protein affect its property and function; understanding their dynamics in cells would provide deep insight into diverse signaling pathways and biological processes. However, it is not trivial to visualize post-translational modifications in a protein- and site-specific manner, especially in a living-cell context. Herein, we review recent advances in the development of molecular imaging tools to detect diverse classes of post-translational proteoforms in individual cells, and their applications in studying precise roles of PTMs in regulating the function of cellular proteins.
Collapse
Affiliation(s)
- Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Benya Lakkanasirorat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
12
|
Hong JM, Gibbons M, Bashir A, Wu D, Shao S, Cutts Z, Chavarha M, Chen Y, Schiff L, Foster M, Church VA, Ching L, Ahadi S, Hieu-Thao Le A, Tran A, Dimon M, Coram M, Williams B, Jess P, Berndl M, Pawlosky A. ProtSeq: Toward high-throughput, single-molecule protein sequencing via amino acid conversion into DNA barcodes. iScience 2022; 25:103586. [PMID: 35005536 PMCID: PMC8717419 DOI: 10.1016/j.isci.2021.103586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
We demonstrate early progress toward constructing a high-throughput, single-molecule protein sequencing technology utilizing barcoded DNA aptamers (binders) to recognize terminal amino acids of peptides (targets) tethered on a next-generation sequencing chip. DNA binders deposit unique, amino acid-identifying barcodes on the chip. The end goal is that, over multiple binding cycles, a sequential chain of DNA barcodes will identify the amino acid sequence of a peptide. Toward this, we demonstrate successful target identification with two sets of target-binder pairs: DNA-DNA and Peptide-Protein. For DNA-DNA binding, we show assembly and sequencing of DNA barcodes over six consecutive binding cycles. Intriguingly, our computational simulation predicts that a small set of semi-selective DNA binders offers significant coverage of the human proteome. Toward this end, we introduce a binder discovery pipeline that ultimately could merge with the chip assay into a technology called ProtSeq, for future high-throughput, single-molecule protein sequencing. Designed ProtSeq protein sequencing method compatible with widely used NGS technology Built Target-Switch SELEX to isolate aptamers specific to N-terminal amino acids (AAs) Showed binding, ligation, cleavage, and NGS of six DNA binders in ordered barcode chain Developed pipeline to deconvolve AAs from DNA barcodes to identify putative proteins
Collapse
Affiliation(s)
| | | | - Ali Bashir
- Google, LLC, Mountain View, CA 94043, USA
| | - Diana Wu
- Google, LLC, Mountain View, CA 94043, USA
| | | | | | | | - Ye Chen
- Google, LLC, Mountain View, CA 94043, USA
| | | | | | | | | | - Sara Ahadi
- Google, LLC, Mountain View, CA 94043, USA
| | | | | | | | - Marc Coram
- Google, LLC, Mountain View, CA 94043, USA
| | | | | | | | | |
Collapse
|
13
|
Grabowska I, Hepel M, Kurzątkowska-Adaszyńska K. Advances in Design Strategies of Multiplex Electrochemical Aptasensors. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010161. [PMID: 35009703 PMCID: PMC8749765 DOI: 10.3390/s22010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/08/2023]
Abstract
In recent years, the need for simple, fast, and economical detection of food and environmental contaminants, and the necessity to monitor biomarkers of different diseases have considerably accelerated the development of biosensor technology. However, designing biosensors capable of simultaneous determination of two or more analytes in a single measurement, for example on a single working electrode in single solution, is still a great challenge. On the other hand, such analysis offers many advantages compared to single analyte tests, such as cost per test, labor, throughput, and convenience. Because of the high sensitivity and scalability of the electrochemical detection systems on the one hand and the specificity of aptamers on the other, the electrochemical aptasensors are considered to be highly effective devices for simultaneous detection of multiple-target analytes. In this review, we describe and evaluate multi-label approaches based on (1) metal quantum dots and metal ions, (2) redox labels, and (3) enzyme labels. We focus on recently developed strategies for multiplex sensing using electrochemical aptasensors. Furthermore, we emphasize the use of different nanomaterials in the construction of these aptasensors. Based on examples from the existing literature, we highlight recent applications of multiplexed detection platforms in clinical diagnostics, food control, and environmental monitoring. Finally, we discuss the advantages and disadvantages of the aptasensors developed so far, and debate possible challenges and prospects.
Collapse
Affiliation(s)
- Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence: (I.G.); (K.K.-A.); Tel.: +48-89-523-46-54 (I.G. & K.K.-A.)
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA;
| | - Katarzyna Kurzątkowska-Adaszyńska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence: (I.G.); (K.K.-A.); Tel.: +48-89-523-46-54 (I.G. & K.K.-A.)
| |
Collapse
|
14
|
Kacherovsky N, Yang LF, Dang HV, Cheng EL, Cardle II, Walls AC, McCallum M, Sellers DL, DiMaio F, Salipante SJ, Corti D, Veesler D, Pun SH. Discovery and Characterization of Spike N‐Terminal Domain‐Binding Aptamers for Rapid SARS‐CoV‐2 Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nataly Kacherovsky
- Department of Bioengineering University of Washington Seattle WA 98105 USA
| | - Lucy F. Yang
- Department of Bioengineering University of Washington Seattle WA 98105 USA
| | - Ha V. Dang
- Department of Biochemistry University of Washington Seattle WA 98105 USA
| | - Emmeline L. Cheng
- Department of Bioengineering University of Washington Seattle WA 98105 USA
| | - Ian I. Cardle
- Department of Bioengineering University of Washington Seattle WA 98105 USA
| | - Alexandra C. Walls
- Department of Biochemistry University of Washington Seattle WA 98105 USA
| | - Matthew McCallum
- Department of Biochemistry University of Washington Seattle WA 98105 USA
| | - Drew L. Sellers
- Department of Bioengineering University of Washington Seattle WA 98105 USA
| | - Frank DiMaio
- Department of Biochemistry University of Washington Seattle WA 98105 USA
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology 6500 Bellinzona Switzerland
| | - David Veesler
- Department of Biochemistry University of Washington Seattle WA 98105 USA
| | - Suzie H. Pun
- Department of Bioengineering University of Washington Seattle WA 98105 USA
| |
Collapse
|
15
|
Kacherovsky N, Yang LF, Dang HV, Cheng EL, Cardle II, Walls AC, McCallum M, Sellers DL, DiMaio F, Salipante SJ, Corti D, Veesler D, Pun SH. Discovery and Characterization of Spike N-Terminal Domain-Binding Aptamers for Rapid SARS-CoV-2 Detection. Angew Chem Int Ed Engl 2021; 60:21211-21215. [PMID: 34328683 PMCID: PMC8426805 DOI: 10.1002/anie.202107730] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has devastated families and disrupted healthcare, economies and societies across the globe. Molecular recognition agents that are specific for distinct viral proteins are critical components for rapid diagnostics and targeted therapeutics. In this work, we demonstrate the selection of novel DNA aptamers that bind to the SARS-CoV-2 spike glycoprotein with high specificity and affinity (<80 nM). Through binding assays and high resolution cryo-EM, we demonstrate that SNAP1 (SARS-CoV-2 spike protein N-terminal domain-binding aptamer 1) binds to the S N-terminal domain. We applied SNAP1 in lateral flow assays (LFAs) and ELISAs to detect UV-inactivated SARS-CoV-2 at concentrations as low as 5×105 copies mL-1 . SNAP1 is therefore a promising molecular tool for SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
| | - Lucy F. Yang
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Ha V. Dang
- Department of BiochemistryUniversity of WashingtonSeattleWA98105USA
| | - Emmeline L. Cheng
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Ian I. Cardle
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | | | - Matthew McCallum
- Department of BiochemistryUniversity of WashingtonSeattleWA98105USA
| | - Drew L. Sellers
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Frank DiMaio
- Department of BiochemistryUniversity of WashingtonSeattleWA98105USA
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary ofVir Biotechnology6500BellinzonaSwitzerland
| | - David Veesler
- Department of BiochemistryUniversity of WashingtonSeattleWA98105USA
| | - Suzie H. Pun
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| |
Collapse
|
16
|
A DNA Aptameric Ligand of Human Transferrin Receptor Generated by Cell-SELEX. Int J Mol Sci 2021; 22:ijms22168923. [PMID: 34445629 PMCID: PMC8396340 DOI: 10.3390/ijms22168923] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
General cancer-targeted ligands that can deliver drugs to cells have been given considerable attention. In this paper, a high-affinity DNA aptamer (HG1) generally binding to human tumor cells was evolved by cell-SELEX, and was further optimized to have 35 deoxynucleotides (HG1-9). Aptamer HG1-9 could be taken up by live cells, and its target protein on a cell was identified to be human transferrin receptor (TfR). As a man-made ligand of TfR, aptamer HG1-9 was demonstrated to bind at the same site of human TfR as transferrin with comparable binding affinity, and was proved to cross the epithelium barrier through transferrin receptor-mediated transcytosis. These results suggest that aptamer HG1-9 holds potential as a promising ligand to develop general cancer-targeted diagnostics and therapeutics.
Collapse
|
17
|
Tapp M, Dennis P, Naik RR, Milam VT. Competition-Enhanced Ligand Selection to Screen for DNA Aptamers for Spherical Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9043-9052. [PMID: 34279112 DOI: 10.1021/acs.langmuir.1c01053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Competition-Enhanced Ligand Selection (CompELS) approach was used to identify aptamer candidates for spherical gold nanoparticles (AuNPs). This approach differs from conventional Systematic Evolution of Ligands by EXponential enrichment (SELEX)-based aptamer screening by eliminating repeated elution and polymerase chain reaction (PCR) amplification steps of bound candidate sequences between each selection round to continually enrich the candidate aptamer pool with oligonucleotides remaining from an earlier SELEX selection round. Instead, a new pool of unenriched oligonucleotides is added during each CompELS selection round to compete with existing target-bound oligonucleotides species for target binding sites. In this study, 24 aptamer candidates for AuNPs were identified using the CompELS approach and then compared to reveal similarities in their primary structures and their predicted secondary structures. No strong patterns in individual base identities (position-dependent) nor in segments of consecutive bases (independent of position) prevailed among the identified sequences. Motifs in predicted secondary structures, on the other hand, were shared among otherwise unrelated aptamer sequences. These motifs were revealed using a systematic classification and enumeration of distinct secondary structure elements, namely, hairpins, duplexes, single-stranded segments, interior loops, bulges, and multibranched loops.
Collapse
Affiliation(s)
| | - Patrick Dennis
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | | |
Collapse
|
18
|
Guo Y, Li K, Gao Y, Zhao S, Shi M, Li J, Liu Z, Wang Z, He L. CLEC3B Identified as a Potential Lung Cancer Biomarker in Serum by Aptamer‐Capture Technology. ChemistrySelect 2021. [DOI: 10.1002/slct.202100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanbin Guo
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Kun Li
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Yue Gao
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Shuhua Zhao
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Ming Shi
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Jian Li
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Zhiwei Liu
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Zhaoxia Wang
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Lei He
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| |
Collapse
|
19
|
Shirani M, Kalantari H, Khodayar MJ, Kouchak M, Rahbar N. An ultra-sensitive optical aptasensor based on gold nanoparticles/poly vinyl alcohol hydrogel as acceptor/emitter pair for fluorometric detection of digoxin with on/off/on strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119345. [PMID: 33465528 DOI: 10.1016/j.saa.2020.119345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A novel nanobiosensor was prepared by aptamer and gold nanoparticles conjugate in poly vinyl alcohol hydrogel for sensitive detection of digoxin in human plasma samples. The developed nanobiosensor was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering instrument. In this sensor the hydrogel acted as a fluorescent probe. The fluorescence intensity of the hydrogel was quenched by aptamer stabilized gold nanoparticles as energy acceptor. Upon addition of digoxin, the aptamer/drug complex was formed and the fluorescence of the hydrogel was restored because of destabilization and aggregation of gold nanoparticles in the presence of salt. The affecting parameters on the nanobiosensor performance were assessed and under the optimized conditions the external and in plasma calibration curves were linear in the 10-1000 ng L-1 digoxin concentration range with detection limits of 2.9 and 3.1 ng L-1, respectively. The relative standard deviations for 5 replicate determinations of 50, 250, and 500 ng L-1 of digoxin, were 7.3, 5.1, and 3.8%, respectively. This nanofluoroprobe was successfully applied for determination of digoxin in spiked plasma samples without any pretreatment procedure.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
20
|
Single-Strand DNA-Like Oligonucleotide Aptamer Against Proprotein Convertase Subtilisin/Kexin 9 Using CE-SELEX: PCSK9 Targeting Selection. Cardiovasc Drugs Ther 2020; 34:475-485. [PMID: 32415571 DOI: 10.1007/s10557-020-06986-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin 9 (PCSK9) serves a key regulatory function in the metabolism of low-density lipoprotein (LDL)-cholesterol (LDL-C) through interaction with the LDL receptor (LDLR) followed by its destruction that results in the elevation of the plasma levels of LDL-C. The aims of the present study were to separate and select a number of single-stranded DNA (ssDNA) aptamers against PCSK9 from a library pool (n > 1012) followed by their characterization. METHODS The aptamers obtained from the DNA-PCSK9 complexes which presented the highest affinity against PCSK9 were separated and selected using capillary electrophoresis evolution of ligands by exponential enrichment (CE-SELEX). The selected aptamers were amplified and cloned into a T/A vector. The plasmids from the positive clones were extracted and sequenced. The Mfold web server was used to predict the secondary structure of the aptamers. RESULTS Following three rounds of CE-SELEX, the identified anti-PCSK9 ssDNA aptamers, namely aptamer 1 (AP-1) and aptamer 2 (AP-2), presented half maximal inhibitory concentrations of 325 and 327 nM, lowest dissociation constants of 294 and 323 nM, and most negative Gibbs free energy values of - 9.17 and - 8.28 kcal/mol, respectively. CONCLUSION The results indicated that the selected aptamers (AP-1 and AP-2) induced potent inhibitory effects against PCSK9. Further in vivo studies demand to find out AP-1 and AP-2 aptamers as suitable candidates, instead of antibodies, for using in therapeutic purposes in patients with hypercholesterolemia and cardiovascular disease.
Collapse
|
21
|
Zhong W, Pu Y, Tan W, Liu J, Liao J, Liu B, Chen K, Yu B, Hu Y, Deng Y, Zhang J, Liu H. Identification and Application of an Aptamer Targeting Papillary Thyroid Carcinoma Using Tissue-SELEX. Anal Chem 2019; 91:8289-8297. [PMID: 31141341 DOI: 10.1021/acs.analchem.9b01000] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aptamers, short DNA or RNA oligonucleotides, which evolved from systematic evolution of ligands by exponential enrichment (SELEX), can perform specific target recognition. Papillary thyroid carcinoma (PTC) is of high incidence worldwide, and the prognosis of advanced PTC is poor. Up to now, there is no specific biomarker that can identify PTC and defects still remain in existing diagnostic methods. Here we report an aptamer, termed TC-6, which is generated from tissue-SELEX by using sections of papillary thyroid carcinoma and a normal thyroid gland. TC-6 could specifically target intracellular components of papillary thyroid cells with high affinity ( Kd = 57.66 ± 5.93 nmol/L) and have performed excellent biocompatibility both in vivo and in vitro. Moreover, fluorescence imaging of PTC tumor-bearing mice revealed that TC-6 was able to accumulate in tumor sites and could distinguish thyroid carcinoma from other benign thyroid diseases efficiently. In addition, TC-6d, a truncated aptamer of TC-6, maintained its affinity toward PTC with Kd of 39.20 ± 8.20 nmol/L. Overall, these results indicate that TC-6 is a potential candidate for developing novel tools for diagnosis and targeted therapy of PTC.
Collapse
Affiliation(s)
- Wen Zhong
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Ying Pu
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Jun Liu
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Jie Liao
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Bo Liu
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Ke Chen
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Bo Yu
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Yalan Hu
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Yuanyuan Deng
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Jiani Zhang
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | - Huixia Liu
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| |
Collapse
|
22
|
An Y, Hu Y, Li X, Li Z, Duan J, Yang XD. Selection of a novel DNA aptamer against OFA/iLRP for targeted delivery of doxorubicin to AML cells. Sci Rep 2019; 9:7343. [PMID: 31089250 PMCID: PMC6517398 DOI: 10.1038/s41598-019-43910-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
The standard treatment for most acute myeloid leukemia (AML) is chemotherapy, which is often associated with severe adverse effects. One strategy to reduce the adverse effects is targeted therapy that can selectively deliver anticancer drugs to tumor cells. Immature laminin receptor protein (OFA/iLRP) is a potential target for AML treatment, because it is over-expressed on the surface of AML cells but under-expressed in normal tissue. In this study, we developed the first aptamer for OFA/iLRP and explored its potential as a targeting ligand for delivery of doxorubicin (Dox) to AML cells in vitro. The selected aptamer (AB3) was a 59-base DNA oligonucleotides. It bound to OFA/iLRP structure with a Kd of 101 nM and had minimal cross-reactivity to albumin, trypsin, or ovalbumin. Moreover, AB3 could bind to OFA/iLRP-positive AML cells but not the OFA/iLRP-negative control cells. An aptamer-doxorubicin (Apt-Dox) complex was formed by intercalating doxorubicin into the DNA structure of AB3. Apt-Dox selectively delivered Dox to OFA/iLRP-positive AML cells but notably decreased the drug intake by OFA/iLRP-negative control cells. In addition, cytotoxicity study revealed that Apt-Dox efficaciously destroyed the OFA/iLRP-positive AML cells, but significantly reduced the damage to control cells. The results indicate that the OFA/iLRP aptamer AB3 may have application potential in targeted therapy against AML.
Collapse
Affiliation(s)
- Yacong An
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yan Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xundou Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zhaoyi Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jinhong Duan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xian-Da Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
23
|
Huang X, Zhong J, Ren J, Wen D, Zhao W, Huan Y. A DNA aptamer recognizing MMP14 for in vivo and in vitro imaging identified by cell-SELEX. Oncol Lett 2019; 18:265-274. [PMID: 31289496 PMCID: PMC6540324 DOI: 10.3892/ol.2019.10282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
A key challenge for the management of various types of cancer, including pancreatic cancer and hepatocellular carcinoma, is accurate diagnosis at an early stage. Matrix metalloproteinase 14 (MMP14) is overexpressed in numerous types of cancer and is associated with poor prognosis. Therefore, MMP14-specific imaging probes have potential use in the diagnosis of MMP14-positive cancer. Aptamers are short oligonucleotide sequences that can bind to molecular targets with a high specificity and affinity. Aptamers are typically obtained from an in vitro library; this process is usually termed systematic evolution of ligands by exponential enrichment (SELEX). In the present study, a DNA aptamer targeting MMP14 was obtained by cell-SELEX and termed M17, which specifically recognizes MMP14-positive cells. Aptamer M17 selectively binds to membrane proteins of MMP14-transfected 293T cells (Kd, 4.98±1.26 nM). Pancreatic cancer cell imaging suggested that aptamer M17 can bind to the cell membranes of two pancreatic cancer cell lines (MIA PaCa-2 and PANC-1). In vivo tumor imaging demonstrated that the targeting recognition of MIA PaCa-2 tumor cells in mice could be visualized using Cy5-labeled aptamer M17. Aptamer M17-conjugated polyethylene glycol-Fe3O4 can specifically bind to MIA PaCa-2 and PANC-1 cells, and reduce MRI T2-weighted imaging signal intensity. The DNA aptamer M17 has the advantages of simplicity of synthesis, small size, low immunogenicity, high penetrability and high affinity. Therefore, aptamer M17 is a potential molecular probe for the diagnosis and treatment of MMP14-positive cancer.
Collapse
Affiliation(s)
- Xufang Huang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jinman Zhong
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Ren
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Didi Wen
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weiwei Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
24
|
Gan H, Xu H. A novel aptamer-based online magnetic solid phase extraction method for simultaneous determination of urinary 8-hydroxy-2'-deoxyguanosine and monohydroxylated polycyclic aromatic hydrocarbons. Talanta 2019; 201:271-279. [PMID: 31122423 DOI: 10.1016/j.talanta.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 02/08/2023]
Abstract
In this work, an innovative aptamer-based magnetic adsorbent (Fe3O4@PDA-aptamer MNPs) was prepared by hydrothermal synthesis method followed by the surface functionalization of nanoparticles. After fixing in a steel stainless tube as sorbent of magnetic solid phase extraction (MSPE), an online magnetic solid phase extraction-high performance liquid chromatography-mass spectrometry (online-MSPE-HPLC-MS) method was developed and applied for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) simultaneously in urine. The synthesized sorbent presented outstanding features, including large specific surface area, high enrichment capacity and excellent stability. High throughput analysis can be achieved by affinity-specific adsorption of 8-OHdG and non-specific adsorption of OH-PAHs at the same time. In addition, online MSPE can greatly simplify the analysis process, reduce human errors and enhance the sensitivity. When compared with offline MSPE, a sensitivity enhancement of 30-400 times was obtained for the online method. Some experimental parameters such as the amount of the sorbent, sampling flow rate and sample volume, were optimized systematically. Under the optimal conditions, the limits of detection (LOD) were in the range of 0.028-0.114 ng mL-1, and the correlation coefficients (R2) were higher than 0.9962. The relative standard deviations (RSDs) were less than 16.1% (n = 5) and the recoveries ranged from 71% to 116%. The above results show that the rapid, sensitive and automated online-MSPE-HPLC-MS method has potential application in the simultaneous determination of 8-OHdG and PAHs in complex sample matrix to assess the environmental exposure level.
Collapse
Affiliation(s)
- Haijiao Gan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
| |
Collapse
|
25
|
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 2018; 37:28-50. [PMID: 30408510 DOI: 10.1016/j.biotechadv.2018.11.001] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia; School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Changying Chen
- School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Leon M Larcher
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| |
Collapse
|
26
|
He J, Wang J, Zhang N, Shen L, Wang L, Xiao X, Wang Y, Bing T, Liu X, Li S, Shangguan D. In vitro selection of DNA aptamers recognizing drug-resistant ovarian cancer by cell-SELEX. Talanta 2018; 194:437-445. [PMID: 30609555 DOI: 10.1016/j.talanta.2018.10.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is regarded as the most lethal gynecologic malignancy with poor prognosis and high mortality rate. Drug-resistance was thought to be the main obstacle to improving overall survival rate of ovarian cancer. New ligands for drug-resistant ovarian cancer cells have potential for the development of diagnosis and therapy of ovarian cancer. In present work, we reported two aptamers, HF3-58 and HA5-68 generated by cell-SELEX, against a paclitaxel-resistant ovarian cancer cell line (A2780T). Both two aptamers exhibited high selectivity and strong affinity to target cells with low nanomolar dissociation constants. The binding of aptamers to target cells was independent of divalent ions, and was tolerant of incubation temperature and nucleases in serum. Molecular targets of the two aptamers were preliminarily demonstrated to be two different glycoproteins on cell surface of A2780T cells. Owing to the structure stability and high resistance to nuclease, these two aptamers had good performance in the detection of drug-resistant ovarian cancer cells in human serum.
Collapse
Affiliation(s)
- Junqing He
- College of Chemistry, Xiangtan University, Xiangtan 411105, China; Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junyan Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Luyao Shen
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Xiao
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China; Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Bing
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songqing Li
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Dihua Shangguan
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Tapp MJN, Slocik JM, Dennis PB, Naik RR, Milam VT. Competition-Enhanced Ligand Selection to Identify DNA Aptamers. ACS COMBINATORIAL SCIENCE 2018; 20:585-593. [PMID: 30189130 DOI: 10.1021/acscombsci.8b00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Competition-enhanced ligand screening (CompELS) was employed to rapidly screen through large DNA libraries to identify single-stranded, oligonucleotide-based ligands called aptamers that bind to a nonbiological target. This previously unreported aptamer screening approach involves the repeated introduction of unenriched random sequence populations during the biopanning process, but avoids iterative elution and polymerase chain reaction (PCR) amplification steps inherent to traditional SELEX (systematic evolution of ligands by exponential enrichment) screening. In this study, 25 aptamers were identified against a gold surface via CompELS and evaluated to identify patterns in primary structures and predicted secondary structures. Following a final one-round competition experiment with the 25 identified aptamers, one particular aptamer sequence (1N) emerged as the most competitive adsorbate species for the gold substrate. Binding analysis indicated at least an order of magnitude difference in the binding affinity of 1N ( Kd = 5.6 × 10-10 M) compared to five other high affinity aptamer candidates ( Kd = 10-8-10-9 M) from identical secondary structure families. Collectively, these studies introduce a rapid, reliable screening and ranking platform along with a classification scheme well-suited for identifying and characterizing aptamers for nonbiological as well as biological targets.
Collapse
Affiliation(s)
| | - Joseph M. Slocik
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Patrick B. Dennis
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R. Naik
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | | |
Collapse
|
28
|
Gan H, Xu H. A novel aptamer-based online magnetic solid phase extraction method for the selective determination of 8-hydroxy-2'-deoxyguanosine in human urine. Anal Chim Acta 2018; 1008:48-56. [PMID: 29420943 DOI: 10.1016/j.aca.2017.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022]
Abstract
In this work, an innovative magnetic aptamer adsorbent (Fe3O4-aptamer MNPs) was synthesized for the selective extraction of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Amino-functionalized-Fe3O4 was crosslinked with 8-OHdG aptamer by glutaraldehyde and fixed into a steel stainless tube as the sorbent of magnetic solid phase extraction (MSPE). After selective extraction by the aptamer adsorbent, the adsorbed 8-OHdG was desorbed dynamically and online analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS). The synthesized sorbent presented outstanding features, including specific selectivity, high enrichment capacity, stability and biocompatibility. Moreover, this proposed MSPE-HPLC-MS can achieve adsorption and desorption operation integration, greatly simplify the analysis process and reduce human errors. When compared with offline MSPE, a sensitivity enhancement of 800 times was obtained for the online method. Some experimental parameters such as the amount of the sorbent, sample flow rate and sample volume, were optimized systematically. Under the optimal conditions, low limit of detection (0.01 ng mL-1, S/N = 3), limit of quantity (0.03 ng mL-1, S/N = 10) and wide linear range with a satisfactory correlation coefficient (R2 ≥ 0.9992) were obtained. And the recoveries of 8-OHdG in the urine samples varied from 82% to 116%. All these results revealed that the method is simple, rapid, selective, sensitive and automated, and it could be expected to become a potential approach for the selective determination of trace 8-OHdG in complex urinary samples.
Collapse
Affiliation(s)
- Haijiao Gan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
| |
Collapse
|
29
|
Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX. Sci Rep 2017; 7:7179. [PMID: 28775305 PMCID: PMC5543139 DOI: 10.1038/s41598-017-05840-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Excessive secretion of glucagon, a functional insulin antagonist, significantly contributes to hyperglycemia. Glucagon exerts its physiological functions through activation of the glucagon receptor (GCGR). Inhibition of GCGR activity represents a potential therapeutic approach for reducing excess glucose production in diabetes mellitus. Aptamers are short DNA or RNA oligonucleotides evolved from systematic evolution of ligands by exponential enrichment (SELEX). Here, we have successfully selected a DNA aptamer against GCGR by cell-SELEX, which can specifically bind membrane protein of CHO-GCGR cells with a Kd of 52.7 ± 5.1 nM. Aptamer-mediated pull-down and gcgr knockdown assay verified that GCGR was the target of aptamer GR-3. Binding analysis revealed that GR-3 could recognize other cells with different affinity according to the level of GCGR protein expressed in these cells. Hepatic tissue imaging suggested that GR-3 could bind the cell membrane of hepatic tissues. With the advantages of small size, high binding affinity, good stability, lack of immunogenicity, and easy synthesis, aptamer GR-3 against GCGR can be a promising tool with the potential to attenuate hyperglycemia in diabetes mellitus.
Collapse
|
30
|
Zhang JJ, Cheng FF, Zheng TT, Zhu JJ. Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells. Biosens Bioelectron 2016; 89:937-945. [PMID: 27818049 DOI: 10.1016/j.bios.2016.09.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022]
Abstract
Quantifying the glycan expression status on cell surfaces is of vital importance for insight into the glycan function in biological processes and related diseases. Here we developed a versatile aptasensor for electrochemical quantification of cell surface glycan by taking advantage of the cell-specific aptamer, and the lectin-functionalized gold nanoparticles acting as both a glycan recognition unit and a signal amplification probe. To construct the aptasensor, amine-functionalized mucin 1 protein (MUC1) aptamer was first covalently conjugated to carboxylated-magnetic beads (MBs) using the succinimide coupling (EDC-NHS) method. On the basis of the specific recognition between aptamer and MUC1 protein that overexpressed on the surface of MCF-7 cells, the aptamer conjugated MBs showed a predominant capability for cell capture with high selectivity. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A (ConA) on gold nanoparticles (AuNPs). This nanoprobe incorporated the abilities of both the specific carbohydrate recognition and the signal amplification based on the gold-promoted reduction of silver ions. By coupling with electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of MCF-7 cells and quantification of cell surface glycan. More importantly, taking advantage of Con A-gold nanoprobe catalyzed silver enhancement, the proposed method was further used for naked-eye tracking glycolytic inhibition in living cells. This aptasensor holds great promise as a new point-of-care diagnostic tool for analyzing glycan expression on living cells and further helps cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fang-Fang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; School of Pharmacy, Nanjing University of Chinese Medicine, 210023, China
| | - Ting-Ting Zheng
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
31
|
Dougherty CA, Cai W, Hong H. Applications of aptamers in targeted imaging: state of the art. Curr Top Med Chem 2016; 15:1138-52. [PMID: 25866268 DOI: 10.2174/1568026615666150413153400] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 01/23/2023]
Abstract
Aptamers are single-stranded oligonucleotides with high affinity and specificity to the target molecules or cells, thus they can serve as an important category of molecular targeting ligand. Since their discovery, aptamers have been rapidly translated into clinical practice. The strong target affinity/selectivity, cost-effectivity, chemical versatility and safety of aptamers are superior to traditional peptides- or proteins-based ligands which make them unique choices for molecular imaging. Therefore, aptamers are considered to be extremely useful to guide various imaging contrast agents to the target tissues or cells for optical, magnetic resonance, nuclear, computed tomography, ultrasound and multimodality imaging. This review aims to provide an overview of aptamers' advantages as targeting ligands and their application in targeted imaging. Further research in synthesis of new types of aptamers and their conjugation with new categories of contrast agents is required to develop clinically translatable aptamer-based imaging agents which will eventually result in improved patient care.
Collapse
Affiliation(s)
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705-2275, United States.
| | | |
Collapse
|
32
|
Tian T, Song Y, Wang J, Fu B, He Z, Xu X, Li A, Zhou X, Wang S, Zhou X. Small-Molecule-Triggered and Light-Controlled Reversible Regulation of Enzymatic Activity. J Am Chem Soc 2016; 138:955-61. [DOI: 10.1021/jacs.5b11532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tian Tian
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Yanyan Song
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Jiaqi Wang
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Boshi Fu
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Zhiyong He
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Xianqun Xu
- Zhongnan
Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Anling Li
- Zhongnan
Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xin Zhou
- Zhongnan
Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Shaoru Wang
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| | - Xiang Zhou
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies,
Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei
Province, China
| |
Collapse
|
33
|
Wang Q, Zhou Z, Zhai Y, Zhang L, Hong W, Zhang Z, Dong S. Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites. Talanta 2015; 141:247-52. [PMID: 25966410 DOI: 10.1016/j.talanta.2015.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 12/28/2022]
Abstract
A label-free and amplified electrochemical impedimetric aptasensor based on functionalized graphene nanocomposites (rGO-AuNPs) was developed for the detection of thrombin, which played a vital role in thrombosis and hemostasis. The thiolated aptamer and dithiothreitol (TBA15-DTT) were firstly immobilized on the gold electrode to capture the thrombin molecules, and then aptamer functionalized graphene nanocomposites (rGO-TBA29) were used to fabricate a sandwich sensing platform for amplifying the impedimetric signals. As numerous negative charges of TBA29 on the electrode repelled to the [Fe(CN)6](4-/3-) anions, resulting in an obvious amplified charge-transfer resistance (Rct) signal. The Rct increase was linearly proportional to the thrombin concentration from 0.3 to 50nM and a detection limit of 0.01nM thrombin was achieved. In addition, graphene could also be labeled with other probes via electrostatic or π-π stacking interactions to produce signals, therefore different detection methods expanding wide application could be used in this model.
Collapse
Affiliation(s)
- Qingqing Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Zhixue Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Yanling Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Lingling Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Wei Hong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| |
Collapse
|
34
|
Chen K, Liu J, Tong G, Liu B, Wang G, Liu H. Adipo8, a high-affinity DNA aptamer, can differentiate among adipocytes and inhibit intracellular lipid accumulation in vitro. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5367-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Ashby J, Schachermeyer S, Duan Y, Jimenez LA, Zhong W. Probing and quantifying DNA–protein interactions with asymmetrical flow field-flow fractionation. J Chromatogr A 2014; 1358:217-24. [DOI: 10.1016/j.chroma.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022]
|
36
|
Electrogenerated chemiluminescence aptasensor for ultrasensitive detection of thrombin incorporating an auxiliary probe. Talanta 2014; 130:370-6. [PMID: 25159423 DOI: 10.1016/j.talanta.2014.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 01/23/2023]
Abstract
A novel electrogenerated chemiluminescence (ECL) aptasensor for ultrasensitive detection of thrombin incorporating an auxiliary probe was designed by employing specific anti-thrombin aptamer as a capture probe and a ruthenium(II) complex-tagged reporter probe as an ECL probe and an auxiliary probe to assist the ECL probe close to the surface of the electrode. The ECL aptasensor was fabricated by self-assembling a thiolated capture probe on the surface of gold electrode and then hybridizing the ECL probe with the capture probe, and further self-assembling the auxiliary probe. When analyte thrombin was bound with the capture probe, the part of the dehybridized ECL probe was hybridized with the neighboring auxiliary probe, led to the tagged ruthenium(II) complex close to the electrode surface, resulted in great increase in the ECL intensity. The results showed that the increased ECL intensity was directly related to the logarithm of thrombin concentrations in the range from 5.0 × 10(-15)M to 5.0 × 10(-12)M with a detection limit of 2.0 × 10(-15)M. This work demonstrates that employing an auxiliary probe which exists nearby the capture probe can enhance the sensitivity of the ECL aptasensor. This promising strategy will be extended to the design of other biosensors for detection of other proteins and genes.
Collapse
|
37
|
Kim EY, Kim JW, Kim WK, Han BS, Park SG, Chung BH, Lee SC, Bae KH. Selection of aptamers for mature white adipocytes by cell SELEX using flow cytometry. PLoS One 2014; 9:e97747. [PMID: 24844710 PMCID: PMC4028271 DOI: 10.1371/journal.pone.0097747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adipose tissue, mainly composed of adipocytes, plays an important role in metabolism by regulating energy homeostasis. Obesity is primarily caused by an abundance of adipose tissue. Therefore, specific targeting of adipose tissue is critical during the treatment of obesity, and plays a major role in overcoming it. However, the knowledge of cell-surface markers specific to adipocytes is limited. METHODS AND RESULTS We applied the CELL SELEX (Systematic Evolution of Ligands by EXponential enrichment) method using flow cytometry to isolate molecular probes for specific recognition of adipocytes. The aptamer library, a mixture of FITC-tagged single-stranded random DNAs, is used as a source for acquiring molecular probes. With the increasing number of selection cycles, there was a steady increase in the fluorescence intensity toward mature adipocytes. Through 12 rounds of SELEX, enriched aptamers showing specific recognition toward mature 3T3-L1 adipocyte cells were isolated. Among these, two aptamers (MA-33 and 91) were able to selectively bind to mature adipocytes with an equilibrium dissociation constant (Kd) in the nanomolar range. These aptamers did not bind to preadipocytes or other cell lines (such as HeLa, HEK-293, or C2C12 cells). Additionally, it was confirmed that MA-33 and 91 can distinguish between mature primary white and primary brown adipocytes. CONCLUSIONS These selected aptamers have the potential to be applied as markers for detecting mature white adipocytes and monitoring adipogenesis, and could emerge as an important tool in the treatment of obesity.
Collapse
Affiliation(s)
- Eun Young Kim
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Ji Won Kim
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Won Kon Kim
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Baek Soo Han
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Bong Hyun Chung
- BioNanotechnology Research Center, Bioconvergence Research Institute, KRIBB, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| |
Collapse
|
38
|
Zhao N, Pei SN, Parekh P, Salazar E, Zu Y. Blocking interaction of viral gp120 and CD4-expressing T cells by single-stranded DNA aptamers. Int J Biochem Cell Biol 2014; 51:10-8. [PMID: 24661998 DOI: 10.1016/j.biocel.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 01/29/2023]
Abstract
To investigate the potential clinical application of aptamers to prevention of HIV infection, single-stranded DNA (ssDNA) aptamers specific for CD4 were developed using the systematic evolution of ligands by exponential enrichment approach and next generation sequencing. In contrast to RNA-based aptamers, the developed ssDNA aptamers were stable in human serum up to 12h. Cell binding assays revealed that the aptamers specifically targeted CD4-expressing cells with high binding affinity (Kd=1.59nM), a concentration within the range required for therapeutic application. Importantly, the aptamers selectively bound CD4 on human cells and disrupted the interaction of viral gp120 to CD4 receptors, which is a prerequisite step of HIV-1 infection. Functional studies showed that the aptamer polymers significantly blocked binding of viral gp120 to CD4-expressing cells by up to 70% inhibition. These findings provide a new approach to prevent HIV-1 transmission using oligonucleotide aptamers.
Collapse
Affiliation(s)
- Nianxi Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Sung-nan Pei
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Parag Parekh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Eric Salazar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, and Cancer Pathology Laboratory, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
40
|
Schachermeyer S, Ashby J, Zhong W. Aptamer–protein binding detected by asymmetric flow field flow fractionation. J Chromatogr A 2013; 1295:107-13. [DOI: 10.1016/j.chroma.2013.04.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/11/2023]
|
41
|
Wang X, Yang Y, Jia M, Ma C, Wang M, Che L, Yang Y, Wu J. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity. Neural Regen Res 2013; 8:39-48. [PMID: 25206370 PMCID: PMC4107502 DOI: 10.3969/j.issn.1673-5374.2013.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/07/2012] [Indexed: 12/29/2022] Open
Abstract
Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yi Yang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Mingyue Jia
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Chi Ma
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Mingyu Wang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Lihe Che
- Department of Infection, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yu Yang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jiang Wu
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
42
|
Lakhin A, Tarantul V, Gening L. Aptamers: problems, solutions and prospects. Acta Naturae 2013; 5:34-43. [PMID: 24455181 PMCID: PMC3890987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aptamers are short single-stranded oligonucleotides that are capable of binding various molecules with high affinity and specificity. When the technology of aptamer selection was developed almost a quarter of a century ago, a suggestion was immediately put forward that it might be a revolutionary start into solving many problems associated with diagnostics and the therapy of diseases. However, multiple attempts to use aptamers in practice, although sometimes successful, have been generally much less efficient than had been expected initially. This review is mostly devoted not to the successful use of aptamers but to the problems impeding the widespread application of aptamers in diagnostics and therapy, as well as to approaches that could considerably expand the range of aptamer application.
Collapse
Affiliation(s)
- A.V. Lakhin
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| | - V.Z. Tarantul
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| | - L.V. Gening
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| |
Collapse
|
43
|
Shum KT, Zhou J, Rossi JJ. Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma. ACTA ACUST UNITED AC 2013; 4:872-890. [PMID: 25057429 PMCID: PMC4104705 DOI: 10.4236/jct.2013.44099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an un-questioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed.
Collapse
Affiliation(s)
- Ka-To Shum
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA ; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
44
|
Qi H, Shangguan L, Li C, Li X, Gao Q, Zhang C. Sensitive and antifouling impedimetric aptasensor for the determination of thrombin in undiluted serum sample. Biosens Bioelectron 2012; 39:324-8. [PMID: 22884002 DOI: 10.1016/j.bios.2012.07.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/02/2012] [Accepted: 07/21/2012] [Indexed: 11/24/2022]
Abstract
A highly sensitive and attractive antifouling impedimetric aptasensor for the determination of thrombin in undiluted serum sample was developed. The aptasensor was fabricated by co-assembling thiol-modified anti-thrombin binding aptamer, dithiothreitol and mercaptohexanol on the surface of gold electrode. The performance of aptasensor was characterized by atomic force microscopy, contact angle and electrochemical impedance spectroscopy. In the measurement of thrombin, the change in interfacial electron transfer resistance of aptasensor was monitored using a redox couple of Fe(CN)(6)(3-/4-). The increase in the electron transfer resistance was linearly proportional to the concentration of thrombin in the range from 1.0 to 20ng/mL and a detection limit of 0.3ng/mL thrombin was achieved. The fabricated aptasensor displayed attractive antifouling properties and allowed direct quantification of extrinsic thrombin down to 0.08ng/mL in undiluted serum sample. This work provides a promising strategy for clinical application with impressive sensitivity and antifouling characteristics.
Collapse
Affiliation(s)
- Honglan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | | | | | | | | | | |
Collapse
|