1
|
Thymus transplantation regulates blood pressure and alleviates hypertension-associated heart and kidney damage via transcription factors FoxN1 pathway. Int Immunopharmacol 2023; 116:109798. [PMID: 36738681 DOI: 10.1016/j.intimp.2023.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Previous studies have found that thymus is involved in the process of hypertension. However, whether thymus transplantation alleviates target organ damage in hypertensive mice remains unknown. The aim of this study was to evaluate the effects of thymus transplantation on blood pressure and target organ changes in mice with hypertension. Mice were randomly divided into normal control group (Con), hypertensive group (HTN) and thymus transplantation group (HTN + Trans). Thymus of neonatal mice was transplanted into the renal capsule of the transplantation group. After transplantation, the mouse tail noninvasive pressure was measured and heart function was evaluated weekly. Then mice were euthanized and organs or tissues were harvested at 4 weeks post-transplantation. The blood pressure of HTN + Trans group was lower than that in the HTN group. The expression of FoxN1, Aire, ATRAP, thymosin β4 and the content of sjTREC in thymus of HTN group was decreased and the number of naïve T cells in HTN group was lower compared with other two groups. The ratio of cTEC/mTEC in HTN group was higher than that in Con group and lower than that in HTN + Trans group. Cardiac pathology showed cardiac hypertrophy and fibrosis in HTN group whereas thymus transplantation improved heart function and structure. Altogether, our findings demonstrated thymus transplantation could improve thymus function of hypertensive mice, which increased the expression of thymus transcription factor FoxN1, affected the proportion of T cell subsets, and increased thymosin β4 thereby reducing blood pressure and reversing the progression of target organ damage.
Collapse
|
2
|
Haruhara K, Suzuki T, Wakui H, Azushima K, Kurotaki D, Kawase W, Uneda K, Kobayashi R, Ohki K, Kinguchi S, Yamaji T, Kato I, Ohashi K, Yamashita A, Tamura T, Tsuboi N, Yokoo T, Tamura K. Deficiency of the kidney tubular angiotensin II type1 receptor-associated protein ATRAP exacerbates streptozotocin-induced diabetic glomerular injury via reducing protective macrophage polarization. Kidney Int 2022; 101:912-928. [PMID: 35240129 DOI: 10.1016/j.kint.2022.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Although activation of the renin-angiotensin system and of its glomerular components is implicated in the pathogenesis of diabetic nephropathy, the functional roles of the tubular renin-angiotensin system with AT1 receptor signaling in diabetic nephropathy are unclear. Tissue hyperactivity of the renin-angiotensin system is inhibited by the angiotensin II type 1 receptor-associated protein ATRAP, which negatively regulates receptor signaling. The highest expression of endogenous ATRAP occurs in the kidney, where it is mainly expressed by tubules but rarely in glomeruli. Here, we found that hyperactivation of angiotensin II type 1 receptor signaling in kidney tubules exacerbated diabetic glomerular injury in a mouse model of streptozotocin-induced diabetic nephropathy. These phenomena were accompanied by decreased expression of CD206, a marker of alternatively activated and tissue-reparative M2 macrophages, in the kidney tubulointerstitium. Additionally, adoptive transfer of M2- polarized macrophages into diabetic ATRAP-knockout mice ameliorated the glomerular injury. As a possible mechanism, the glomerular mRNA levels of tumor necrosis factor-α and oxidative stress components were increased in diabetic knockout mice compared to non-diabetic knockout mice, but these increases were ameliorated by adoptive transfer. Furthermore, proximal tubule-specific ATRAP downregulation reduced tubulointerstitial expression of CD206, the marker of M2 macrophages in diabetic mice. Thus, our findings indicate that tubular ATRAP-mediated functional modulation of angiotensin II type 1 receptor signaling modulates the accumulation of tubulointerstitial M2 macrophages, thus affecting glomerular manifestations of diabetic nephropathy via tubule-glomerular crosstalk.
Collapse
Affiliation(s)
- Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Kawase
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Ohashi
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
3
|
ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res 2022; 45:32-39. [PMID: 34642449 DOI: 10.1038/s41440-021-00776-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
Pathological activation of kidney angiotensin II (Ang II) type 1 receptor (AT1R) signaling stimulates tubular sodium transporters, including epithelial sodium channels, to increase sodium reabsorption and blood pressure. During a search for a means to functionally and selectively modulate AT1R signaling, a molecule directly interacting with the carboxyl-terminal cytoplasmic domain of AT1R was identified and named AT1R-associated protein (ATRAP/Agtrap). We showed that ATRAP promotes constitutive AT1R internalization to inhibit pathological AT1R activation in response to certain stimuli. In the kidney, ATRAP is abundantly distributed in epithelial cells along the proximal and distal tubules. Results from genetically engineered mice with modified ATRAP expression show that ATRAP plays a key role in the regulation of renal sodium handling and the modulation of blood pressure in response to pathological stimuli and further suggest that the function of kidney tubule ATRAP may be different between distal tubules and proximal tubules, implying that ATRAP is a target of interest in hypertension.
Collapse
|
4
|
Song X, Zou X, Ge W, Hou C, Cao Z, Zhao H, Zhang T, Jin L, Fu Y, Kong W, Yan C, Cai J, Wang J. Blocking FcγRIIB in Smooth Muscle Cells Reduces Hypertension. Circ Res 2021; 129:308-325. [PMID: 33980031 DOI: 10.1161/circresaha.120.318447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Case-Control Studies
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- HEK293 Cells
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/prevention & control
- Immunoglobulin G/blood
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xuan Zou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Cuiliu Hou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Zhujie Cao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Tiantian Zhang
- Department Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (T.Z.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Ling Jin
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (L.J., J.C.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yi Fu
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.F., W.K.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education (Y.F., W.K.)
| | - Wei Kong
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.F., W.K.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education (Y.F., W.K.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, Medicine, University of Rochester School of Medicine and Dentistry, NY (C.Y.)
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (L.J., J.C.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| |
Collapse
|
5
|
Bian J, Lei J, Yin X, Wang P, Wu Y, Yang X, Wang L, Zhang S, Liu H, Fu MLX. Limited AT1 Receptor Internalization Is a Novel Mechanism Underlying Sustained Vasoconstriction Induced by AT1 Receptor Autoantibody From Preeclampsia. J Am Heart Assoc 2020; 8:e011179. [PMID: 30845870 PMCID: PMC6475063 DOI: 10.1161/jaha.118.011179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Angiotensin II type 1 receptor (AT1R) autoantibody (AT1‐AA) was first identified as a causative factor in preeclampsia. Unlike physiological ligand angiotensin II (Ang II), AT1‐AA can induce vasoconstriction in a sustained manner, causing a series of adverse effects, such as vascular injury and poor placental perfusion. However, its underlying mechanisms remain unclear. Here, from the perspective of AT1R internalization, the present study investigated the molecular mechanism of sustained vasoconstriction induced by AT1R autoantibody. Methods and Results In the current study, we used the vascular‐ring technique to determine that AT1‐AA‐positive IgG, which was obtained from the sera of preeclamptic patients, induced long‐term vasoconstriction in endothelium‐intact or endothelium‐denuded rat thoracic arteries. The effect was caused by prolonged activation of AT1R downstream signals in vascular smooth muscle cells, including Ca2+, protein kinase C, and extracellular signal‐regulated kinase 1 and 2. Then, using subcellular protein fractionation, cell surface protein biotinylation, and total internal reflection fluorescence, we found that AT1‐AA‐positive IgG resulted in significantly less AT1R internalization than in the Ang II treatment group. Moreover, through use of fluorescent tracing and bioluminescence resonance energy transfer, we found that AT1‐AA‐positive IgG cannot induce the recruitment of β‐arrestin1/2, which mediated receptor internalization. Then, the effect of sustained AT1R activation induced by AT1‐AA‐positive IgG was rescued by overexpression of β‐arrestin2. Conclusions These data suggested that limited AT1R internalization resulting from the inhibition of β‐arrestin1/2 recruitment played an important role in sustained vasoconstriction induced by AT1‐AA‐positive IgG, which may set the stage for avoiding AT1R overactivation in the management of preeclampsia.
Collapse
Affiliation(s)
- Jingwei Bian
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Jinghui Lei
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China.,3 National Clinical Research Center for Geriatric Disorders Xuanwu Hospital of Capital Medical University Beijing China
| | - Xiaochen Yin
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Pengli Wang
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Ye Wu
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Xiaoli Yang
- 4 Department of Reproductive Center Taiyuan Central Hospital Taiyuan Shanxi Province China
| | - Li Wang
- 5 Department of Pathology Shanxi Medical University Taiyuan Shanxi Province China
| | - Suli Zhang
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China.,2 Beijing Key Laboratory of Cardiovascular Diseases and Related Metabolic Dysfunction Capital Medical University Beijing China
| | - Huirong Liu
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China.,2 Beijing Key Laboratory of Cardiovascular Diseases and Related Metabolic Dysfunction Capital Medical University Beijing China
| | - Michael L X Fu
- 6 Section of Cardiology Department of Medicine Sahlgrenska University Hospital/Östra Hospital Göteborg Sweden
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating blood pressure and body fluid, which contributes to the pathophysiology of hypertension and cardiovascular/renal diseases. However, accumulating evidence has further revealed the complexity of this signal transduction system, including direct interactions with other receptors and proteins. This review focuses on recent research advances in RAAS with an emphasis on its receptors. RECENT FINDINGS Both systemically and locally produced angiotensin II (Ang II) bind to Ang II type 1 receptor (AT1R) and elicit strong biological functions. Recent studies have shown that Ang II-induced activation of Ang II type 2 receptor (AT2R) elicits the opposite functions to those of AT1R. However, accumulating evidence has now expanded the components of RAAS, including (pro)renin receptor, angiotensin-converting enzyme 2, angiotensin 1-7, and Mas receptor. In addition, the signal transductions of AT1R and AT2R are regulated by not only Ang II but also its receptor-associated proteins such as AT1R-associated protein and AT2R-interacting protein. Recent studies have indicated that inappropriate activation of local mineralocorticoid receptor contributes to cardiovascular and renal tissue injuries through aldosterone-dependent and -independent mechanisms. Since the mechanisms of RAAS signal transduction still remain to be elucidated, further investigations are necessary to explore novel molecular mechanisms of the RAAS, which will provide alternative therapeutic agents other than existing RAAS blockers.
Collapse
|
7
|
Angiotensin-Receptor-Associated Protein Modulates Ca 2+ Signals in Photoreceptor and Mossy Fiber cells. Sci Rep 2019; 9:19622. [PMID: 31873081 PMCID: PMC6928155 DOI: 10.1038/s41598-019-55380-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022] Open
Abstract
Fast, precise and sustained neurotransmission requires graded Ca2+ signals at the presynaptic terminal. Neurotransmitter release depends on a complex interplay of Ca2+ fluxes and Ca2+ buffering in the presynaptic terminal that is not fully understood. Here, we show that the angiotensin-receptor-associated protein (ATRAP) localizes to synaptic terminals throughout the central nervous system. In the retinal photoreceptor synapse and the cerebellar mossy fiber-granule cell synapse, we find that ATRAP is involved in the generation of depolarization-evoked synaptic Ca2+ transients. Compared to wild type, Ca2+ imaging in acutely isolated preparations of the retina and the cerebellum from ATRAP knockout mice reveals a significant reduction of the sarcoendoplasmic reticulum (SR) Ca2+-ATPase (SERCA) activity. Thus, in addition to its conventional role in angiotensin signaling, ATRAP also modulates presynaptic Ca2+ signaling within the central nervous system.
Collapse
|
8
|
Philogene MC, Johnson T, Vaught AJ, Zakaria S, Fedarko N. Antibodies against Angiotensin II Type 1 and Endothelin A Receptors: Relevance and pathogenicity. Hum Immunol 2019; 80:561-567. [PMID: 31010696 PMCID: PMC8015780 DOI: 10.1016/j.humimm.2019.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Antibodies against two G-protein coupled receptors (GPCRs), angiotensin II type 1 receptor (AT1R) and endothelin A receptor (ETAR) are among a growing number of autoantibodies that are found to be associated with allograft dysfunction. AT1R antibodies (AT1Rabs) and ETAR antibodies (ETARabs) have been shown to activate their target receptors and affect signaling pathways. Multiple single center reports have shown an association between presence of these antibodies and acute or chronic rejection and graft loss in kidney, heart, liver, lung and composite tissue transplantations. However, the characteristics of patients that are most likely to develop adverse outcomes, the phenotypes associated with graft damage solely due to these antibodies, and the antibody titer required to cause dysfunction are areas that remain controversial. This review compiles existing knowledge on the effect of antibodies against GPCRs in other diseases in order to bridge the gap in knowledge within transplantation biology. Future areas for research are highlighted and include the need for functional assays and treatment protocols for transplant patients who present with AT1Rabs and ETARabs. Understanding how antibodies that activate GPCRs influence transplantation outcome will have direct clinical implications for preemptive evaluation of transplant candidates as well as the post-transplant care of organ recipients.
Collapse
Affiliation(s)
- Mary Carmelle Philogene
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Tory Johnson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arthur Jason Vaught
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sammy Zakaria
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Neal Fedarko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Sanz AB, Ramos AM, Soler MJ, Sanchez-Niño MD, Fernandez-Fernandez B, Perez-Gomez MV, Ortega MR, Alvarez-Llamas G, Ortiz A. Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. Expert Rev Proteomics 2018; 16:77-92. [DOI: 10.1080/14789450.2018.1545577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Belén Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Adrian Mario Ramos
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Jose Soler
- Department of Nephrology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | | | | | - Marta Ruiz Ortega
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Jara ZP, Singh KD, Unal H, Desnoyer R, Yokota R, Pesquero JL, Casarini DE, Karnik SS. Effect of novel GPCR ligands on blood pressure and vascular homeostasis. Methods Cell Biol 2018; 149:215-238. [PMID: 30616822 PMCID: PMC6490170 DOI: 10.1016/bs.mcb.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maintenance of normal blood pressure under conditions of drug treatment is a measure of system-wide neuro-hormonal controls and electrolyte/fluid volume homeostasis in the body. With increased interest in designing and evaluating novel drugs that may functionally select or allosterically modulate specific GPCR signaling pathways, techniques that allow us to measure acute and long-term effects on blood pressure are very important. Therefore, this chapter describes techniques to measure acute and long-term impact of novel GPCR ligands on blood pressure regulation. We will use the angiotensin type 1 receptor, a powerful blood pressure regulating GPCR, in detailing the methodology. Normal blood pressure maintenance depends upon dynamic modulation of angiotensin type 1 receptor activity by the hormone peptide angiotensin II. Chronic activation of angiotensin type 1 receptor creates hypertension and related cardiovascular disease states which are treated with angiotensin type 1 receptor blockers (ARBs). Thus, a prototype for evaluation of blood pressure control under experimental evaluation of novel drugs.
Collapse
Affiliation(s)
- Zaira Palomino Jara
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Russell Desnoyer
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Rodrigo Yokota
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge Luis Pesquero
- Physiology and Biophysics Department, Biology and Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
11
|
Jain S, Rana A, Jain K, Perla SK, Puri N, Kumar A. Age-Related Expression of Human AT1R Variants and Associated Renal Dysfunction in Transgenic Mice. Am J Hypertens 2018; 31:1234-1242. [PMID: 30084918 DOI: 10.1093/ajh/hpy121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The contribution of single nucleotide polymorphisms in transcriptional regulation of the human angiotensin receptor type I (hAT1R) gene in age-related chronic pathologies such as hypertension and associated renal disorders is not well known. The hAT1R gene has single nucleotide polymorphisms in its promoter that forms 2 haplotypes (Hap), Hap-I and Hap-II. Hap-I of AT1R gene is associated with hypertension in Caucasians. We have hypothesized here that age will alter the transcriptional environment of the cell and will regulate the expression of hAT1R gene in a haplotype-dependent manner. This could likely make subjects with Hap-I increasingly susceptible to age-associated, AT1R-mediated complications. METHOD We generated transgenic (TG) mice with Hap-I and Hap-II. Adults (10-12 weeks) and aged (20-24 months) TG male mice containing either Hap-I or Hap-II were divided into 4 groups to study (i) the age-associated and haplotype-specific transcriptional regulation of hAT1R gene and (ii) their physiological relevance. RESULTS In aged animals, TG mice with Hap-I show increased expression of hAT1R and higher blood pressure (BP); suppression of antioxidant defenses (hemoxygenase, superoxide dismutase) and antiaging molecules (ATRAP, Klotho, Sirt3); increased expression of pro-inflammatory markers (IL-6, TNFα, CRP, NOX1); and increased insulin resistance. In vivo ChIP assay shows stronger binding of transcription factor USF2 to the chromatin of Hap-I mice. CONCLUSION Our results suggest that in aged animals, as compared with Hap-II, the TG mice with Hap-I overexpress hAT1R gene due to the stronger transcriptional activity, thus resulting in an increase in their BP and associated renal disorders.
Collapse
Affiliation(s)
- Sudhir Jain
- Department of Pathology, Basic Science Building, New York Medical College, Valhalla, New York, USA
| | - Anita Rana
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
| | - Kavita Jain
- Department of Pathology, Basic Science Building, New York Medical College, Valhalla, New York, USA
| | - Sravan K Perla
- Department of Pathology, Basic Science Building, New York Medical College, Valhalla, New York, USA
| | - Nitin Puri
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Ashok Kumar
- Department of Pathology, Basic Science Building, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
12
|
Ohki K, Wakui H, Kishio N, Azushima K, Uneda K, Haku S, Kobayashi R, Haruhara K, Kinguchi S, Yamaji T, Yamada T, Minegishi S, Ishigami T, Toya Y, Yamashita A, Imajo K, Nakajima A, Kato I, Ohashi K, Tamura K. Angiotensin II Type 1 Receptor-associated Protein Inhibits Angiotensin II-induced Insulin Resistance with Suppression of Oxidative Stress in Skeletal Muscle Tissue. Sci Rep 2018; 8:2846. [PMID: 29434287 PMCID: PMC5809432 DOI: 10.1038/s41598-018-21270-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/01/2018] [Indexed: 01/19/2023] Open
Abstract
Enhancement of AT1 receptor-associated protein (ATRAP) in adipose tissue improves high fat diet (HFD)-induced visceral obesity and insulin resistance, and suppresses adipose oxidative stress. However, HFD loading is not a direct stimulatory factor for AT1 receptor. In the present study, we investigated the effect of chronic, low-dose angiotensin II (Ang II) stimulation on glucose and lipid metabolism in mice and functional role of ATRAP. ATRAP expression was higher in adipose tissue (5–10-fold) and skeletal muscle tissue (approximately 1.6-fold) in ATRAP transgenic (TG) mice compared with wild-type (WT) mice. After Ang II infusion, insulin sensitivity was impaired in WT mice, but this response was suppressed in TG mice. Unexpectedly, Ang II infusion did not affect the adipose tissue profile in WT or TG mice. However, in skeletal muscle tissue, Ang II stimulus caused an increase in oxidative stress and activation of p38 MAPK, resulting in a decrease in glucose transporter type 4 expression in WT mice. These responses were suppressed in TG mice. Our study suggests that Ang II-induced insulin resistance is suppressed by increased ATRAP expression in skeletal muscle tissue. Hyperactivity of AT1 receptor could be related to formation of insulin resistance related to metabolic syndrome.
Collapse
Affiliation(s)
- Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Nozomu Kishio
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sona Haku
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Ohashi
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
13
|
Uneda K, Wakui H, Maeda A, Azushima K, Kobayashi R, Haku S, Ohki K, Haruhara K, Kinguchi S, Matsuda M, Ohsawa M, Minegishi S, Ishigami T, Toya Y, Atobe Y, Yamashita A, Umemura S, Tamura K. Angiotensin II Type 1 Receptor-Associated Protein Regulates Kidney Aging and Lifespan Independent of Angiotensin. J Am Heart Assoc 2017; 6:JAHA.117.006120. [PMID: 28751545 PMCID: PMC5586453 DOI: 10.1161/jaha.117.006120] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background The kidney is easily affected by aging‐associated changes, including glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Particularly, renal tubulointerstitial fibrosis is a final common pathway in most forms of progressive renal disease. Angiotensin II type 1 receptor (AT1R)‐associated protein (ATRAP), which was originally identified as a molecule that binds to AT1R, is highly expressed in the kidney. Previously, we have shown that ATRAP suppresses hyperactivation of AT1R signaling, but does not affect physiological AT1R signaling. Methods and Results We hypothesized that ATRAP has a novel functional role in the physiological age‐degenerative process, independent of modulation of AT1R signaling. ATRAP‐knockout mice were used to study the functional involvement of ATRAP in the aging. ATRAP‐knockout mice exhibit a normal age‐associated appearance without any evident alterations in physiological parameters, including blood pressure and cardiovascular and metabolic phenotypes. However, in ATRAP‐knockout mice compared with wild‐type mice, the following takes place: (1) age‐associated renal function decline and tubulointerstitial fibrosis are more enhanced; (2) renal tubular mitochondrial abnormalities and subsequent increases in the production of reactive oxygen species are more advanced; and (3) life span is 18.4% shorter (median life span, 100.4 versus 123.1 weeks). As a key mechanism, age‐related pathological changes in the kidney of ATRAP‐knockout mice correlated with decreased expression of the prosurvival gene, Sirtuin1. On the other hand, chronic angiotensin II infusion did not affect renal sirtuin1 expression in wild‐type mice. Conclusions These results indicate that ATRAP plays an important role in inhibiting kidney aging, possibly through sirtuin1‐mediated mechanism independent of blocking AT1R signaling, and further protecting normal life span.
Collapse
Affiliation(s)
- Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akinobu Maeda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sona Haku
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Ohsawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshitoshi Atobe
- Department of Neuroanatomy, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Yokohama Rosai Hospital, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
14
|
Ohki K, Wakui H, Azushima K, Uneda K, Haku S, Kobayashi R, Haruhara K, Kinguchi S, Matsuda M, Ohsawa M, Maeda A, Minegishi S, Ishigami T, Toya Y, Yamashita A, Umemura S, Tamura K. ATRAP Expression in Brown Adipose Tissue Does Not Influence the Development of Diet-Induced Metabolic Disorders in Mice. Int J Mol Sci 2017; 18:ijms18030676. [PMID: 28335584 PMCID: PMC5372686 DOI: 10.3390/ijms18030676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/09/2017] [Accepted: 03/16/2017] [Indexed: 12/11/2022] Open
Abstract
Activation of tissue renin-angiotensin system (RAS), mainly mediated by an angiotensin II (Ang II) type 1 receptor (AT1R), plays an important role in the development of obesity-related metabolic disorders. We have shown that AT1R-associated protein (ATRAP), a specific binding protein of AT1R, functions as an endogenous inhibitor to prevent excessive activation of tissue RAS. In the present study, we newly generated ATRAP/Agtrap-floxed (ATRAPfl/fl) mice and adipose tissue-specific ATRAP downregulated (ATRAPadipoq) mice by the Cre/loxP system using Adipoq-Cre. Using these mice, we examined the functional role of adipose ATRAP in the pathogenesis of obesity-related metabolic disorders. Compared with ATRAPfl/fl mice, ATRAPadipoq mice exhibited a decreased ATRAP expression in visceral white adipose tissue (WAT) and brown adipose tissue (BAT) by approximately 30% and 85%, respectively. When mice were fed a high-fat diet, ATRAPfl/fl mice showed decreased endogenous ATRAP expression in WAT that was equivalent to ATRAPadipoq mice, and there was no difference in the exacerbation of dietary obesity and glucose and lipid metabolism. These results indicate that ATRAP in BAT does not influence the pathogenesis of dietary obesity or metabolic disorders. Future studies that modulate ATRAP in WAT are necessary to assess its in vivo functions in the development of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Sona Haku
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Masato Ohsawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Akinobu Maeda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
- Yokohama Rosai Hospital, 3211 Kozukue-cho, Kohoku-ku, Yokohama 222-0036, Japan.
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
15
|
Azushima K, Ohki K, Wakui H, Uneda K, Haku S, Kobayashi R, Haruhara K, Kinguchi S, Matsuda M, Maeda A, Toya Y, Yamashita A, Umemura S, Tamura K. Adipocyte-Specific Enhancement of Angiotensin II Type 1 Receptor-Associated Protein Ameliorates Diet-Induced Visceral Obesity and Insulin Resistance. J Am Heart Assoc 2017; 6:JAHA.116.004488. [PMID: 28264860 PMCID: PMC5524000 DOI: 10.1161/jaha.116.004488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The renin–angiotensin system has a pivotal role in the pathophysiology of visceral obesity. Angiotensin II type 1 receptor (AT1R) is a major player in the signal transduction of the renin–angiotensin system, and the overactivation of this signaling contributes to the progression of visceral obesity. We have shown that the AT1R‐associated protein (ATRAP) promotes AT1R internalization from the cell surface into cytoplasm along with the suppression of overactivation of tissue AT1R signaling. In this study, we examined whether the enhancement of adipose ATRAP expression could efficiently prevent diet‐induced visceral obesity and insulin resistance. Methods and Results We generated adipocyte‐specific ATRAP transgenic mice using a 5.4‐kb adiponectin promoter, and transgenic mice and littermate control mice were fed either a low‐ or high‐fat diet for 10 weeks. Although the physiological phenotypes of the transgenic and control mice fed a low‐fat diet were comparable, the transgenic mice exhibited significant protection against high‐fat diet–induced adiposity, adipocyte hypertrophy, and insulin resistance concomitant with an attenuation of adipose inflammation, macrophage infiltration, and adipokine dysregulation. In addition, when mice were fed a high‐fat diet, the adipose expression of glucose transporter type 4 was significantly elevated and the level of adipose phospho‐p38 mitogen‐activated protein kinase was significantly attenuated in the transgenic mice compared with control mice. Conclusions Results presented in this study suggested that the enhancement in adipose ATRAP plays a protective role against the development of diet‐induced visceral obesity and insulin resistance through improvement of adipose inflammation and function via the suppression of overactivation of adipose AT1R signaling. Consequently, adipose tissue ATRAP is suggested to be an effective therapeutic target for the treatment of visceral obesity.
Collapse
Affiliation(s)
- Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sona Haku
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akinobu Maeda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|