1
|
Gao Y, Peng JY, Zhang YN, Zhao XL, Zhao YL. A copper-catalyzed tandem cyclization reaction of N-acyl enamines and electron-deficient alkynes: direct synthesis of alkynyl substituted pyridines. Org Biomol Chem 2025. [PMID: 40207876 DOI: 10.1039/d5ob00390c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A copper-catalyzed coupling-cyclization reaction of N-acyl enamides with electron-deficient alkynes is developed. This reaction tolerates a wide range of N-acyl enamines and provides a simple and efficient method for the synthesis of 3-alkynyl-substituted pyridines in good to high yields from easily available acyclic starting materials with only water and hydrogen as the by-products in a single step.
Collapse
Affiliation(s)
- Ying Gao
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, China.
| | - Ju-Yin Peng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Na Zhang
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, China.
| | - Xiao-Liang Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Mondal J, Dasgupta T, Panicker RR, Manickam V, Sinha A, Sivaramakrishna A. Promoting Apoptosis in MCF-7 Cells via ROS Generation by Quinolino-triazoles Derived from One-Pot Telescopic Synthesis. ACS Med Chem Lett 2024; 15:1866-1874. [PMID: 39563819 PMCID: PMC11571024 DOI: 10.1021/acsmedchemlett.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Inhibition of vascular endothelial growth factor receptor 2 (VEGFR-2) facilitates potent antiangiogenic and anticancer responses. In this regard, the development of effective pharmacophores, i.e., quinoline-based triazole derivatives 6a-j, by a one-pot telescopic approach is our focus. Among all of them, 6f, possessing amide and cyanide substituents, displayed the highest binding ability with VEGFR-2, having high affinity of -8.9 kcal/mol. Further, 6f and 6g (containing amide and bromo groups) exhibited a wide spectrum of anticancer activities due to the presence of active oxidative stress inducers, with cytotoxicity values of 10 ± 0.2 and 12 ± 0.6 μM, respectively. Apoptosis analysis demonstrated the involvement of 6f and 6g in mitochondrial damage and the loss of mitochondrial membrane potential (ΔΨm). Intercellular localization of 6f/6g in MCF-7 revealed the presence of 6g in the cytoplasm along with an increase in ROS production and a reduction in MMP, proving the ability of 6g to target mitochondria.
Collapse
Affiliation(s)
- Joydip Mondal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Tiasha Dasgupta
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Rakesh R Panicker
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arup Sinha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
3
|
Amorzesh H, Bayat M, Nasri S. Catalyst-free synthesis of highly functionalized triazole hexahydroquinoline carbohydrazide scaffolds via four-component cyclocondensation reaction. Mol Divers 2024; 28:51-60. [PMID: 36585569 DOI: 10.1007/s11030-022-10592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
A new class of multi-functional triazole hexahydroquinoline carbohydrazide named 2-amino-7,7-dimethyl-5-oxo-4-phenyl-1-(4H-1,2,4-triazol-3-yl)-1,4,5,6,7,8-hexahydroquinoline-3-carbohydrazide has been synthesized by a novel multi-component process involving the reaction of dimedone, 3-amino-1,2,4-triazole, various benzaldehyde with cyanoacetohydrazide under mild conditions in the stoichiometric melt and chloroform in sequence. The simple one-pot process, straight product isolation without applying tedious purification procedures, progression of the reaction without using any catalyst, the application of diverse aldehydes causing a high molecular diversity, the existence of several nitrogen atoms in the product structure, and the possibility of creating multiple hydrogen bonding in the final compound are attractive specifications of the present strategy.
Collapse
Affiliation(s)
- Hasti Amorzesh
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
4
|
Sedenkova KN, Leschukov DN, Grishin YK, Zefirov NA, Gracheva YA, Skvortsov DA, Hrytseniuk YS, Vasilyeva LA, Spirkova EA, Shevtsov PN, Shevtsova EF, Lukmanova AR, Spiridonov VV, Markova AA, Nguyen MT, Shtil AA, Zefirova ON, Yaroslavov AA, Milaeva ER, Averina EB. Verubulin (Azixa) Analogues with Increased Saturation: Synthesis, SAR and Encapsulation in Biocompatible Nanocontainers Based on Ca 2+ or Mg 2+ Cross-Linked Alginate. Pharmaceuticals (Basel) 2023; 16:1499. [PMID: 37895970 PMCID: PMC10610134 DOI: 10.3390/ph16101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Tubulin-targeting agents attract undiminished attention as promising compounds for the design of anti-cancer drugs. Verubulin is a potent tubulin polymerization inhibitor, binding to colchicine-binding sites. In the present work, a series of verubulin analogues containing a cyclohexane or cycloheptane ring 1,2-annulated with pyrimidine moiety and various substituents in positions 2 and 4 of pyrimidine were obtained and their cytotoxicity towards cancer and non-cancerous cell lines was estimated. The investigated compounds revealed activity against various cancer cell lines with IC50 down to 1-4 nM. According to fluorescent microscopy data, compounds that showed cytotoxicity in the MTT test disrupt the normal cytoskeleton of the cell in a pattern similar to that for combretastatin A-4. The hit compound (N-(4-methoxyphenyl)-N,2-dimethyl-5,6,7,8-tetrahydroquinazolin-4-amine) was encapsulated in biocompatible nanocontainers based on Ca2+ or Mg2+ cross-linked alginate and it was demonstrated that its cytotoxic activity was preserved after encapsulation.
Collapse
Affiliation(s)
- Kseniya N. Sedenkova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Denis N. Leschukov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Nikolay A. Zefirov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yulia A. Gracheva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Dmitry A. Skvortsov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yanislav S. Hrytseniuk
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Lilja A. Vasilyeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena A. Spirkova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Pavel N. Shevtsov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Alina R. Lukmanova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Vasily V. Spiridonov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Alina A. Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.M.); (M.T.N.)
| | - Minh T. Nguyen
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.M.); (M.T.N.)
| | - Alexander A. Shtil
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Olga N. Zefirova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Alexander A. Yaroslavov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Elena R. Milaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Elena B. Averina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| |
Collapse
|
5
|
Zhao W, Zheng XD, Tang PYZ, Li HM, Liu X, Zhong JJ, Tang YJ. Advances of antitumor drug discovery in traditional Chinese medicine and natural active products by using multi-active components combination. Med Res Rev 2023; 43:1778-1808. [PMID: 37183170 DOI: 10.1002/med.21963] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
The antitumor efficacy of Chinese herbal medicines has been widely recognized. Leading compounds such as sterols, glycosides, flavonoids, alkaloids, terpenoids, phenylpropanoids, and polyketides constitute their complex active components. The antitumor monomers derived from Chinese medicine possess an attractive anticancer activity. However, their use was limited by low bioavailability, significant toxicity, and side effects, hindering their clinical applications. Recently, new chemical entities have been designed and synthesized by combining natural drugs with other small drug molecules or active moieties to improve the antitumor activity and selectivity, and reduce side effects. Such a novel conjugated drug that can interact with several vital biological targets in cells may have a more significant or synergistic anticancer activity than a single-molecule drug. In addition, antitumor conjugates could be obtained by combining pharmacophores containing two or more known drugs or leading compounds. Based on these studies, the new drug research and development could be greatly shortened. This study reviews the research progress of conjugates with antitumor activity based on Chinese herbal medicine. It is expected to serve as a valuable reference to antitumor drug research and clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao-Di Zheng
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | | | - Hong-Mei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xue Liu
- Jinan Intellectual Property Protection Center, Jinan, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Huo XS, Tang-Yang J, Zeng WB, Jian XE, Ma XX, Yue-Yang P, Wen-Wei Y, Zhao PL. Synthesis and biological evaluation of novel 5-substituted/unsubstituted triazolothiadiazines as tubulin depolymerizing and vascular disrupting agents with promising antitumor activity. Drug Dev Res 2023; 84:975-987. [PMID: 37089026 DOI: 10.1002/ddr.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023]
Abstract
A novel series of 5-substituted/unsubstituted [1,2,4]triazolo[3,4-b][1,3,4] thiadiazine compounds has been achieved successfully through chemoselective reduction of the C = N bond, based on our prior work. Initial biological evaluation illustrated that the most active derivative 7j exhibited significant cell growth inhibitory activity toward MCF-7, A549, HCT116, and A2780 with the IC50 values of 0.75, 0.94, 2.90, and 4.15 μM, respectively. Most importantly, all the representative analogs did not demonstrate obvious cytotoxic activity against the non-tumoural cell line HEK-293 (IC50 > 100 μM). The mechanism study revealed that 7j caused the G2 /M phase arrest, induced cell apoptosis in HeLa cells in a concentration-dependent manner, and also showed potent tubulin polymerization inhibitory effect. Meanwhile, 7j exerted significant antivascular activity in the wound-healing and tube formation assays. These observations indicate that 5-unsubstituted 6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine scaffold might be considered as a potential lead for antitubulin inhibitors to develop highly efficient anticancer agents with potent selectivity over normal human cells.
Collapse
Affiliation(s)
- Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Ji Tang-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Wen-Bin Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Xuan-Xuan Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Peng Yue-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - You Wen-Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| |
Collapse
|
7
|
Gallego-Yerga L, Chiliquinga AJ, Peláez R. Novel Tetrazole Derivatives Targeting Tubulin Endowed with Antiproliferative Activity against Glioblastoma Cells. Int J Mol Sci 2023; 24:11093. [PMID: 37446273 DOI: 10.3390/ijms241311093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing awareness of the structure of microtubules has made tubulin a relevant target for the research of novel chemotherapies. Furthermore, the particularly high sensitivity of glioblastoma multiforme (GBM) cells to microtubule disruption could open new doors in the search for new anti-GBM treatments. However, the difficulties in developing potent anti-tubulin drugs endowed with improved pharmacokinetic properties necessitates the expansion of medicinal chemistry campaigns. The application of an ensemble pharmacophore screening methodology helped to optimize this process, leading to the development of a new tetrazole-based tubulin inhibitor. Considering this scaffold, we have synthesized a new family of tetrazole derivatives that achieved remarkable antimitotic effects against a broad panel of cancer cells, especially against GBM cells, showing high selectivity in comparison with non-tumor cells. The compounds also exerted high aqueous solubility and were demonstrated to not be substrates of efflux pumps, thus overcoming the main limitations that are usually associated with tubulin binding agents. Tubulin polymerization assays, immunofluorescence experiments, and flow cytometry studies demonstrated that the compounds target tubulin and arrest cells at the G2/M phase followed by induction of apoptosis. The docking experiments agreed with the proposed interactions at the colchicine site and explained the structure-activity relationships.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Gallego-Yerga L, Ceña V, Peláez R. Potent and Selective Benzothiazole-Based Antimitotics with Improved Water Solubility: Design, Synthesis, and Evaluation as Novel Anticancer Agents. Pharmaceutics 2023; 15:1698. [PMID: 37376146 DOI: 10.3390/pharmaceutics15061698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The design of colchicine site ligands on tubulin has proven to be a successful strategy to develop potent antiproliferative drugs against cancer cells. However, the structural requirements of the binding site endow the ligands with low aqueous solubility. In this work, the benzothiazole scaffold is used to design, synthesize, and evaluate a new family of colchicine site ligands exhibiting high water solubility. The compounds exerted antiproliferative activity against several human cancer cell lines, due to tubulin polymerization inhibition, showing high selectivity toward cancer cells in comparison with non-tumoral HEK-293 cells, as evidenced by MTT and LDH assays. The most potent derivatives, containing a pyridine moiety and ethylurea or formamide functionalities, displayed IC50 values in the nanomolar range even in the difficult-to-treat glioblastoma cells. Flow cytometry experiments on HeLa, MCF7, and U87MG cells showed that they arrest the cell cycle at the G2/M phases at an early time point (24 h), followed by apoptotic cell death 72 h after the treatment. Tubulin binding was confirmed by microtubule network disruption observed via confocal microscopy. Docking studies support favorable interaction of the synthesized ligands at the colchicine binding site. These results validate the proposed strategy to develop potent anticancer colchicine ligands with improved water solubility.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Valentín Ceña
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
9
|
González M, Ellahioui Y, Gallego L, Vicente-Blázquez A, Álvarez R, Medarde M, Peláez R. Novel amino analogs of the trimethoxyphenyl ring in potent colchicine site ligands improve solubility by the masked polar group incorporation (MPGI) strategy. Bioorg Chem 2023; 131:106282. [PMID: 36459777 DOI: 10.1016/j.bioorg.2022.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
The low aqueous solubility of colchicine site antimitotic agents, of which the trimethoxyphenyl (A ring) is a heavy contributor, is a serious drawback in their clinical development. We have designed new A ring analogs with chameleonic masked polar amino groups able to increase aqueous solubility and also behave as non-polar through intramolecular hydrogen bonds when bound to tubulin. We have incorporated these new A rings in several scaffolds (sulfonamides, combretastatins, phenstatins, isocombretastatins), synthesized, and assayed 43 representatives. The amino analogs show improved aqueous solubility and some of them (8, 60Z, and 67) nanomolar anti-proliferative potencies against human cancer cell lines, with the most favorable substituent being a 3-methylamino group. The antiproliferative effect relates to tubulin inhibition as shown by in vitro tubulin polymerization inhibition, immunofluorescence microscopy, and cell cycle and apoptosis analysis by flow cytometry. The compounds arrest the cell cycle of treated cells in G2/M and later develop an apoptotic response. Docking studies suggested binding at the colchicine site of tubulin with good agreement with the DFT models of the new structural variations made. The 3-methylamino-4,5‑dimethoxyphenyl moiety is an example of the masked polar group incorporation (MPGI) strategy for soluble ligands binding to hydrophobic sites and a good trimethoxyphenyl ring replacement for the development of new colchicine site ligands.
Collapse
Affiliation(s)
- Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Younes Ellahioui
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Laura Gallego
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| |
Collapse
|
10
|
Chen YF, Lawal B, Huang LJ, Kuo SC, Sumitra MR, Mokgautsi N, Lin HY, Huang HS. In Vitro and In Silico Biological Studies of 4-Phenyl-2-quinolone (4-PQ) Derivatives as Anticancer Agents. Molecules 2023; 28:555. [PMID: 36677621 PMCID: PMC9861105 DOI: 10.3390/molecules28020555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Our previous study found that 2-phenyl-4-quinolone (2-PQ) derivatives are antimitotic agents, and we adopted the drug design concept of scaffold hopping to replace the 2-aromatic ring of 2-PQs with a 4-aromatic ring, representing 4-phenyl-2-quinolones (4-PQs). The 4-PQ compounds, whose structural backbones also mimic analogs of podophyllotoxin (PPT), maybe a new class of anticancer drugs with simplified PPT structures. In addition, 4-PQs are a new generation of anticancer lead compounds as apoptosis stimulators. On the other hand, previous studies showed that 4-arylcoumarin derivatives with 5-, 6-, and 7-methoxy substitutions displayed remarkable anticancer activities. Therefore, we further synthesized a series of 5-, 6-, and 7-methoxy-substituted 4-PQ derivatives (19-32) by Knorr quinoline cyclization, and examined their anticancer effectiveness. Among these 4-PQs, compound 22 demonstrated excellent antiproliferative activities against the COLO205 cell line (50% inhibitory concentration (IC50) = 0.32 μM) and H460 cell line (IC50 = 0.89 μM). Furthermore, we utilized molecular docking studies to explain the possible anticancer mechanisms of these 4-PQs by the docking mode in the colchicine-binding pocket of the tubulin receptor. Consequently, we selected the candidate compounds 19, 20, 21, 22, 25, 27, and 28 to predict their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. Pharmacokinetics (PKs) indicated that these 4-PQs displayed good drug-likeness and bioavailability, and had no cardiotoxic side effects or carcinogenicity, but we detected risks of drug-drug interactions and AMES toxicity (mutagenic). However, structural modifications of these 4-PQs could improve their PK properties and reduce their side effects, and their promising anticancer activities attracted our attention for further studies.
Collapse
Affiliation(s)
- Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Li-Jiau Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Sheng-Chu Kuo
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Maryam Rachmawati Sumitra
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Rational design, synthesis and biological evaluation of novel 2-(substituted amino)-[1,2,4]triazolo[1,5-a]pyrimidines as novel tubulin polymerization inhibitors. Eur J Med Chem 2022; 244:114864. [DOI: 10.1016/j.ejmech.2022.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022]
|
12
|
Yang S, Wang C, Shi L, Chang J, Zhang Y, Meng J, Liu W, Zeng J, Zhang R, Shao Y, Xing D. Design, synthesis and biological evaluation of novel diarylpyridine derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2022; 37:2755-2764. [PMID: 36196773 PMCID: PMC9553186 DOI: 10.1080/14756366.2022.2130284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A set of novel diarylpyridines as anti-tubulin agents were designed, synthesised using a rigid pyridine as a linker to fix the cis-orientation of ring-A and ring-B. All of the target compounds were evaluated for their in vitro antiproliferative activities. Among them, 10t showed remarkable antiproliferative activities against three cancer cell lines (HeLa, MCF-7 and SGC-7901) in sub-micromolar concentrations. Consistent with its potent antiproliferative activity, 10t also displayed potent anti-tubulin activity. Cellular mechanism investigation elucidated 10t disrupted the cellular microtubule structure, arrested cell cycle at G2/M phase and induces apoptosis. Molecular modelling studies showed that 10t could bind to the colchicine binding site on microtubules. These results provide motivation and further guidance for the development of new CA-4 analogues.
Collapse
Affiliation(s)
- Shanbo Yang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jingsen Meng
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Lin MY, Ji TY, Zheng M, Chen YY, Xu SY, You WW, Zhao PL. Efficient synthesis and evaluation of novel 6-arylamino-[1,2,4]triazolo[4,3-a]pyridine derivatives as antiproliferative agents. Bioorg Med Chem Lett 2022; 75:128978. [PMID: 36089111 DOI: 10.1016/j.bmcl.2022.128978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/02/2022]
Abstract
Based on our previous work, a series of novel 6-arylamino-[1,2,4]triazolo[4,3-a]pyridine derivatives were synthesized, and evaluated for antiproliferative activities. SAR studies revealed that inserting an amino linkage between 6‑aryl group and [1,2,4]triazolo[4,3-a]pyridine core led to amuch broaderantitumorspectrum, and the most promising compound 8 l exerted potent andbroad-spectrum antiproliferative activity toward HeLa, HCT116, MCF-7, and A549 cell lines, with IC50 values in the micromolar range of 5.98-12.58 μM, which were more active than the positive control 5-FU. The mechanism investigation illustrated that 8 l dose-dependently caused cell cycle arrest at the G2/M phase, and induced cell apoptosis in HeLa cells. Consequently, these findings suggest the 6-arylamino-[1,2,4]triazolo[4,3-a]pyridines afford significant potential for the discovery of a new highly efficient anticancer agents.
Collapse
Affiliation(s)
- Man-Yu Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Tang-Yang Ji
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Miao Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yan-Yan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Shi-Yi Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
14
|
Foroutan A, Corazzari M, Grolla AA, Colombo G, Travelli C, Genazzani AA, Theeramunkong S, Galli U, Tron GC. Identification of novel aza-analogs of TN-16 as disrupters of microtubule dynamics through a multicomponent reaction. Eur J Med Chem 2022; 245:114895. [DOI: 10.1016/j.ejmech.2022.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
15
|
Wang C, Chang J, Yang S, Shi L, Zhang Y, Liu W, Meng J, Zeng J, Zhang R, Xing D. Advances in antitumor research of CA-4 analogs carrying quinoline scaffold. Front Chem 2022; 10:1040333. [PMID: 36385996 PMCID: PMC9650302 DOI: 10.3389/fchem.2022.1040333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 08/01/2024] Open
Abstract
Combretastatin A-4 (CA-4) is a potent inhibitor of tubulin polymerization and a colchicine binding site inhibitor (CBSI). The structure-activity relationship study of CA-4 showed that the cis double bond configuration and the 3,4,5-trimethoxy group on the A ring were important factors to maintain the activity of CA-4. Therefore, starting from this condition, chemists modified the double bond and also substituted 3,4,5-trimethoxyphenyl with various heterocycles, resulting in a new generation of CA-4 analogs such as chalcone, Flavonoid derivatives, indole, imidazole, etc. Quinoline derivatives have strong biological activity and have been sought after by major researchers for their antitumor activity in recent years. This article reviews the research progress of novel CA-4 containing quinoline analogs in anti-tumor from 1992 to 2022 and expounds on the pharmacological mechanisms of these effective compounds, including but not limited to apoptosis, cell cycle, tubulin polymerization inhibition, immune Fluorescence experiments, etc., which lay the foundation for the subsequent development of CA-4 containing quinoline analogs for clinical use.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J Hematol Oncol 2022; 15:89. [PMID: 35799213 PMCID: PMC9263050 DOI: 10.1186/s13045-022-01310-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are a family of receptor protein tyrosine kinases that play an important role in the regulation of tumor-induced angiogenesis. Currently, VEGFR inhibitors have been widely used in the treatment of various tumors. However, current VEGFR inhibitors are limited to a certain extent due to limited clinical efficacy and potential toxicity, which hinder their clinical application. Thus, the development of new strategies to improve the clinical outcomes and minimize the toxic effects of VEGFR inhibitors is required. Given the synergistic effect of VEGFR and other therapies in tumor development and progression, VEGFR dual-target inhibitors are becoming an attractive approach due to their favorable pharmacodynamics, low toxicity, and anti-resistant effects. This perspective provides an overview of the development of VEGFR dual-target inhibitors from multiple aspects, including rational target combinations, drug discovery strategies, structure–activity relationships and future directions.
Collapse
|
17
|
Cobalt-catalyzed cross-coupling of nitrogen-containing heterocyclic phosphonium salts with arylmagnesium reagents. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Abstract
The Mizoroki-Heck reaction and its reductive analogue are staples of organic synthesis, but the ensuing products often lack a chemical handle for further transformation. Here we report an atom-economical cross-coupling of halopyridines and unactivated alkenes under photoredox catalysis to afford a series of alkene halopyridylation products. This protocol with mild and redox neutral conditions contributes broad substrate scope. As a complement to conventional Heck-type reaction, this radical process avoids the involvement of β-H elimination and thus useful pyridyl and halide groups could be simultaneously and regioselectively incorporated onto alkenes. The success depends on TFA-promoted domino photocatalytic oxidative quenching activation and radical-polar crossover pathway. Plausible mechanism is proposed based on mechanistic investigations. Moreover, the reserved C - X bonds of these products are beneficial for performing further synthetic elaborations.
Collapse
|
19
|
Rezaei Z, Asadi M, Montazer MN, Rezaeiamiri E, Bahadorikhalili S, Amini M, Amanlou M. Synthesis, Molecular Docking, and Biological Evaluation of 2,3-Diphenylquinoxaline Derivatives as a Tubulin's Colchicine Binding Site Inhibitor Based on Primary Virtual Screening. Anticancer Agents Med Chem 2021; 22:2011-2025. [PMID: 34702157 DOI: 10.2174/1871520621666211026102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Tubulin inhibitors have proved to be a promising treatment against cancer. Tubulin inhibitors target different areas in microtubule structure to exert their effects. The colchicine binding site (CBS) is one of them for which there is no FDA-approved drug yet. This makes CBS a desirable target for drug design. MATERIALS AND METHODS Primary virtual screening is done by developing a possible pharmacophore model of colchicine binding site inhibitors of tubulins, and 2,3-diphenylquinoxaline is chosen as a lead compound to synthesis. In this study, 28 derivatives of 2,3-diphenylquinoxalines are synthesized, and their cytotoxicity is evaluated by the MTT assay in different human cancer cell lines, including AGS (Adenocarcinoma gastric cell line), HT-29 (Human colorectal adenocarcinoma cell line), NIH3T3 (Fibroblast cell line), and MCF-7 (Human breast cancer cell). RESULTS Furthermore, the activity of the studied compounds was investigated using computational methods involving molecular docking of the 2,3-diphenylquinoxaline derivatives to β-tubulin. The results showed that the compounds with electron donor functionalities in positions 2 and 3 and electron-withdrawing groups in position 6 are the most active tubulin inhibitors. CONCLUSION Apart from the high activity of the synthesized compounds, the advantage of this report is the ease of the synthesis, work-up, and isolation of the products in safe, effective, and high-quality isolated yields.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical, Sciences, Tehran. Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical, Sciences, Tehran. Iran
| | - Mohammad Nazari Montazer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical, Sciences, Tehran. Iran
| | - Elnaz Rezaeiamiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical, Sciences, Tehran. Iran
| | | | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical, Sciences, Tehran. Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical, Sciences, Tehran. Iran
| |
Collapse
|
20
|
Ling Y, Hao ZY, Liang D, Zhang CL, Liu YF, Wang Y. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. Drug Des Devel Ther 2021; 15:4289-4338. [PMID: 34675489 PMCID: PMC8520849 DOI: 10.2147/dddt.s329547] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Pyridine-based ring systems are one of the most extensively used heterocycles in the field of drug design, primarily due to their profound effect on pharmacological activity, which has led to the discovery of numerous broad-spectrum therapeutic agents. In the US FDA database, there are 95 approved pharmaceuticals that stem from pyridine or dihydropyridine, including isoniazid and ethionamide (tuberculosis), delavirdine (HIV/AIDS), abiraterone acetate (prostate cancer), tacrine (Alzheimer's), ciclopirox (ringworm and athlete's foot), crizotinib (cancer), nifedipine (Raynaud's syndrome and premature birth), piroxicam (NSAID for arthritis), nilvadipine (hypertension), roflumilast (COPD), pyridostigmine (myasthenia gravis), and many more. Their remarkable therapeutic applications have encouraged researchers to prepare a larger number of biologically active compounds decorated with pyridine or dihydropyridine, expandeing the scope of finding a cure for other ailments. It is thus anticipated that myriad new pharmaceuticals containing the two heterocycles will be available in the forthcoming decade. This review examines the prospects of highly potent bioactive molecules to emphasize the advantages of using pyridine and dihydropyridine in drug design. We cover the most recent developments from 2010 to date, highlighting the ever-expanding role of both scaffolds in the field of medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Zhi-You Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
| | - Chun-Lei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yan Wang
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
21
|
González M, Ovejero-Sánchez M, Vicente-Blázquez A, Medarde M, González-Sarmiento R, Peláez R. Methoxy and bromo scans on N-(5-methoxyphenyl) methoxybenzenesulphonamides reveal potent cytotoxic compounds, especially against the human breast adenocarcinoma MCF7 cell line. J Enzyme Inhib Med Chem 2021; 36:1029-1047. [PMID: 34107837 PMCID: PMC8205030 DOI: 10.1080/14756366.2021.1925265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Thirty seven N-(5-methoxyphenyl)-4-methoxybenzenesulphonamide with methoxy or/and bromo substitutions (series 1-4) and with different substituents on the sulphonamide nitrogen have been synthesised. 21 showed sub-micromolar cytotoxicity against HeLa and HT-29 human tumour cell lines, and were particularly effective against MCF7. The most potent series has 2,5-dimethoxyanilines, especially the 4-brominated compounds 23–25. The active compounds inhibit microtubular protein polymerisation at micromolar concentrations, thus pointing at tubulin as the target. Co-treatment with the MDR inhibitor verapamil suggests that they are not MDR substrates. Compound 25 showed nanomolar antiproliferative potency. It severely disrupts the microtubule network in cells and arrests cells at the G2/M cell-cycle phase, thus confirming tubulin targeting. 25 triggered apoptotic cell death, and induced autophagy. Docking studies suggest binding in a distinct way to the colchicine site. These compounds are promising new antitumor agents acting on tubulin.
Collapse
Affiliation(s)
- Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.,Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - María Ovejero-Sánchez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.,Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Laboratorio de Diagnóstico en Cáncer Hereditario, Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.,Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.,Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.,Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Laboratorio de Diagnóstico en Cáncer Hereditario, Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.,Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Wang J, Ba D, Yang M, Cheng G, Wang L. Regioselective Synthesis of 2,4-Diaryl-6-trifluoromethylated Pyridines through Copper-Catalyzed Cyclization of CF 3-Ynones and Vinyl Azides. J Org Chem 2021; 86:6423-6432. [PMID: 33905254 DOI: 10.1021/acs.joc.1c00275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel copper-catalyzed cyclization of readily available vinyl azides with CF3-ynones is steadily achieved under mild conditions to furnish the versatile 2,4-diaryl-6-trifluoromethylated pyridine products, which are of great interest in medicinal chemistry. The generation of the vinyl iminophosphorane intermediates from vinyl azides through the Staudinger-Meyer reaction ensures the subsequent 1,4-addition process with CF3-ynones in this transformation.
Collapse
Affiliation(s)
- Jixin Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| | - Da Ba
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China
| | - Mengqi Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| |
Collapse
|
23
|
Zhao Y, Li L, Zhou Z, Chen M, Yang W, Luo H. Copper catalyzed five-component domino strategy for the synthesis of nicotinimidamides. Org Biomol Chem 2021; 19:3868-3872. [PMID: 33949559 DOI: 10.1039/d1ob00162k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A library of medicinally and synthetically important nicotinimidamides was synthesized by a copper-catalyzed multicomponent domino reaction of oxime esters, terminal ynones, sulfonyl azides, aryl aldehydes and acetic ammonium. Its synthetic pathway involves the formation of a highly reactive N-sulfonyl acetylketenimine, characterized by high selectivity, combinations of potential nucleophiles and electrophiles, mild reaction conditions and a wide substrate scope, and is a rare five-component example of a CuAAC/ring-opening reaction.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Man Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| |
Collapse
|
24
|
Synthesis of new pyrazolone and pyrazole-based adamantyl chalcones and antimicrobial activity. Biosci Rep 2021; 40:226401. [PMID: 32914839 PMCID: PMC7517278 DOI: 10.1042/bsr20201950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023] Open
Abstract
Chalcones and their derivatives are becoming increasingly popular due to their various pharmacological effects. Chalcone molecules may be extracted from natural resources, entirely synthesised, or biosynthesised by modifying the natural ones. In the present study, five pyrazole-based adamantyl heterocyclic compounds were synthesised by condensation of 1-adamantyl chalcone with substituted phenylhydrazine. The products were characterised by using ¹H NMR, ¹³C NMR and FT-IR spectroscopy. The microbiological activity of these compounds was investigated against bacteria and fungi. The new compounds showed good to moderate activity against the microbial species used for screening. All developed molecules showed antibacterial activity against Gram-negative and Gram-positive. These molecules showed antifungal activities against Fusarium oxysporum fungus and in a dose-dependent manner, apart from RS-1 molecules which showed compromised antifungal activity and even at a high dose.
Collapse
|
25
|
Yang T, Deng Z, Wang KH, Li P, Lv Y, Huang D, Shang Y, Su Y, Hu Y. Access to 6-difluoromethylpyridines by ZnBr2-catalyzed cascade michael addition/ annulation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Cui YY, Li WX, Ma NN, Shen C, Zhou X, Chu XQ, Rao W, Shen ZL. Nickel-catalyzed direct cross-coupling of heterocyclic phosphonium salts with aryl bromides. Org Chem Front 2021. [DOI: 10.1039/d1qo01474a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cross-couplings of heterocyclic phosphonium salts with aryl bromides proceeded effectively in the presence of nickel(ii) catalyst, bipyridine ligand, magnesium, and LiCl, providing an easy entry to 4-arylated pyridines, quinolines, and pyrazines.
Collapse
Affiliation(s)
- Yan-Ying Cui
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Xin Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Na-Na Ma
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuanji Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
27
|
Mohamed MFA, Abuo-Rahma GEDA. Molecular targets and anticancer activity of quinoline-chalcone hybrids: literature review. RSC Adv 2020; 10:31139-31155. [PMID: 35520674 PMCID: PMC9056499 DOI: 10.1039/d0ra05594h] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
α,β-Unsaturated chalcone moieties and quinoline scaffolds play an important role in medicinal chemistry, especially in the identification and development of potential anticancer agents. The multi-target approach or hybridization is considered as a promising strategy in drug design and discovery. Hybridization may improve the affinity and potency while simultaneously decreasing the resistance and/or side effects. The conjugation of quinolines with chalcones has been a promising approach to the identification of potential anticancer agents. Most of these hybrids showed anticancer activities through the inhibition of tubulin polymerization, different kinases, topoisomerases, or by affecting DNA cleavage activity. Accordingly, this class of compounds can be classified based on their molecular modes of action. In this article, the quinolone-chalcone hybrids with potential anticancer activity have been reviewed. This class of compounds might be helpful for the design, discovery and development of new and potential multi-target anticancer agents or drugs.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University 82524 Sohag Egypt (+20)-1018384461
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University Minia 61519 Egypt +201003069431
| |
Collapse
|
28
|
Che YY, Yue Y, Lin LZ, Pei B, Deng X, Feng C. Palladium-Catalyzed Electrophilic Functionalization of Pyridine Derivatives through Phosphonium Salts. Angew Chem Int Ed Engl 2020; 59:16414-16419. [PMID: 32533596 DOI: 10.1002/anie.202006724] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/30/2020] [Indexed: 12/11/2022]
Abstract
Herein, we report a highly efficient and practical method for pyridine-derived heterobiaryl synthesis through palladium-catalyzed electrophilic functionalization of easily available pyridine-derived quaternary phosphonium salts. The nice generality of this reaction was goes beyond arylation, enabling facile incorporation of diverse carbon-based fragments, including alkenyl, alkynyl, and also allyl fragments, onto the pyridine core. Notably, the silver salt additive is revealed to be of vital importance for the success of this transformation and its pivotal role as transmetallation mediator, which guarantees a smooth transfer of pyridyl group to palladium intermediate, is also described.
Collapse
Affiliation(s)
- Yuan-Yuan Che
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yanni Yue
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ling-Zhi Lin
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Bingbing Pei
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xuezu Deng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
29
|
Che Y, Yue Y, Lin L, Pei B, Deng X, Feng C. Palladium‐Catalyzed Electrophilic Functionalization of Pyridine Derivatives through Phosphonium Salts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuan‐Yuan Che
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Yanni Yue
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Ling‐Zhi Lin
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bingbing Pei
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xuezu Deng
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
30
|
Álvarez R, Aramburu L, Gajate C, Vicente-Blázquez A, Mollinedo F, Medarde M, Peláez R. Potent colchicine-site ligands with improved intrinsic solubility by replacement of the 3,4,5-trimethoxyphenyl ring with a 2-methylsulfanyl-6-methoxypyridine ring. Bioorg Chem 2020; 98:103755. [PMID: 32200330 DOI: 10.1016/j.bioorg.2020.103755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022]
Abstract
Colchicine site antimitotic agents typically suffer from low aqueous solubilities and are formulated as phosphate prodrugs of phenolic groups. These hydroxyl groups are the aim of metabolic transformations leading to resistance. There is an urgent need for more intrinsically soluble analogues lacking these hydroxyl groups. The 3,4,5-trimethoxyphenyl ring of combretastatin A-4 is a liability in terms of solubility but it is considered essential for high cytotoxic and tubulin polymerization inhibitory (TPI) activity. We have synthesized 36 new analogues of combretastatin A-4 replacing the trimethoxyphenyl moiety with more polar pyridine based moieties, measured their aqueous solubility, and studied their anti-proliferative effects against 3 human cancer cell lines. We show here that pyridine rings can be successful replacements for the trimethoxyphenyl ring, resulting in potent and more soluble analogues. The more straightforward replacement, a 2,6-dimethoxypyridine ring led to inactive analogues, but a 2-methoxy-6-methylsulfanylpyridine moiety led to active analogues when combined with different B rings. This replacement led to potent cytotoxic activity against sensitive human cancer cell lines due to tubulin inhibition, as shown by cell cycle analysis, confocal microscopy, and tubulin polymerization inhibitory activity studies. Cell cycle analysis also showed apoptotic responses following treatment. Docking studies suggested binding at the colchicine site of tubulin and provided a good agreement with the observed SAR. A 2-methoxy-6-methylsulfanylpyridine moiety is a good trimethoxyphenyl ring replacement for the development of new colchicine site ligands.
Collapse
Affiliation(s)
- Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | - Laura Aramburu
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain.
| | - Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain.
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| |
Collapse
|
31
|
Luchese C, Barth A, da Costa GP, Alves D, Novo DLR, Mesko MF, Wilhelm EA. Role of 7-chloro-4-(phenylselanyl) quinoline as an anti-aging drug fighting oxidative damage in different tissues of aged rats. Exp Gerontol 2020; 130:110804. [DOI: 10.1016/j.exger.2019.110804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/17/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
32
|
Niina K, Tanagawa K, Sumii Y, Saito N, Shibata N. Pyridine tetrafluoro-λ6-sulfanyl chlorides: spontaneous addition to alkynes and alkenes in the presence or absence of photo-irradiation. Org Chem Front 2020. [DOI: 10.1039/d0qo00339e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A radical addition reaction of Py-SF4Cl to alkynes and alkenes provide pyridine-SF4-alkenes and pyridine-SF4-alkanes under blue LED light irradiation or absence of light irradiation in CPME or without solvent.
Collapse
Affiliation(s)
- Kiyoteru Niina
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Kazuhiro Tanagawa
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yuji Sumii
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | | | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- Institute of Advanced Fluorine-Containing Materials
| |
Collapse
|
33
|
The Masked Polar Group Incorporation (MPGI) Strategy in Drug Design: Effects of Nitrogen Substitutions on Combretastatin and Isocombretastatin Tubulin Inhibitors. Molecules 2019; 24:molecules24234319. [PMID: 31779228 PMCID: PMC6930638 DOI: 10.3390/molecules24234319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023] Open
Abstract
Colchicine site ligands suffer from low aqueous solubility due to the highly hydrophobic nature of the binding site. A new strategy for increasing molecular polarity without exposing polar groups—termed masked polar group incorporation (MPGI)—was devised and applied to nitrogenated combretastatin analogues. Bulky ortho substituents to the pyridine nitrogen hinder it from the hydrophobic pocket while increasing molecular polarity. The resulting analogues show improved aqueous solubilities and highly potent antiproliferative activity against several cancer cell lines of different origin. The more potent compounds showed moderate tubulin polymerization inhibitory activity, arrested the cell cycle of treated cells at the G2/M phase, and subsequently caused apoptotic cell death represented by the cells gathered at the subG0/G1 population after 48 h of treatment. Annexin V/Propidium Iodide (PI) double-positive cells observed after 72 h confirmed the induction of apoptosis. Docking studies suggest binding at the colchicine site of tubulin in a similar way as combretastatin A4, with the polar groups masked by the vicinal substituents. These results validate the proposed strategy for the design of colchicine site ligands and open a new road to increasing the aqueous solubility of ligands binding in apolar environments.
Collapse
|
34
|
Wang Z, You C, Wang C, Weng Z. Perfluorocarboxylic Anhydrides Triggered Cyclization: Access to 4-Perfluoroalkylpyridines. J Org Chem 2019; 84:14926-14935. [PMID: 31638392 DOI: 10.1021/acs.joc.9b02254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A double nucleophilic addition-cyclization-elimination cascade is developed, that allows various 2,6-diaryl-4-perfluoroalkylpyridines to be synthesized in one step from easily available enamides and perfluorocarboxylic anhydrides. The procedure is also operationally simple and scalable and provides access to the facial construction of 4-fluoroalkylpyridines, which are of great interest in medicinal chemistry.
Collapse
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Photocatalysis on Energy and Environment and Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry , Fuzhou University , Fujian 350108 , China
| | - Chenhui You
- State Key Laboratory of Photocatalysis on Energy and Environment and Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry , Fuzhou University , Fujian 350108 , China
| | - Changfang Wang
- Institute of Plant Protection , Fujian Academy of Agricultural Sciences , Fuzhou 350013 , China
| | - Zhiqiang Weng
- State Key Laboratory of Photocatalysis on Energy and Environment and Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry , Fuzhou University , Fujian 350108 , China
| |
Collapse
|
35
|
Li W, Xu F, Shuai W, Sun H, Yao H, Ma C, Xu S, Yao H, Zhu Z, Yang DH, Chen ZS, Xu J. Discovery of Novel Quinoline–Chalcone Derivatives as Potent Antitumor Agents with Microtubule Polymerization Inhibitory Activity. J Med Chem 2018; 62:993-1013. [DOI: 10.1021/acs.jmedchem.8b01755] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wenlong Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Feijie Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Wen Shuai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Honghao Sun
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
36
|
Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site. Eur J Med Chem 2018; 163:428-442. [PMID: 30530194 DOI: 10.1016/j.ejmech.2018.11.070] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
A series of novel isocombretastatin A-4 (isoCA-4) analogs were designed and synthesized by replacing 3,4,5-trimethoylphenyl and isovanillin of isoCA-4 with quinoline and indole moieties, respectively. The structure activity relationships (SARs) of these synthesized quinoline-indole derivatives have been intensively investigated. Two compounds 27c and 34b exhibited the most potent activities against five cancer cell lines with IC50 values ranging from 2 to 11 nM, which were comparable to those of Combretastatin A-4 (CA-4, 1). Further mechanism investigations revealed that 34b effectively inhibited the microtubule polymerization by binding to the colchicine site of tubulin. Further cellular mechanism studies elucidated that 34b disrupted cell microtubule networks, arrested the cell cycle at G2/M phase, induced apoptosis and depolarized mitochondria of K562 cells. Moreover, 34b displayed potent anti-vascular activity in both wound healing and tube formation assays. Importantly, 27c and 34b significantly inhibited tumor growth in H22 xenograft models without apparent toxicity, suggesting that 27c and 34b deserve further research as potent antitumor agents for cancer therapy.
Collapse
|
37
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
38
|
Peters BJ, Van Cleave C, Haase AA, Hough JPB, Giffen-Kent KA, Cardiff GM, Sostarecz AG, Crick DC, Crans DC. Structure Dependence of Pyridine and Benzene Derivatives on Interactions with Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8939-8951. [PMID: 29958493 PMCID: PMC6106790 DOI: 10.1021/acs.langmuir.8b01661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pyridine-based small-molecule drugs, vitamins, and cofactors are vital for many cellular processes, but little is known about their interactions with membrane interfaces. These specific membrane interactions of these small molecules or ions can assist in diffusion across membranes or reach a membrane-bound target. This study explores how minor differences in small molecules (isoniazid, benzhydrazide, isonicotinamide, nicotinamide, picolinamide, and benzamide) can affect their interactions with model membranes. Langmuir monolayer studies of dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylethanolamine (DPPE), in the presence of the molecules listed, show that isoniazid and isonicotinamide affect the DPPE monolayer at lower concentrations than the DPPC monolayer, demonstrating a preference for one phospholipid over the other. The Langmuir monolayer studies also suggest that nitrogen content and stereochemistry of the small molecule can affect the phospholipid monolayers differently. To determine the molecular interactions of the simple N-containing aromatic pyridines with a membrane-like interface, 1H one-dimensional NMR and 1H-1H two-dimensional NMR techniques were utilized to obtain information about the position and orientation of the molecules of interest within aerosol-OT (AOT) reverse micelles. These studies show that all six of the molecules reside near the AOT sulfonate headgroups and ester linkages in similar positions, but nicotinamide and picolinamide tilt at the water-AOT interface to varying degrees. Combined, these studies demonstrate that small structural changes of small N-containing molecules can affect their specific interactions with membrane-like interfaces and specificity toward different membrane components.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Audra G Sostarecz
- Department of Chemistry , Monmouth College , Monmouth , Illinois 61462 , United States
| | | | | |
Collapse
|
39
|
Isley NA, Wang Y, Gallou F, Handa S, Aue DH, Lipshutz BH. A Micellar Catalysis Strategy for Suzuki–Miyaura Cross-Couplings of 2-Pyridyl MIDA Boronates: No Copper, in Water, Very Mild Conditions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03241] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nicholas A. Isley
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ye Wang
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Sachin Handa
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Donald H. Aue
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Bruce H. Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
40
|
Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med Chem 2017; 9:1765-1794. [DOI: 10.4155/fmc-2017-0100] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The vital roles of microtubule in mitosis and cell division make it an attractive target for antitumor therapy. Colchicine binding site of tubulin is one of the most important pockets that have been focused on to design tubulin-destabilizing agents. Over the past few years, a large number of colchicine binding site inhibitors (CBSIs) have been developed inspired by natural products or synthetic origins, and many moieties frequently used in these CBSIs are structurally in common. In this review, we will classify the CBSIs into classical CBSIs and nonclassical CBSIs according to their spatial conformations and binding modes with tubulin, and highlight the privileged structures from these CBSIs in the development of tubulin inhibitors targeting the colchicine binding site.
Collapse
|
41
|
Gu N, Liu M, Wang H, Sun S, Zhou Z, Hu W, Yu JT, Cheng J. Iridium-catalyzed annulation between 1,2-diarylethanone and 3-aminopropanol toward site-specific 2,3-diaryl pyridines. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|