1
|
Shetty GB, Shetty P, Shetty B, Vijay A, Mooventhan A. Role of yoga and naturopathy interventions in the management of rheumatoid arthritis: A mechanistic review. Int J Rheum Dis 2024; 27:e15389. [PMID: 39465554 DOI: 10.1111/1756-185x.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Affiliation(s)
- Geetha B Shetty
- Department of Nutrition & Physical Therapeutics, SDM College of Naturopathy and Yogic Sciences, Ujire, Karnataka, India
| | - Prashanth Shetty
- SDM College of Naturopathy and Yogic Sciences, Ujire, Karnataka, India
| | - Balakrishna Shetty
- Department of Basic Medical Sciences, SDM College of Naturopathy and Yogic Sciences, Ujire, Karnataka, India
| | - A Vijay
- Department of Naturopathy, Government Yoga and Naturopathy Medical College, Chennai, Tamilnadu, India
| | - A Mooventhan
- Department of Research, Government Yoga and Naturopathy Medical College, Chennai, Tamilnadu, India
| |
Collapse
|
2
|
Barolet AC, Magne B, Barolet D, Germain L. Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light. Antioxidants (Basel) 2024; 13:1176. [PMID: 39456430 PMCID: PMC11504005 DOI: 10.3390/antiox13101176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
NO is a crucial signaling molecule involved in skin health, the immune response, and the protection against environmental stressors. This study explores how different wavelengths of light, namely blue (455 nm), red (660 nm), and near infrared (NIR, 850 nm), affect nitric oxide (NO) production in skin cells. Primary keratinocytes and fibroblasts from three donors were exposed to these wavelengths, and NO production was quantified using a DAF-FM fluorescent probe. The results demonstrated that all three wavelengths stimulated NO release, with blue light showing the most pronounced effect. Specifically, blue light induced a 1.7-fold increase in NO in keratinocytes compared to red and NIR light and a 2.3-fold increase in fibroblasts compared to red light. Notably, fibroblasts exposed to NIR light produced 1.5 times more NO than those exposed to red light, while keratinocytes consistently responded more robustly across all wavelengths. In conclusion, blue light significantly boosts NO production in both keratinocytes and fibroblasts, making it the most effective wavelength. Red and NIR light, while less potent, also promote NO production and could serve as complementary therapeutic options, particularly for minimizing potential photoaging effects.
Collapse
Affiliation(s)
- Augustin C. Barolet
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
- RoseLab Skin Optics Research Laboratory, Laval, QC H7T 0G3, Canada;
| | - Brice Magne
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
| | - Daniel Barolet
- RoseLab Skin Optics Research Laboratory, Laval, QC H7T 0G3, Canada;
- Dermatology Division, Department of Medicine, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Yang J, Fu Q, Jiang H, Zhong H, Qin HK, Miao X, Li Y, Liu M, Yao J. Blue light photobiomodulation induced osteosarcoma cell death by facilitating ferroptosis and eliciting an incomplete tumor cell stress response. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:113003. [PMID: 39121719 DOI: 10.1016/j.jphotobiol.2024.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths (420, 460 and 480 nm) of blue light at varying irradiances, and examined cellular responses such as viability, apoptosis, levels of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Transcriptome sequencing was employed to unravel the molecular mechanisms underlying blue light-induced effects, with validation via quantitative real-time PCR (qRT-PCR). Our findings revealed a wavelength- and time-dependent decrease in cell viability, accompanied by increased apoptosis and oxidative stress. Transcriptomic analysis identified differential expression of genes associated with ferroptosis, oxidative stress, and iron metabolism, further validated by qRT-PCR. These results implicated ferroptosis as a significant mechanism in the blue light-induced death of OS cells, potentially mediated by ROS generation and disruption of iron homeostasis. Also, An incomplete stress response was observed in MG63 cells induced by blue light exposure. Hence, blue light PBM holds promise as a therapeutic approach in OS clinical investigations; however, additional exploration of its underlying mechanisms remains imperative.
Collapse
Affiliation(s)
- Jiali Yang
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Qiqi Fu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hongyu Zhong
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third School of Clinical Medicine, The Third Affiliated Hospital of Southern Medical University, No.183, Zhongshan Avenue West, Guangzhou 510515, China
| | - Hao Kuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Xiaojing Miao
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Yinghua Li
- Shanghai Fifth People's Hospital, Fudan University, 801th Heqing Road, Shanghai 200240, China.
| | - Muqing Liu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 28403, China.
| | - Jinghui Yao
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third School of Clinical Medicine, The Third Affiliated Hospital of Southern Medical University, No.183, Zhongshan Avenue West, Guangzhou 510515, China.
| |
Collapse
|
4
|
Saad A, Hamad N, Redoy RAF, Zhao S, Wageh S. Enhancing Blue Polymer Light-Emitting Diode Performance by Optimizing the Layer Thickness and the Insertion of a Hole-Transporting Layer. Polymers (Basel) 2024; 16:2347. [PMID: 39204567 PMCID: PMC11358962 DOI: 10.3390/polym16162347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Polymer light-emitting diodes (PLEDs) hold immense promise for energy-efficient lighting and full-color display technologies. In particular, blue PLEDs play a pivotal role in achieving color balance and reducing energy consumption. The optimization of layer thickness in these devices is critical for enhancing their efficiency. PLED layer thickness control impacts exciton recombination probability, charge transport efficiency, and optical resonance, influencing light emission properties. However, experimental variations in layer thickness are complex and costly. This study employed simulations to explore the impact of layer thickness variations on the optical and electrical properties of blue light-emitting diodes. Comparing the simulation results with experimental data achieves valuable insights for optimizing the device's performance. Our findings revealed that controlling the insertion of a layer that works as a hole-transporting and electron-blocking layer (EBL) could greatly enhance the performance of PLEDs. In addition, changing the active layer thickness could optimize device performance. The obtained results in this work contribute to the development of advanced PLED technology and organic light-emitting diodes (OLEDs).
Collapse
Affiliation(s)
- A. Saad
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia (N.H.)
| | - N. Hamad
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia (N.H.)
| | - Rasul Al Foysal Redoy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Suling Zhao
- Key Laboratory of Luminescence and Optical Information, Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
| |
Collapse
|
5
|
Sturm S, Niegisch G, Windolf J, Suschek CV. Exposure of Bladder Cancer Cells to Blue Light (λ = 453 nm) in the Presence of Riboflavin Synergistically Enhances the Cytotoxic Efficiency of Gemcitabine. Int J Mol Sci 2024; 25:4868. [PMID: 38732087 PMCID: PMC11084806 DOI: 10.3390/ijms25094868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Non-muscle invasive bladder cancer is a common tumour in men and women. In case of resistance to the standard therapeutic agents, gemcitabine can be used as off-label instillation therapy into the bladder. To reduce potential side effects, continuous efforts are made to optimise the therapeutic potential of drugs, thereby reducing the effective dose and consequently the pharmacological burden of the medication. We recently demonstrated that it is possible to significantly increase the therapeutic efficacy of mitomycin C against a bladder carcinoma cell line by exposure to non-toxic doses of blue light (453 nm). In the present study, we investigated whether the therapeutically supportive effect of blue light can be further enhanced by the additional use of the wavelength-specific photosensitiser riboflavin. We found that the gemcitabine-induced cytotoxicity of bladder cancer cell lines (BFTC-905, SW-1710, RT-112) was significantly enhanced by non-toxic doses of blue light in the presence of riboflavin. Enhanced cytotoxicity correlated with decreased levels of mitochondrial ATP synthesis and increased lipid peroxidation was most likely the result of increased oxidative stress. Due to these properties, blue light in combination with riboflavin could represent an effective therapy option with few side effects and increase the success of local treatment of bladder cancer, whereby the dose of the chemotherapeutic agent used and thus the chemical load could be significantly reduced with similar or improved therapeutic success.
Collapse
Affiliation(s)
- Sofia Sturm
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christoph V. Suschek
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Souto-Neto JA, David DD, Zanetti G, Sua-Cespedes C, Freret-Meurer NV, Moraes MN, de Assis LVM, Castrucci AMDL. Light-specific wavelengths differentially affect the exploration rate, opercular beat, skin color change, opsin transcripts, and the oxi-redox system of the longsnout seahorse Hippocampus reidi. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111551. [PMID: 37972916 DOI: 10.1016/j.cbpa.2023.111551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.
Collapse
Affiliation(s)
- José Araújo Souto-Neto
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Laboratory of Micropollutants, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Cristhian Sua-Cespedes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Maria Nathália Moraes
- Laboratory of Molecular Chronobiology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, United States.
| |
Collapse
|
7
|
Yang J, Jiang H, Fu Q, Qin H, Li Y, Liu M. Blue light photobiomodulation induced apoptosis by increasing ROS level and regulating SOCS3 and PTEN/PI3K/AKT pathway in osteosarcoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112814. [PMID: 37956614 DOI: 10.1016/j.jphotobiol.2023.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Blue light photobiomodulation (PBM) has attracted great attention in diminishing proliferation and inducing death of cancer cells recently. Osteosarcoma (OS) primarily occurring in children and adolescents, the limitations of drug resistance and limb salvage make it urgent to develop and identify new adjuvant therapeutic strategies. In this work, we attempted to research the anticancer effects and biological mechanisms of blue light PBM in human OS MG63 cells. The effects of various blue light parameters on MG63 cells indicated that suppressed cell proliferation and cell migration, induced cell apoptosis which are experimentally assessed using multiple assays including CCK, LDH, wound healing assay and Hoechst staining. Concurrently, the increases of ROS level and the inhibition of PI3K and AKT expression were identified under high-dose blue light PBM in MG63 cells. Meanwhile, SOCS3 is a major inducible anti-tumor molecule, we also found that blue light LED substantially promoted its expression. Thus, this study proposed that bule light PBM may be a hopeful therapeutic approach in OS clinical treatment in the future.
Collapse
Affiliation(s)
- Jiali Yang
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Qiqi Fu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Yinghua Li
- Shanghai Fifth People's Hospital, Fudan University, 801th Heqing Road, Shanghai 200240, China
| | - Muqing Liu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 28403, China.
| |
Collapse
|
8
|
Zhang W, Dong J. Suppressing epithelial-mesenchymal-transition blue light therapy for reducing macrophage-mediated cancerous pulmonary fibrosis: An in-vitro study. JOURNAL OF BIOPHOTONICS 2023; 16:e202300253. [PMID: 37589213 DOI: 10.1002/jbio.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Lung cancer is the leading killer among all types of cancer globally. As a key factor, epithelial-mesenchymal transition (EMT) plays a crucial role in pathological fibrosis and lung cancer metastasis. This study endeavors to investigate the effect of blue light at specific wavelengths of 405 nm and 415 nm (54 J/cm2 ) on EMT induced by TGF-β1 in A549 cells. The results revealed that the blue light irradiation reduced the morphological characteristics of EMT in the A549 cells, and cell-to-cell connections were weakened significantly. Molecular analysis showed upregulation of epithelial marker E-cadherin and downregulation of EMT marker vimentin. Additionally, exposure to blue light irradiation at 405 nm and 415 nm significantly decelerated the ability of invasion and migration. Moreover, cell viability was also investigated. Based on these findings, blue light can serve as a useful therapeutic option for inhibiting EMT in cases of lung cancer and fibrotic lung disease.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Future Science and Engineering, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Jusuf S, Dong PT. Chromophore-Targeting Precision Antimicrobial Phototherapy. Cells 2023; 12:2664. [PMID: 37998399 PMCID: PMC10670386 DOI: 10.3390/cells12222664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Phototherapy, encompassing the utilization of both natural and artificial light, has emerged as a dependable and non-invasive strategy for addressing a diverse range of illnesses, diseases, and infections. This therapeutic approach, primarily known for its efficacy in treating skin infections, such as herpes and acne lesions, involves the synergistic use of specific light wavelengths and photosensitizers, like methylene blue. Photodynamic therapy, as it is termed, relies on the generation of antimicrobial reactive oxygen species (ROS) through the interaction between light and externally applied photosensitizers. Recent research, however, has highlighted the intrinsic antimicrobial properties of light itself, marking a paradigm shift in focus from exogenous agents to the inherent photosensitivity of molecules found naturally within pathogens. Chemical analyses have identified specific organic molecular structures and systems, including protoporphyrins and conjugated C=C bonds, as pivotal components in molecular photosensitivity. Given the prevalence of these systems in organic life forms, there is an urgent need to investigate the potential impact of phototherapy on individual molecules expressed within pathogens and discern their contributions to the antimicrobial effects of light. This review delves into the recently unveiled key molecular targets of phototherapy, offering insights into their potential downstream implications and therapeutic applications. By shedding light on these fundamental molecular mechanisms, we aim to advance our understanding of phototherapy's broader therapeutic potential and contribute to the development of innovative treatments for a wide array of microbial infections and diseases.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Pu-Ting Dong
- Department of Microbiology, The Forsyth Institute, Boston, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
10
|
Fengchao C, Siya Z, Tongtong Y, Hongquan W, Jie L, Qiang W, Danish S, Kun L. The enhanced cytotoxicity on breast cancer cells by Tanshinone I-induced photodynamic effect. Sci Rep 2023; 13:18107. [PMID: 37872260 PMCID: PMC10593796 DOI: 10.1038/s41598-023-43456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023] Open
Abstract
Recently, natural photosensitizers, such as berberine, curcumin, riboflavin, and emodin, have received more and more attention in photodynamic therapy. Tanshinone I (TanI) is extracted from a traditional Chinese herb Danshen, and exhibits many physiological functions including antitumor. TanI is a photoactive phytocompounds, but no work was tried to investigate its potential photodynamic effect. This study evaluated the cytotoxicity induced by the photodynamic effect of TanI. The photochemical reactions of TanI were firstly investigated by laser flash photolysis. Then breast cancer cell line MDA-MB-231 was chosen as a model and the photodynamic effect of TanI on cancer cell was evaluated by MTT assay and flow cytometry. The results showed that TanI could be photoexcited by its UV-Vis absorption light to produce 3TanI* which was quickly quenched by O2. MTT assay showed that the photodynamic effect of TanI resulted in more obvious inhibitive effect on cell survival and cell migration. Besides, the photodynamic effect of TanI could induce cell apoptosis and necrosis, lead to cell cycle arrest in G2, increase intracellular ROS, and decrease the cellular Δψm. It can be concluded that the photodynamic effect of TanI can obviously enhance the cytotoxicity of TanI on MDA-MB-231 cells in vitro, which indicated that TanI might serve as a natural photosensitizer.
Collapse
Affiliation(s)
- Chen Fengchao
- Medical Cosmetic Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zhang Siya
- Medical Cosmetic Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yan Tongtong
- Medical Cosmetic Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wang Hongquan
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, People's Republic of China
| | - Li Jie
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, People's Republic of China
| | - Wang Qiang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, People's Republic of China
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Li Kun
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, People's Republic of China.
| |
Collapse
|
11
|
Jiang H, Qin H, Sun M, Lin S, Yang J, Liu M. Effect of blue light on the cell viability of A549 lung cancer cells and investigations into its possible mechanism. JOURNAL OF BIOPHOTONICS 2023; 16:e202300047. [PMID: 37265005 DOI: 10.1002/jbio.202300047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Blue light has attracted extensive attention as a new potential cancer therapy. Recent studies have indicated that blue light has a significant inhibition effect on A459 cells. However, the effect of light parameters on the treatment of A549 cells and the mechanism of how blue light made the effect was still unclear. This study aimed to investigate A549 cells responses to blue light with varying irradiance and dose-dense, and tried to find out the mechanism of the effects blue light made. The results suggested that the responses of A549 cells to blue light with different irradiance and dose-dense were different and the decrease of cell viability reached saturation when the irradiance reached 3 mW/cm2 and the dose-dense reached 3.6 J/cm2 . It was assumed that blue light suppressed PI3K/AKT pathway and promoted the expression of JNK and p53 to affect the proliferation of A549 cells.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Miao Sun
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Jiali Yang
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| |
Collapse
|
12
|
Kim HB, Kang MH, Baik KY, Kim JE, Park SB, Choung PH, Chung JH. Integration of blue light with near-infrared irradiation accelerates the osteogenic differentiation of human dental pulp stem cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112752. [PMID: 37451155 DOI: 10.1016/j.jphotobiol.2023.112752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Blue light is used less in photobiomodulation than red or near-infrared light because of concerns about its high energy. However, some reports have suggested that blue light releases NO from nitrosated proteins, affects cell signal regulation, and promotes stem cell differentiation. Because blue and red lights could have different mechanisms of action, their combination is expected to have new consequences. In this study, human dental pulp stem cells (hDPSCs) were sequentially exposed to blue and near-infrared light to study their effects on proliferation, osteogenic differentiation, and immunomodulation. We found that NIR irradiation applied after blue light can reduce blue light toxicity improving the cell viabiltiy. Delayed luminescence and transmission electron microscopy studies showed that this combination excited hDPSCs and activated mitochondrial biogenesis. Those modulations accelerated hDPSC differentiation, as shown by an increase of about 1.3-fold in alkaline phosphatase activity in vitro and an about 1.5-fold increase in the osteocalcin-positive regions in cells implanted in nude mice compared with mice exposed to near-infrared alone.
Collapse
Affiliation(s)
- Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Moon-Ho Kang
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Ku Youn Baik
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Jae Eun Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Bae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Ma W, Wang T. Study of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy in the treatment of oral ulcers infected with Staphylococcus aureus: In vivo evaluation. Photodiagnosis Photodyn Ther 2023; 42:103363. [PMID: 36871807 DOI: 10.1016/j.pdpdt.2023.103363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Clinical suppurative infection is mainly caused by Staphylococcus aureus. Although many antibiotics can be used to kill S. aureus, the resulting resistance problem is difficult to solve. Therefore, it is necessary to seek a new sterilizing method to solve the problem of drug resistance of S. aureus and improve the therapeutic effect of infectious diseases. Photodynamic therapy (PDT) has become an alternative for the treatment of a variety of drug-resistant infectious diseases due to its advantages of non-invasive, specific targeting, and no drug resistance. We have confirmed the advantages and experimental parameters of blue-light PDT sterilization in vitro experiments. This study aimed to treat buccal mucosa ulcer of hamster infected with S. aureus according to the parameters obtained in vitro experiment, and observe the bactericidal effect of hematoporphyrin monomethyl ether (HMME) mediated blue-light PDT in vivo and its therapeutic effect on tissue infection. The results indicated that HMME mediated blue-light PDT can effectively kill S. aureus in vivo and promote the healing of the oral infectious wound.The study findings lay a foundation for carrying out more HMME mediated blue-light PDT sterilizing therapy.
Collapse
Affiliation(s)
- Wei Ma
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Tao Wang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
14
|
Prado TP, Zanchetta FC, Barbieri B, Aparecido C, Melo Lima MH, Araujo EP. Photobiomodulation with Blue Light on Wound Healing: A Scoping Review. Life (Basel) 2023; 13:575. [PMID: 36836932 PMCID: PMC9959862 DOI: 10.3390/life13020575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Photobiomodulation consists of inducing healing by irradiating light. This scoping review investigates the effect of blue light on the healing process. METHODS The MEDLINE, Web of Science, Scopus, and CINAHL databases were searched. Two reviewers independently examined the search results and extracted data from the included studies. A descriptive analysis was performed. RESULTS Twenty-two articles were included. Studies were categorized as in vitro/mixed, preclinical, and clinical. The power density used was 10-680 mW/cm2 in most of the in vitro/preclinical studies, the irradiation time ranged from 5 s to 10 min, and different wavelengths and energy densities were used. In clinical studies, the wavelength ranged from 405 to 470 nm, and the energy density varied from 1.5 to 30 J/cm2. CONCLUSIONS A low energy density (<20 J/cm2) was able to stimulate the different cell types and proteins involved in healing, while a high energy density, 20.6-50 J/cm2, significantly reduced cell proliferation, migration, and metabolism. There is a great variety of device parameters among studies, and this makes it difficult to conclude what the best technical specifications are. Thus, further studies should be performed in order to define the appropriate parameters of light to be used.
Collapse
Affiliation(s)
- Thais P. Prado
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Flávia Cristina Zanchetta
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Beatriz Barbieri
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Caroline Aparecido
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Maria Helena Melo Lima
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Eliana P. Araujo
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| |
Collapse
|
15
|
Uzunbajakava NE, Tobin DJ, Botchkareva NV, Dierickx C, Bjerring P, Town G. Highlighting nuances of blue light phototherapy: Mechanisms and safety considerations. JOURNAL OF BIOPHOTONICS 2023; 16:e202200257. [PMID: 36151769 DOI: 10.1002/jbio.202200257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The efficacy of blue light therapy in dermatology relies on numerous clinical studies. The safety remains a topic of controversy, where potentially deleterious effects were derived from in vitro rather than in vivo experiments. The objectives of this work were (1) to highlight the nuances behind "colors" of blue light, light propagation in tissue and the plurality of modes of action; and (2) to rigorously analyze studies on humans reporting both clinical and histological data from skin biopsies with focus on DNA damage, proliferation, apoptosis, oxidative stress, impact on collagen, elastin, immune cells, and pigmentation. We conclude that blue light therapy is safe for human skin. It induces intriguing skin pigmentation, in part mediated by photoreceptor Opsin-3, which might have a photoprotective effect against ultraviolet irradiation. Future research needs to unravel photochemical reactions and the most effective and safe parameters of blue light in dermatology.
Collapse
Affiliation(s)
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christine Dierickx
- Skinperium Laser and Cosmetic Dermatology Clinic, Skinperium, Luxembourg City, Luxembourg
| | - Peter Bjerring
- Dermatology Department, Aalborg University Hospital, Aalborg, Denmark
| | - Godfrey Town
- Dermatology Department, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
16
|
Kennedy R. Phototherapy as a Treatment for Dermatological Diseases, Cancer, Aesthetic Dermatologic Conditions and Allergenic Rhinitis in Adult and Paediatric Medicine. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010196. [PMID: 36676145 PMCID: PMC9864074 DOI: 10.3390/life13010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
The development of light-emitting diodes (LEDs) has led to an increase in the use of lighting regimes within medicine particularly as a treatment for dermatological conditions. New devices have demonstrated significant results for the treatment of medical conditions, including mild-to-moderate acne vulgaris, wound healing, psoriasis, squamous cell carcinoma in situ (Bowen's disease), basal cell carcinoma, actinic keratosis, and cosmetic applications. The three wavelengths of light that have demonstrated several therapeutic applications are blue (415 nm), red (633 nm), and near-infrared (830 nm). This review shows their potential for treating dermatological conditions. Phototherapy has also been shown to be an effective treatment for allergenic rhinitis in children and adults. In a double-anonymized randomized study it was found that there was 70% improvement of clinical symptoms of allergic rhinitis after intranasal illumination by low-energy narrow-band phototherapy at a wavelength of 660 nm three times a day for 14 consecutive days. Improvement of oedema in many patients with an age range of 7-17 were also observed. These light treatments can now be self-administered by sufferers using devices such as the Allergy Reliever phototherapy device. The device emits visible light (mUV/VIS) and infra-red light (660 nm and 940 nm) wavelengths directly on to the skin in the nasal cavity for a 3 min period. Several phototherapy devices emitting a range of wavelengths have recently become available for use and which give good outcomes for some dermatological conditions.
Collapse
Affiliation(s)
- Roy Kennedy
- Warwickshire College University Centre, Warwick New Road, Royal Leamington Spa, Warwickshire CV32 5JE, UK
| |
Collapse
|
17
|
Kumari J, Das K, Babaei M, Rokni GR, Goldust M. The impact of blue light and digital screens on the skin. J Cosmet Dermatol 2023; 22:1185-1190. [PMID: 36594795 DOI: 10.1111/jocd.15576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The skin is frequently subjected to a variety of environmental trauma and stress. It is unavoidably subjected to blue light due to the increased use of electronic equipment, including indoor lighting and digital gadgets like smartphones and laptops, which have a range of detrimental effects. The method of action and numerous harmful consequences of blue light on the skin are the main subjects of this review. MATERIALS AND METHODS A literature search has been performed using PubMed, GoogleScholar and EmBase databases and an updated review on the topic has been presented. RESULTS Numerous studies have shown that being exposed to blue light accelerates the aging process and produces cutaneous hyperpigmentation. It also modifies the circadian rhythm. The two main molecules that mediate cellular responses to blue light are nitric oxide (NO) and reactive oxygen species. However, the precise process is still not fully known. CONCLUSION These negative consequences may eventually cause more general skin damage, which may hasten the aging process. At times, skin protection may be crucial for protection against blue light.
Collapse
Affiliation(s)
- Jyoti Kumari
- Silchar Medical College and Hospital, Silchar, Assam, India
| | - Kinnor Das
- Consultant Dermatolgist, Apollo clinic, Silchar, Assam, India
| | - Mahsa Babaei
- School of Medicine, Stanford University, Stanford, California, USA
| | - Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
18
|
Park JI, Kim SJ, Kim YJ, Lee SJ. Protective role of Caesalpinia sappan extract and its main component brazilin against blue light-induced damage in human fibroblasts. J Cosmet Dermatol 2022; 21:7025-7034. [PMID: 36057446 DOI: 10.1111/jocd.15354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ultraviolet (UV) radiation is a well-known factor that causes skin aging. Recently, with the development of technology, the skin has been exposed to not only the UV radiation but also the blue light from electronic devices. Blue light is a high-energy visible light that penetrates deep into the dermal layer, producing reactive oxygen species (ROS) and resulting in skin aging. In this study, we searched for candidate materials that can inhibit blue light-induced skin aging and found Caesalpinia sappan extract (CSE) to be effective. METHODS Human dermal fibroblasts (HDFs) were treated with various concentrations of CSE and brazilin and exposed to blue light. We measured that antioxidant activity, MMP-1 levels using MMP-1 ELISA, changes in collagen type 1, collagen type 3, MMP-1, and MMP-3 mRNA expressions, and ROS generation. RESULTS We confirmed that CSE has high absorption of blue light and antioxidant activity. Blue light irradiation at 30 J/cm2 decreased the expression of collagen types 1 and 3, increased the expression of matrix metalloproteinase (MMP)-1 and 3, and decreased the production of ROS in human dermal fibroblasts as compared to those of the nonirradiated group. However, pretreatment with CSE protected against the damage caused by the blue light. Brazilin, a major constituent of C. sappan, had high absorbance in the blue light region and antioxidant activities. Pretreatment with brazilin also inhibited the damage caused by the blue light in the cells. CONCLUSION CSE and brazilin are potential agents for inhibiting skin aging caused by blue light-induced damage.
Collapse
Affiliation(s)
- Jong Il Park
- Creation & Innovation Research Center, IN2BIO, Hwaseong-si, Korea
| | - Sung Jae Kim
- Creation & Innovation Research Center, IN2BIO, Hwaseong-si, Korea
| | - Yong Jae Kim
- Creation & Innovation Research Center, IN2BIO, Hwaseong-si, Korea
| | - Seung Ji Lee
- Creation & Innovation Research Center, IN2BIO, Hwaseong-si, Korea
| |
Collapse
|
19
|
Hegmann L, Sturm S, Niegisch G, Windolf J, Suschek CV. Enhancement of human bladder carcinoma cell chemosensitivity to Mitomycin C through quasi-monochromatic blue light (λ = 453 ± 10 nm). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112582. [PMID: 36272336 DOI: 10.1016/j.jphotobiol.2022.112582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 01/31/2023]
Abstract
Human urothelial bladder carcinoma (uBC) is the second most tumor entity of the urogenital tract. As far as possible, therapy for non-muscle invasive uBC takes place as resection of the tumor tissue, followed by intravesical chemotherapy or immunotherapy. Because of the high recurrence rate of uBC, there is a need for improved efficiency in the treatment. In the present in vitro study we have evaluated a new approach to enhance the cytotoxic efficiency of Mitomycin C (MMC), which is commonly used for intravesical treatment of uBC on the relevant urothelial cancer cell line RT112. For that we used quasi-monochromatic blue light (453 ± 10 nm) at its non-toxic dose of 110 J/cm2 as an additive stimulus to enhance the therapeutic efficiency of MMC (10 μg/ml). We found, that blue light exposure of RT112 cells led to a very strong increase in intracellular production of reactive oxygen species (ROS) and to a significant reduction (p < 0.05) of all function parameters of mitochondrial respiration, including basal activity and ATP production. Although not being toxic when used as a single impact, together with MMC blue light strongly enhanced the therapeutic efficiency of MMC in the form of significantly enhanced cytotoxicity via apoptosis and secondary necrosis. Our results clearly show that blue light, most likely due to its ability to increase intracellular ROS production and reduce mitochondrial respiration, increased the cytotoxic efficiency of MMC and therefore might represent an effective, low-side-effect, and success-enhancing therapy option in the local treatment of bladder cancer.
Collapse
Affiliation(s)
- Lisa Hegmann
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Sofia Sturm
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christoph V Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
20
|
Magni G, Piccolo D, Bonan P, Conforti C, Crisman G, Pieri L, Fusco I, Rossi F. 1540-nm fractional laser treatment modulates proliferation and neocollagenesis in cultured human dermal fibroblasts. Front Med (Lausanne) 2022; 9:1010878. [PMID: 36330058 PMCID: PMC9623312 DOI: 10.3389/fmed.2022.1010878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Giada Magni
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche (IFAC-CNR), Florence, Italy
| | | | - Paolo Bonan
- Laser Cutaneous Cosmetic and Plastic Surgery Unit, Villa Donatello Clinic, Florence, Italy
| | - Claudio Conforti
- Department of Dermatology and Venereology, Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | | | | | - Irene Fusco
- El.En Group, Calenzano, Italy
- *Correspondence: Irene Fusco
| | - Francesca Rossi
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche (IFAC-CNR), Florence, Italy
| |
Collapse
|
21
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
22
|
Bacqueville D, Jacques-Jamin C, Lapalud P, Douki T, Roullet N, Sereno J, Redoulès D, Bessou-Touya S, Duplan H. Formulation of a new broad-spectrum UVB + UVA and blue light SPF50 + sunscreen containing Phenylene Bis-Diphenyltriazine (TriAsorB), an innovative sun filter with unique optical properties. J Eur Acad Dermatol Venereol 2022; 36 Suppl 6:29-37. [PMID: 35738811 DOI: 10.1111/jdv.18196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 01/05/2023]
Abstract
Accumulating evidence from numerous comprehensive studies has demonstrated that blue light, in particular high-energy visible light, can exert a range of harmful effects on skin cells. These forms of radiation are now known to be able to trigger oxidation reactions, DNA damage, erythema and pigmentary changes, and may also be associated with photoaging. Sunscreens protecting the skin from only ultraviolet (UV)-B and UVA rays can therefore no longer be regarded as sufficient to help prevent skin damage from sunlight, and products containing filters that can provide broad-spectrum photoprotection are required. To meet this need, a new sunscreen formulation that provides photoprotection against solar radiation with wavelengths ranging from UV to visible light has been developed, using an innovative organic sun filter with unique optical properties: phenylene bis diphenyltriazine (TriAsorB™). This article outlines the development and characteristics of this innovative filter and describes new key results from studies performed to assess the effectiveness and safety of the filter and the new sunscreen product. The studies conducted so far demonstrate that the filter has a good human and environmental safety profile. In addition, the sunscreen, which contains TriAsorB in combination with three other UV filters to offer broad-spectrum sun protection with a high sun protection factor (SPF50+ ), appears to effectively prevent multiple forms of cellular photodamage, in particular blue light-induced oxidatively generated DNA lesions. Overall, the available data indicate that regular use of the TriAsorB-containing sunscreen could help prevent solar radiation-induced skin damage and the development of signs of premature skin aging, as well as photodermatoses caused or exacerbated by visible light.
Collapse
Affiliation(s)
- D Bacqueville
- Laboratoire Pierre Fabre, Centre R&D, Toulouse, France
| | | | - P Lapalud
- Laboratoire Pierre Fabre, Centre R&D, Toulouse, France
| | - T Douki
- INAC/SyMMES/CIBEST, CEA Grenoble, France
| | - N Roullet
- Laboratoire Pierre Fabre, Centre R&D, Toulouse, France
| | - J Sereno
- Laboratoire Pierre Fabre, Centre R&D, Toulouse, France
| | - D Redoulès
- Laboratoires Dermatologiques Avène, Lavaur, France
| | | | - H Duplan
- Laboratoire Pierre Fabre, Centre R&D, Toulouse, France
| |
Collapse
|
23
|
Bennardo L, Patruno C, Zappia E, Tamburi F, Sannino M, Negosanti F, Nisticò SP, Cannarozzo G. Combination of Specific Vascular Lasers and Vascular Intense Pulsed Light Improves Facial Telangiectasias and Redness. Medicina (B Aires) 2022; 58:medicina58050651. [PMID: 35630068 PMCID: PMC9147706 DOI: 10.3390/medicina58050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives: Facial telangiectasias are dilated blood vessels that can represent a cosmetic issue for patients. They may be associated with other conditions, such as rosacea. Laser and light treatments are nowadays becoming a cornerstone in the management of these lesions. Materials and Methods: In total, 68 patients seeking medical treatment for facial telangiectasias were enrolled from 1 March 2019 to 1 March 2020 at the Dermatological Unit of Magna Graecia University (Catanzaro, Italy). A protocol consisting of a 1064 Nd:YAG laser for darker blue telangiectasias and 532 nm Nd:YAG for red lesions followed by intense pulsed light with an optimized spectrum for vascular lesion 3 weeks after the first procedure was proposed. A three-month follow-up visit assessed patient’s satisfaction using a visual analog scale (VAS). Two dermatologists measured clinical results using a 4-point scale, comparing pictures before treatment and at follow-up. Results: A total of 68 patients (32 males and 36 females) completed the study, performing all requested treatments. No severe side effects were reported. Patient satisfaction was very high (8.15 ± 1.05 out of a 10-point VAS scale), as well as dermatologists’ clinical evaluations (2.19 ± 0.74 out of 3). Conclusions: The combination of vascular lasers and Vascular Intense Pulsed Light acting specifically on small blood vessels may help to improve the aesthetic outcome, reducing side effects. A prospective study with a larger number of participants will be necessary to confirm this study’s findings.
Collapse
Affiliation(s)
- Luigi Bennardo
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (L.B.); (C.P.); (E.Z.); (F.T.); (S.P.N.)
| | - Cataldo Patruno
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (L.B.); (C.P.); (E.Z.); (F.T.); (S.P.N.)
| | - Elena Zappia
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (L.B.); (C.P.); (E.Z.); (F.T.); (S.P.N.)
| | - Federica Tamburi
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (L.B.); (C.P.); (E.Z.); (F.T.); (S.P.N.)
| | - Mario Sannino
- Department of Systems Medicine, Tor Vergata University, 00100 Rome, Italy;
| | - Francesca Negosanti
- Dermatologic Center “Villa Bella-Antiaging Care Group”, 40126 Bologna, Italy;
| | - Steven Paul Nisticò
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (L.B.); (C.P.); (E.Z.); (F.T.); (S.P.N.)
| | - Giovanni Cannarozzo
- Department of Systems Medicine, Tor Vergata University, 00100 Rome, Italy;
- Correspondence:
| |
Collapse
|
24
|
Tassinari R, Cavallini C, Olivi E, Facchin F, Taglioli V, Zannini C, Marcuzzi M, Ventura C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. Int J Mol Sci 2022; 23:ijms23063157. [PMID: 35328576 PMCID: PMC8949133 DOI: 10.3390/ijms23063157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
We discuss emerging views on the complexity of signals controlling the onset of biological shapes and functions, from the nanoarchitectonics arising from supramolecular interactions, to the cellular/multicellular tissue level, and up to the unfolding of complex anatomy. We highlight the fundamental role of physical forces in cellular decisions, stressing the intriguing similarities in early morphogenesis, tissue regeneration, and oncogenic drift. Compelling evidence is presented, showing that biological patterns are strongly embedded in the vibrational nature of the physical energies that permeate the entire universe. We describe biological dynamics as informational processes at which physics and chemistry converge, with nanomechanical motions, and electromagnetic waves, including light, forming an ensemble of vibrations, acting as a sort of control software for molecular patterning. Biomolecular recognition is approached within the establishment of coherent synchronizations among signaling players, whose physical nature can be equated to oscillators tending to the coherent synchronization of their vibrational modes. Cytoskeletal elements are now emerging as senders and receivers of physical signals, "shaping" biological identity from the cellular to the tissue/organ levels. We finally discuss the perspective of exploiting the diffusive features of physical energies to afford in situ stem/somatic cell reprogramming, and tissue regeneration, without stem cell transplantation.
Collapse
Affiliation(s)
- Riccardo Tassinari
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Claudia Cavallini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Elena Olivi
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Valentina Taglioli
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Chiara Zannini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Martina Marcuzzi
- INBB, Biostructures and Biosystems National Institute, Viale Medaglie d’Oro 305, 00136 Rome, Italy;
| | - Carlo Ventura
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
- Correspondence: ; Tel.: +39-347-920-6992
| |
Collapse
|
25
|
Liu Y, Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ 2022; 29:895-910. [PMID: 35087226 PMCID: PMC9091200 DOI: 10.1038/s41418-022-00943-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
Although the conventional activities of p53 such as cell cycle arrest, senescence, and apoptosis are well accepted as the major checkpoints in stress responses, accumulating evidence implicates the importance of other tumor suppression mechanisms. Among these unconventional activities, an iron-dependent form of non-apoptotic cell death, termed ferroptosis, attracts great interest. Unlike apoptotic cell death, activation of p53 alone is not sufficient to induce ferroptosis directly; instead, through its metabolic targets, p53 is able to modulate the ferroptosis response in the presence of ferroptosis inducers such as GPX4 inhibitors or high levels of ROS. Here, we review the role of ferroptosis in p53-mediated tumor suppression, with a focus on what cellular factors are critical for p53-dependent ferroptosis during tumor suppression and how p53 modulates both the canonical (GPX4-dependent) and the non-canonical (GPX4-independent) ferroptosis pathways. We also discuss the possibility of targeting p53-mediated ferroptotic responses for the treatment of human cancers and potentially, other diseases.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
26
|
Cai W, Hamushan M, Zhang Y, Xu Z, Ren Z, Du J, Ju J, Cheng P, Tan M, Han P. Synergistic Effects of Photobiomodulation Therapy with Combined Wavelength on Diabetic Wound Healing In Vitro and In Vivo. Photobiomodul Photomed Laser Surg 2022; 40:13-24. [PMID: 34941461 DOI: 10.1089/photob.2021.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: The difficulty in chronic diabetic wound healing remains the focus of clinical research. Photobiomodulation therapy (PBMT) with different wavelengths could exert different effects on wound healing, but the effects of combined red and blue light (BL) remained unclear. Methods: Diabetic rat wound model and diabetic wounded endothelial cell model were established to observe possible effects of PBMT using combined wavelengths for wound healing. Cells and animals were separated into four groups exposed to red and/or BL. Cell viability, apoptosis, and migration, as well as the expression level of nitric oxide (NO), vascular endothelial growth factor, interleukin-6, and tumor necrosis factor-α were measured in vitro. Diabetic rats were evaluated for wound closure rates, collagen deposition, inflammation intensity, and density of neovascularization after light irradiation. Results: PBMT using combined wavelengths significantly sped up the healing process with increasing angiogenesis density, collagen deposition, and alleviating inflammation in vivo. Moreover, combined wavelength irradiation promoted cell proliferation and migration, and NO production, as well as reduced reactive oxygen species and inflammation in vitro. Conclusions: PBMT using combined wavelengths performed a synergistic effect for promoting diabetic wound healing and would be helpful to explore a more efficient pattern toward chronic wound healing.
Collapse
Affiliation(s)
- Weijie Cai
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Musha Hamushan
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yubo Zhang
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhengyu Xu
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zun Ren
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiafei Du
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiaqi Ju
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Pengfei Cheng
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Moyan Tan
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Pei Han
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
27
|
Barolet AC, Litvinov IV, Barolet D. Light-induced nitric oxide release in the skin beyond UVA and blue light: Red & near-infrared wavelengths. Nitric Oxide 2021; 117:16-25. [PMID: 34536586 DOI: 10.1016/j.niox.2021.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/03/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is omnipresent in the body and synthesized by 3 isoenzymes (nNOS, eNOS and iNOS), all detected in human skin. NO can be stored in a pool of compounds readily converted to NO following skin irradiation by UVR and blue light. This non-enzymatic (without NOS involvement) photolytic reaction mobilizes cutaneous stores of NO derivatives to the bloodstream, lowering blood pressure. However, with the likelihood of skin deleterious effects caused by UVR/blue light, safer wavelengths in the red/near-infrared (NIR) spectrum are becoming potential contenders to release cutaneous NO, possibly via NOS temperature-dependent effects. The use of red/NIR light to mobilize NO stores from the body's largest organ (the skin) is auspicious. This review focuses on UVR, blue, red, and NIR spectra and their capacity to release NO in human skin. PubMed and Google Scholar were used as article databases to find relevant publications related to this particular field.
Collapse
Affiliation(s)
- A C Barolet
- Deptartment of Surgery, Experimental Surgery Graduate Training Program, McGill University, Montreal, Quebec, Canada; Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada.
| | - I V Litvinov
- Deptartment of Surgery, Experimental Surgery Graduate Training Program, McGill University, Montreal, Quebec, Canada; Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada; Deptartment of Medicine, Experimental Medicine Graduate Training Program, McGill University, Montreal, Quebec, Canada
| | - D Barolet
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada; RoseLab Skin Optics Research Laboratory, Laval, Quebec, Canada
| |
Collapse
|
28
|
Stasko N, Kocher JF, Annas A, Henson I, Seitz TS, Miller JM, Arwood L, Roberts RC, Womble TM, Keller EG, Emerson S, Bergmann M, Sheesley ANY, Strong RJ, Hurst BL, Emerson D, Tarbet EB, Bradrick SS, Cockrell AS. Visible blue light inhibits infection and replication of SARS-CoV-2 at doses that are well-tolerated by human respiratory tissue. Sci Rep 2021; 11:20595. [PMID: 34663881 PMCID: PMC8523529 DOI: 10.1038/s41598-021-99917-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Nathan Stasko
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Jacob F Kocher
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Abigail Annas
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Ibrahim Henson
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Theresa S Seitz
- Division of Infectious Diseases, Surveillance and Diagnostics, MRIGlobal, Kansas City, MO, 64110, USA
| | - Joy M Miller
- Division of Infectious Diseases, Surveillance and Diagnostics, MRIGlobal, Kansas City, MO, 64110, USA
| | - Leslee Arwood
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Rachel C Roberts
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Thomas M Womble
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Emily G Keller
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Soren Emerson
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Michael Bergmann
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Ashley N Y Sheesley
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84321, USA
| | - Rebecca J Strong
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84321, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84321, USA
| | - David Emerson
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84321, USA
| | - Shelton S Bradrick
- Division of Infectious Diseases, Surveillance and Diagnostics, MRIGlobal, Kansas City, MO, 64110, USA
| | - Adam S Cockrell
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA.
| |
Collapse
|
29
|
Shahi S, Khorvash R, Goli M, Ranjbaran SM, Najarian A, Mohammadi Nafchi A. Review of proposed different irradiation methods to inactivate food-processing viruses and microorganisms. Food Sci Nutr 2021; 9:5883-5896. [PMID: 34646553 PMCID: PMC8498048 DOI: 10.1002/fsn3.2539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses, which have been enveloped nonsegmented positive-sense RNA viruses, were first mentioned in the mid-1960s and can attack people as well as a wide range of animals (including mammals and birds). Three zoonotic coronaviruses have been identified as the cause of large-scale epidemics over the last two decades: Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and swine acute diarrhea syndrome (SADS). Epithelial cells in the respiratory and gastrointestinal tract are the principal targeted cells, and viral shedding occurs via these systems in diverse ways such as through fomites, air, or feces. Patients infected with the novel coronavirus (2019-nCoV) reported having visited the Wuhan seafood wholesale market shortly before disease onset. The clinical data on established 2019-nCoV cases reported so far indicate a milder disease course than that described for patients with SARS-CoV or MERS-CoV. This study aimed to review radiation inactivation of these viruses in the food industry in three sections: visible light, ionizing radiation (alpha ray, beta ray, X-ray, gamma ray, neutron, plasma, and ozone), and nonionizing radiation (microwave, ultraviolet, infrared, laser light, and radiofrequency). Due to the obvious possibility of human-to-human and animal-to-human transmission, using at least one of these three methods in food processing and packaging during coronavirus outbreaks will be critical for preventing further outbreaks at the community level.
Collapse
Affiliation(s)
- Sharifeh Shahi
- Department of Biomedical EngineeringIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
- Laser and Biophotonics in Biotechnologies Research CenterIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Reza Khorvash
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Goli
- Laser and Biophotonics in Biotechnologies Research CenterIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
- Department of Food Science and TechnologyIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Seyed Mohsen Ranjbaran
- Laser and Biophotonics in Biotechnologies Research CenterIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
30
|
Sadowska M, Narbutt J, Lesiak A. Blue Light in Dermatology. Life (Basel) 2021; 11:670. [PMID: 34357042 PMCID: PMC8307003 DOI: 10.3390/life11070670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Phototherapy is an important method of dermatological treatments. Ultraviolet (280-400 nm) therapy is of great importance; however, there are concerns of its long-term use, as it can lead to skin aging and carcinogenesis. This review aims to evaluate the role and the mechanism of action of blue light (400-500 nm), a UV-free method. The main mediators of cellular responses to blue light are nitric oxide (NO) and reactive oxygen species (ROS). However, the detailed mechanism is still not fully understood. It was demonstrated that blue light induces an anti-inflammatory and antiproliferative effect; thus, it may be beneficial for hyperproliferative and chronic inflammatory skin diseases such as atopic dermatitis, eczema, and psoriasis. It was also found that blue light might cause the reduction of itching. It may be beneficial on hair growth and may be used in the treatment of acne vulgaris by reducing follicular colonization of Propionibacterium acnes. Further studies are needed to develop accurate protocols, as the clinical effects depend on the light parameters as well as the treatment length. There are no major adverse effects observed yet, but long-term safety should be monitored as there are no studies considering the long-term effects of blue light on the skin.
Collapse
Affiliation(s)
- Magdalena Sadowska
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Łódź, 90-419 Łódź, Poland; (J.N.); (A.L.)
| | | | | |
Collapse
|
31
|
Chauhan A, Gretz N. Role of Visible Light on Skin Melanocytes: A Systematic Review. Photochem Photobiol 2021; 97:911-915. [PMID: 33987856 DOI: 10.1111/php.13454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
In the last few years, the focus of phototherapy has shifted toward the visible (400-700 nm) part of the electromagnetic spectrum of light. Lately, it has been demonstrated that visible light (VL) can have both beneficial and detrimental effects, especially on the skin. Previously and until now, the most harmful effects on the skin are associated with ultraviolet radiation (UVR). After exposure to natural light, the most evident and immediate change is observed on skin pigmentation. Various wavelengths within the visible spectrum have been reported to alter skin pigmentation. However, the underlying mechanisms are incompletely understood so far. The article aims to shed light on the progress made in the photobiology field (photobiomodulation, PBM) to study the role of visible light on skin melanocytes.
Collapse
Affiliation(s)
- Aparna Chauhan
- Medical faculty of Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical faculty of Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
32
|
Ebrahiminaseri A, Sadeghizadeh M, Moshaii A, Asgaritarghi G, Safari Z. Combination treatment of dendrosomal nanocurcumin and low-level laser therapy develops proliferation and migration of mouse embryonic fibroblasts and alter TGF-β, VEGF, TNF-α and IL-6 expressions involved in wound healing process. PLoS One 2021; 16:e0247098. [PMID: 33956815 PMCID: PMC8101758 DOI: 10.1371/journal.pone.0247098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Pressure ulcer (PU) is known as the third most costly disorder usually caused by prolonged pressure and stagnation in various parts of the body. Although several therapeutic approaches are employing, obstacles in appropriate healing for skin lesions still exist which necessitates new practical alternative or adjunctive treatments. Low level laser therapy (LLLT) as one of the mentioned new strategies have gained attention. Besides, curcumin is an herbal medicine extracted from turmeric with anti-inflammatory and antioxidative properties with promising beneficial therapeutic effects in wound healing. Employing dendrosomal nanoparticles, we overcome the hydrophobicity of curcumin in the present study. We hypothesized that combination treatment of DNC+LLLT (450 nm) simultaneously may promote the wound healing process. MATERIAL AND METHODS MTT assay, PI staining followed by flowcytometry, scratch assay and intracellular ROS measurement were used to investigate the effects caused by DNC and LLLT (450 nm) alone and in combination, on proliferation, cell cycle, migration and oxidative stress mouse embryonic fibroblast cells, respectively. The levels of growth factors and pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. RESULTS Our results indicated that combination exposure with DNC and LLLT leads to increased proliferation and migration of MEFs as well as being more efficient in significantly upregulating growth factors (TGF-β, VEGF) and decline in inflammatory cytokines (TNF-α, IL-6). Moreover, findings of this research provide persuasive support for the notion that DNC could reduce the LLLT-induced enhancement in intracellular ROS in mouse embryonic fibroblasts. CONCLUSION Concurrent exposure to anti-oxidant concentrations of DNC and LLLT enriched S phase entry and therefor increased proliferation as well as migration on MEFs through regulating the expression levels growth factors and shortening the inflammatory phase by modulating of cytokines. It should be noted that DNC were able to reduce the laser-induced oxidative stress, during wound healing, representing an informative accompaniment with LLLT.
Collapse
Affiliation(s)
- Afsaneh Ebrahiminaseri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, Tehran, Iran
| | - Golareh Asgaritarghi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
33
|
Chen Z, Qin H, Lin S, Lu Z, Fan X, Liu X, Liu M. Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under Photobiomodulation of different light modes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 216:112127. [PMID: 33517070 DOI: 10.1016/j.jphotobiol.2021.112127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/28/2022]
Abstract
Cutaneous melanoma is one of the aggressive cancers. Recent studies have shown that Photobiomodulation (PBM) can inhibit the proliferation of melanoma cells. However, it is not clear that the effect of PBM light mode on the inhibition of melanoma cells. Herein, we investigated the difference of influence between continuous wave (CW) and Pulse PBM on B16F10 melanoma cells. Our results suggested that Pulse mode had a more significant inhibition on the viability of B16F10 melanoma cells than CW mode under the PBM light parameter of wavelength, dose, and average irradiance at 457 nm, 1.14 J/cm2, and 0.19 mW/cm2. Besides, we revealed the differentially expressed genes of B16F10 melanoma cells under the various treatments of PBM light mode (not PBM treatment, CW mode, and Pulse mode) by RNA sequencing. Together, our data suggested that Pulse-PBM can improve the effect of PBM on cells significantly and there may be different molecular mechanisms between Pulse and CW mode including anti-proliferative and cell necrosis. The study shed new light on investigating the molecular mechanisms of various PBM light modes on B16F10 melanoma cells.
Collapse
Affiliation(s)
- Zeqing Chen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Haokuan Qin
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China
| | - Shangfei Lin
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China
| | - Zhicheng Lu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China
| | - Xuewei Fan
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China
| | - Xuwen Liu
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China; Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China; Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai 200433, China.
| |
Collapse
|
34
|
Prabhu V, Rao BSS, Rao ACK, Prasad K, Mahato KK. Photobiomodulation invigorating collagen deposition, proliferating cell nuclear antigen and Ki67 expression during dermal wound repair in mice. Lasers Med Sci 2020; 37:171-180. [PMID: 33247410 PMCID: PMC8803692 DOI: 10.1007/s10103-020-03202-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022]
Abstract
The present investigation focuses on understanding the role of photobiomodulation in enhancing tissue proliferation. Circular excision wounds of diameter 1.5 cm were created on Swiss albino mice and treated immediately with 2 J/cm2 and 10 J/cm2 single exposures of the Helium-Neon laser along with sham-irradiated controls. During different days of healing progression (day 5, day 10, and day 15), the tissue samples upon euthanization of the animals were taken for assessing collagen deposition by Picrosirius red staining and cell proliferation (day 10) by proliferating cell nuclear antigen (PCNA) and Ki67. The positive influence of red light on collagen synthesis was found to be statistically significant on day 10 (P < 0.01) and day 15 (P < 0.05) post-wounding when compared to sham irradiation, as evident from the image analysis of collagen birefringence. Furthermore, a significant rise in PCNA (P < 0.01) and Ki67 (P < 0.05) expression was also recorded in animals exposed to 2 J/cm2 when compared to sham irradiation and (P < 0.01) compared to the 10 J/cm2 treated group as evidenced by the microscopy study. The findings of the current investigation have distinctly exhibited the assenting influence of red laser light on excisional wound healing in Swiss albino mice by augmenting cell proliferation and collagen deposition.
Collapse
Affiliation(s)
- Vijendra Prabhu
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Directorate of Research, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Anuradha Calicut Kini Rao
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Department of Pathology, Yenepoya Medical College, Yenepoya (a Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Keerthana Prasad
- Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
35
|
Akbarzadeh A, Sasanpour P, Moghimi HR. LED Photo-polymerization, a Novel Strategy for Triggered Release Liposomes. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:260-270. [PMID: 32922485 PMCID: PMC7462490 DOI: 10.22037/ijpr.2019.112366.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LED light is used for many medical and cosmetic applications such as phototherapy and skin rejuvenation. Such physical methods can be combined with drug therapy, such as LED-responsive drug delivery system, the subject of present investigation. To perform this investigation, a nanoliposome composed of DPPC, DSPE-PEG2000, and DC8,9PC, was prepared as LED-sensitive systems. Calcein was loaded in the liposomes as a fluorescent probe for drug release studies. Different LED wavelengths (blue, green and red) were used for triggering release of calcein from nanoliposome. Indoor daylight, darkness, and sunlight were applied as controls. Results showed that liposomes do not release their cargo in darkness, but they released it in response to indoor daylight, sunlight and LEDs, with the blue light showing the highest effect. Results also showed that release of calcein was sensitive to wavelength. Our results reveal potential of LED-sensitive liposomes for medical and cosmetic applications and that such system can be combined with phototherapy. Such concomitant therapies can increase medical/cosmetic effects and decrease adverse reactions to phototherapy.
Collapse
Affiliation(s)
- Afsoon Akbarzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid R Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Suh S, Choi EH, Atanaskova Mesinkovska N. The expression of opsins in the human skin and its implications for photobiomodulation: A Systematic Review. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:329-338. [PMID: 32431001 DOI: 10.1111/phpp.12578] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Skin is the organ most extensively exposed to light of a broad range of wavelengths. Several studies have reported that skin expresses photoreceptive molecules called opsins. However, the identity and functional role of opsins in the human skin remain elusive. We aim to summarize current scientific evidence on the types of opsins expressed in the skin and their biological functions. METHODS A primary literature search was conducted using PubMed to identify articles on dermal opsins found in nonhuman animals and humans. RESULTS Twenty-two articles, representing, however, a non-exhaustive selection of the scientific papers published in this specific field, met the inclusion criteria. In nonhuman animals, opsins and opsin-like structures have been detected in the skin of fruit fly, zebrafish, frog, octopus, sea urchin, hogfish, and mouse, and they mediate skin color change, light avoidance, shadow reflex, and circadian photoentrainment. In humans, opsins are present in various skin cell types, including keratinocytes, melanocytes, dermal fibroblasts, and hair follicle cells. They have been shown to mediate wound healing, melanogenesis, hair growth, and skin photoaging. CONCLUSION Dermal opsins have been identified across many nonhuman animals and humans. Current evidence suggests that opsins have biological significance beyond light reception. In nonhuman animals, opsins are involved in behaviors that are critical for survival. In humans, opsins are involved in various functions of the skin although the underlying molecular mechanisms remain unclear. Future investigation on elucidating the mechanism of dermal opsins will be crucial to expand the therapeutic benefits of photobiomodulation for various skin disorders.
Collapse
Affiliation(s)
- Susie Suh
- Department of Dermatology, University of California, Irvine, Irvine, CA, USA.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
37
|
El Najjar N, van Teeseling MCF, Mayer B, Hermann S, Thanbichler M, Graumann PL. Bacterial cell growth is arrested by violet and blue, but not yellow light excitation during fluorescence microscopy. BMC Mol Cell Biol 2020; 21:35. [PMID: 32357828 PMCID: PMC7193368 DOI: 10.1186/s12860-020-00277-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fluorescence microscopy is a powerful tool in cell biology, especially for the study of dynamic processes. Intensive irradiation of bacteria with UV, blue and violet light has been shown to be able to kill cells, but very little information is available on the effect of blue or violet light during live-cell imaging. RESULTS We show here that in the model bacterium Bacillus subtilis chromosome segregation and cell growth are rapidly halted by standard violet (405 nm) and blue light (CFP) (445-457 nm) excitation, whereas they are largely unaffected by green light (YFP). The stress sigma factor σB and the blue-light receptor YtvA are not involved in growth arrest. Using synchronized B. subtilis cells, we show that the use of blue light for fluorescence microscopy likely induces non-specific toxic effects, rather than a specific cell cycle arrest. Escherichia coli and Caulobacter crescentus cells also stop to grow after 15 one-second exposures to blue light (CFP), but continue growth when imaged under similar conditions in the YFP channel. In the case of E. coli, YFP excitation slows growth relative to white light excitation, whereas CFP excitation leads to cell death in a majority of cells. Thus, even mild violet/blue light excitation interferes with bacterial growth. Analyzing the dose-dependent effects of violet light in B. subtilis, we show that short exposures to low-intensity violet light allow for continued cell growth, while longer exposures do not. CONCLUSIONS Our experiments show that care must be taken in the design of live-cell imaging experiments in that violet or blue excitation effects must be closely controlled during and after imaging. Violet excitation during sptPALM or other imaging studies involving photoactivation has a threshold, below which little effects can be seen, but above which a sharp transition into cell death occurs. YFP imaging proves to be better suited for time-lapse studies, especially when cell cycle or cell growth parameters are to be examined.
Collapse
Affiliation(s)
- Nina El Najjar
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | | | - Benjamin Mayer
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Silke Hermann
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Martin Thanbichler
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany.,Max Planck Fellow Group "Bacterial Cell Biology", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Peter L Graumann
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany. .,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany.
| |
Collapse
|
38
|
Chen Z, Li W, Hu X, Liu M. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. BIOMEDICAL OPTICS EXPRESS 2020; 11:27-39. [PMID: 32010497 PMCID: PMC6968738 DOI: 10.1364/boe.11.000027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
Melanoma is a type of aggressive cancer. Recent studies have indicated that blue light has an inhibition effect on melanoma cells, but the effect of photobiomodulation (PBM) parameters on the treatment of melanoma remains unknown. Thus, this study was aimed to investigate B16F10 melanoma cells responses to PBM with varying irradiance and doses, and further explored the molecular mechanism of PBM. Our results suggested that the responses of B16F10 melanoma cells to PBM with varying irradiance and dose were different and the inhibition of blue light on cells under high irradiance was better than low irradiance at a constant total dose (0.04, 0.07, 0.15, 0.22, 0.30, 0.37, 0.45, 0.56 or 1.12 J/cm2), presumably due to that high irradiance can produce more ROS, thus disrupting mitochondrial function.
Collapse
Affiliation(s)
- Zeqing Chen
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Wenqi Li
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xiaojian Hu
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| |
Collapse
|
39
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
40
|
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019; 11:297-321. [PMID: 31293714 PMCID: PMC6600852 DOI: 10.4252/wjsc.v11.i6.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | | | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| |
Collapse
|
41
|
Korkina LG. Current Trends in Medicinal Chemistry of Photoprotection and Phototherapy. Curr Med Chem 2019; 25:5466-5468. [PMID: 30704377 DOI: 10.2174/092986732540181120104620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liudmila G Korkina
- Centre for Innovative Biotechnological Investigations NANOLAB (CIBI-NANOLAB) Moscow, Russian Federation
| |
Collapse
|
42
|
Castellano-Pellicena I, Uzunbajakava NE, Mignon C, Raafs B, Botchkarev VA, Thornton MJ. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med 2018; 51:370-382. [PMID: 30168605 DOI: 10.1002/lsm.23015] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light-based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV-blue light can activate Opsin 1-SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. MATERIALS AND METHODS Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro-dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT-PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch-wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. RESULTS Opsin receptors (OPN1-SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. CONCLUSIONS Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light-based therapies for cutaneous wound healing. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | | | - Charles Mignon
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Bianca Raafs
- Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - M Julie Thornton
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
43
|
Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018; 159:1992-2007. [PMID: 29546369 PMCID: PMC5905393 DOI: 10.1210/en.2017-03230] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
- Correspondence: Andrzej T. Slominski, MD, PhD, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294. E-mail:
| | | | - Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy P Szaflarski
- Departments of Neurology and Neurobiology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|