1
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
2
|
Faruque MRJ, Potocka W, Nazmi K, Ligtenberg AJ, Bikker FJ, Laine ML. Scent of relief: Mastic resin scent recovers salivation in chronic dry mouth patients. Biomed Pharmacother 2024; 178:117245. [PMID: 39111079 DOI: 10.1016/j.biopha.2024.117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Olfactory stimulation with mastic resin, derived from the Pistacia lentiscus tree, demonstrated a bona fide sialagogic effect in healthy volunteers [1]. Its main volatile compound, α-pinene, also showed this effect. The current study aimed to validate the effect of mastic resin volatiles in chronic dry mouth patients with confirmed decreased saliva secretion. METHODS 41 chronic dry mouth patients with decreased unstimulated saliva secretion (<0.25 mL/min) were exposed to mastic resin volatiles as part of the diagnostic routine at the Saliva Clinic of Academic Centre for Dentistry Amsterdam. During their visit, dry-mouth questionnaires were conducted and samples of unstimulated whole saliva, chew-stimulated saliva, acid-stimulated saliva and mastic resin stimulated saliva were collected. Saliva flow rate, spinnbarkeit, pH, ion composition, MUC5B and MUC7 levels in all samples were analyzed. RESULTS Salivary flow rates increased by all stimuli when compared to the baseline unstimulated saliva (P<0.001). During olfactory mastic resin stimulation, the salivary spinnbarkeit (P<0.001) and sodium concentration (P<0.01) were increased compared to unstimulated saliva. MUC5B and MUC7 levels were increased during olfactory mastic resin stimulation compared to chew-stimulated saliva (P=0.016 and P<0.001, respectively). Spinnbarkeit correlated positively with MUC5B (R=0.399, P=0.002) and MUC7 levels (R=0.375, P=0.004). Results of dry-mouth questionnaires indicated reduced posterior palate dryness shortly after olfactory mastic resin stimulation (P=0.04). CONCLUSIONS Olfactory mastic resin stimulation increased mucous saliva secretion and reduced posterior palate dryness in a group of chronic dry mouth patients. These findings, validated in patients, underscore mastic resin scent as a beneficial and non-invasive sialagogic treatment for clinical applications.
Collapse
Affiliation(s)
- Mouri R J Faruque
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands.
| | - Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Antoon J Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Zhao Z, Yuan Y, Li S, Wang X, Yang X. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3β inhibitors in Alzheimer's disease treatment. CNS Neurosci Ther 2024; 30:e14885. [PMID: 39129397 PMCID: PMC11317746 DOI: 10.1111/cns.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathogenesis is complex. The pathophysiology is not fully understood, and safe and effective treatments are needed. Glycogen synthase kinase 3β (GSK-3β) mediates AD progression through several signaling pathways. Recently, several studies have found that various natural compounds from herbs and nutraceuticals can significantly improve AD symptoms. AIMS This review aims to provide a comprehensive summary of the potential neuroprotective impacts of natural compounds as inhibitors of GSK-3β in the treatment of AD. MATERIALS AND METHODS We conducted a systematic literature search on PubMed, ScienceDirect, Web of Science, and Google Scholar, focusing on in vitro and in vivo studies that investigated natural compounds as inhibitors of GSK-3β in the treatment of AD. RESULTS The mechanism may be related to GSK-3β activation inhibition to regulate amyloid beta production, tau protein hyperphosphorylation, cell apoptosis, and cellular inflammation. By reviewing recent studies on GSK-3β inhibition in phytochemicals and AD intervention, flavonoids including oxyphylla A, quercetin, morin, icariin, linarin, genipin, and isoorientin were reported as potent GSK-3β inhibitors for AD treatment. Polyphenols such as schisandrin B, magnolol, and dieckol have inhibitory effects on GSK-3β in AD models, including in vivo models. Sulforaphene, ginsenoside Rd, gypenoside XVII, falcarindiol, epibrassinolides, 1,8-Cineole, and andrographolide are promising GSK-3β inhibitors. CONCLUSIONS Natural compounds from herbs and nutraceuticals are potential candidates for AD treatment. They may qualify as derivatives for development as promising compounds that provide enhanced pharmacological characteristics.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ye Yuan
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuang Li
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaofeng Wang
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Faruque M, Nazmi K, van Splunter A, Laine ML, Bikker FJ. Sialagogic Effects Through Olfactory Stimulation with Mastic Resin and α-pinene Volatiles in vivo. Biomed Pharmacother 2023; 168:115699. [PMID: 37865987 DOI: 10.1016/j.biopha.2023.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Xerostomia, often associated with decreased saliva quality, poses challenges due to limited treatment efficacy. This study aimed to investigate alternative approaches to enhance saliva secretion through olfactory volatile stimulation with mastic resin and its main compound α-pinene, known for inhibiting acetylcholinesterase in vitro. METHODS The inhibitory effects of freshly prepared mastic resin extract oil and α-pinene oil on acetylcholinesterase (AChE) activity were measured in vitro. Eighty healthy participants were recruited and divided into two groups: exposed to mastic resin volatiles (n = 40) or α-pinene volatiles (n = 40). Saliva samples were collected pre, during and post exposure to analyze saliva flow rate, spinnbarkeit, ion composition and MUC5B levels. RESULTS Mastic resin extract oil and α-pinene oil inhibited AChE activity by 207 % and 22 %, respectively. Olfactory stimulation with these volatiles significantly increased saliva secretion rate without altering spinnbarkeit and ion composition. Salivary MUC5B concentration rose after exposure to mastic resin volatiles. CONCLUSIONS Olfactory stimulation with mastic resin and α-pinene volatiles demonstrated a bona fide in vivo effect on saliva secretion, confirming their sialagogic capability, potentially as a result of local glandular AChE inhibition. These findings highlight the therapeutic potential of both volatile compounds in treating patients with xerostomia and hyposalivation through olfactory exposure.
Collapse
Affiliation(s)
- Mouri Faruque
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands.
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Annina van Splunter
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Duque JE, Urbina DL, Vesga LC, Ortiz-Rodríguez LA, Vanegas TS, Stashenko EE, Mendez-Sanchez SC. Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): an introduction to their possible mechanism of action. Sci Rep 2023; 13:2989. [PMID: 36805522 PMCID: PMC9941582 DOI: 10.1038/s41598-023-30046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Searching for new bioactive molecules to design insecticides is a complex process since pesticides should be highly selective, active against the vector, and bio-safe for humans. Aiming to find natural compounds for mosquito control, we evaluated the insecticidal activity of essential oils (EOs) from 20 American native plants against Aedes aegypti larvae using bioassay, biochemical, and in silico analyses. The highest larvicide activity was exhibited by EOs from Steiractinia aspera (LC50 = 42.4 µg/mL), Turnera diffusa (LC50 = 70.9 µg/mL), Piper aduncum (LC50 = 55.8 µg/mL), Lippia origanoides (chemotype thymol/carvacrol) (LC50 = 61.9 µg/mL), L. origanoides (chemotype carvacrol/thymol) (LC50 = 59.8 µg/mL), Hyptis dilatata (LC50 = 61.1 µg/mL), Elaphandra quinquenervis (LC50 = 61.1 µg/mL), and Calycolpus moritzianus (LC50 = 73.29 µg/mL) after 24 h. This biological activity may be related to the disruption of the electron transport chain through the mitochondrial protein complexes. We hypothesized that the observed EOs' effect is due to their major components, where computational approaches such as homology modeling and molecular docking may suggest the possible binding pose of secondary metabolites that inhibit the mitochondrial enzymes and acetylcholinesterase activity (AChE). Our results provided insights into the possible mechanism of action of EOs and their major compounds for new insecticide designs targeting the mitochondria and AChE activity in A. aegypti for effective and safe insecticide.
Collapse
Affiliation(s)
- Jonny E. Duque
- grid.411595.d0000 0001 2105 7207Centro de Investigaciones en Enfermedades Tropicales – Cintrop, Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones Guatiguará Km 2 El Refugio, Piedecuesta, Colombia
| | - Diana L. Urbina
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Luis C. Vesga
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Luis A. Ortiz-Rodríguez
- grid.411595.d0000 0001 2105 7207Centro de Investigaciones en Enfermedades Tropicales – Cintrop, Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones Guatiguará Km 2 El Refugio, Piedecuesta, Colombia
| | - Thomas S. Vanegas
- grid.411595.d0000 0001 2105 7207Centro de Investigaciones en Enfermedades Tropicales – Cintrop, Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones Guatiguará Km 2 El Refugio, Piedecuesta, Colombia
| | - Elena E. Stashenko
- grid.411595.d0000 0001 2105 7207Centro de Investigación en Biomoléculas – CIBIMOL y Centro Nacional de Investigación para la Agroindustrialización de Plantas Aromáticas y Medicinales Tropicales – CENIVAM, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Stelia C. Mendez-Sanchez
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
6
|
Laws JS, Smid SD. Evaluating Cannabis sativa L.'s neuroprotection potential: From bench to bedside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154485. [PMID: 36209703 DOI: 10.1016/j.phymed.2022.154485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer's disease. Although several approved treatments exist for Alzheimer's disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases. PURPOSE This review evaluated the neuroprotective potential of C. sativa's active constituents for potential therapeutic use in dementia and Alzheimer's disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration. STUDY DESIGN Relevant information on the neuroprotective potential of the C. sativa's phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa's component bioactivity was organized for therapeutic applications against neurodegenerative diseases. METHODS The therapeutic use of C. sativa related to Alzheimer's disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer's disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer's disease, amyloid β. CONCLUSIONS These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.
Collapse
Affiliation(s)
- John Staton Laws
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
7
|
Plant Nanovesicles for Essential Oil Delivery. Pharmaceutics 2022; 14:pharmaceutics14122581. [PMID: 36559075 PMCID: PMC9784947 DOI: 10.3390/pharmaceutics14122581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Essential oils' therapeutic potential is highly recognized, with many applications rising due to reported anti-inflammatory, cardioprotective, neuroprotective, anti-aging, and anti-cancer effects. Nevertheless, clinical translation still remains a challenge, mainly due to essential oils' volatility and low water solubility and stability. The present review gathers relevant information and postulates on the potential application of plant nanovesicles to effectively deliver essential oils to target organs. Indeed, plant nanovesicles are emerging as alternatives to mammalian vesicles and synthetic carriers due to their safety, stability, non-toxicity, and low immunogenicity. Moreover, they can be produced on a large scale from various plant parts, enabling an easier, more rapid, and less costly industrial application that could add value to waste products and boost the circular economy. Importantly, the use of plant nanovesicles as delivery platforms could increase essential oils' bioavailability and improve chemical stability while reducing volatility and toxicity issues. Additionally, using targeting strategies, essential oils' selectivity, drug delivery, and efficacy could be improved, ultimately leading to dose reduction and patient compliance. Bearing this in mind, information on current pharmaceutical technologies available to enable distinct routes of administration of loaded vesicles is also discussed.
Collapse
|
8
|
Saeedi M, Iraji A, Vahedi-Mazdabadi Y, Alizadeh A, Edraki N, Firuzi O, Eftekhari M, Akbarzadeh T. Cinnamomum verum J. Presl. Bark essential oil: in vitro investigation of anti-cholinesterase, anti-BACE1, and neuroprotective activity. BMC Complement Med Ther 2022; 22:303. [DOI: 10.1186/s12906-022-03767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Cinnamomum verum J. Presl. (Lauraceae), Myrtus communis L. (Myrtaceae), Ruta graveolens L. (Rutaaceae), Anethum graveolens L. (Apiaceae), Myristica fragrans Houtt. (Myristicaceae), and Crocus sativus L. (Iridaceae) have been recommended for improvement of memory via inhalation, in Iranian Traditional Medicine (ITM). In this respect, the essential oils (EOs) from those plants were obtained and evaluated for cholinesterase (ChE) inhibitory activity as ChE inhibitors are the available drugs in the treatment of Alzheimer’s disease (AD).
Methods
EOs obtained from the plants under investigation, were evaluated for their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro based on the modified Ellman’s method. The most potent EO was candidate for the investigation of its beta-secretase 1 (BACE1) inhibitory activity and neuroprotectivity.
Results
Among all EOs, C. verum demonstrated the most potent activity toward AChE and BChE with IC50 values of 453.7 and 184.7 µg/mL, respectively. It also showed 62.64% and 41.79% inhibition against BACE1 at the concentration of 500 and 100 mg/mL, respectively. However, it depicted no neuroprotective potential against β-amyloid (Aβ)-induced neurotoxicity in PC12 cells. Also, identification of chemical composition of C. verum EO was achieved via gas chromatography-mass spectrometry (GC-MS) analysis and the major constituent; (E)-cinnamaldehyde, was detected as 68.23%.
Conclusion
Potent BChE inhibitory activity of C. verum EO can be considered in the development of cinnamon based dietary supplements for the management of patients with advanced AD.
Collapse
|
9
|
Salinas M, Bec N, Calva J, Larroque C, Vidari G, Armijos C. Constituents, Enantiomeric Content, and ChE Inhibitory Activity of the Essential Oil from Hypericum laricifolium Juss. Aerial Parts Collected in Ecuador. PLANTS (BASEL, SWITZERLAND) 2022; 11:2962. [PMID: 36365414 PMCID: PMC9659171 DOI: 10.3390/plants11212962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The physical properties, chemical composition, enantiomer distribution, and cholinesterase (ChE) inhibitory activity were determined for a steam-distilled essential oil (EO), with a yield of 0.15 ± 0.05 % (w/w), from H. laricifolium aerial parts, collected in southern Ecuador. The oil qualitative and quantitative analyses were performed by GC-EIMS and GC-FID techniques, using two capillary columns containing a non-polar 5%-phenyl-methylpolysiloxane and a polar polyethylene glycol stationary phase, respectively. The main constituents (>10%) detected on the two columns were, respectively, limonene (24.29, 23.16%), (E)-β-ocimene (21.89, 27.15%), and (Z)-β-ocimene (12.88, 16.03%). The EO enantioselective analysis was carried out using a column based on 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin. Two mixtures of chiral monoterpenes were detected containing (1R,5R)-(+)-α-pinene (ee = 83.68%), and (S)-(-)-limonene (ee = 88.30%) as the major enantiomers. This finding led to some hypotheses about the existence in the plant of two enantioselective biosynthetic pathways. Finally, the EO exhibited selective inhibitory effects in vitro against butyrylcholinesterase (BuChE) (IC50 = 36.80 ± 2.40 µg/mL), which were about three times greater than against acetylcholinesterase (IC50 = 106.10 ± 20.20). Thus, the EO from Ecuadorian H. laricifolium is an interesting candidate for investigating the mechanism of the selective inhibition of BuChE and for discovering novel drugs to manage the progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Melissa Salinas
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Nicole Bec
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health and Medical Research (INSERM), 34295 Montpellier, France
| | - James Calva
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Christian Larroque
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health and Medical Research (INSERM), 34295 Montpellier, France
| | - Giovanni Vidari
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Chabaco Armijos
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| |
Collapse
|
10
|
Jaffar S, Lu Y. Toxicity of Some Essential Oils Constituents against Oriental Fruit Fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). INSECTS 2022; 13:954. [PMID: 36292900 PMCID: PMC9603982 DOI: 10.3390/insects13100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The massive use of synthetic pesticides to manage agricultural pests results in environmental pollution and health hazards. The secondary plant metabolites, which are majorly dominated by terpenoids, have the potential to be developed into novel alternatives to synthetic chemicals. Therefore, in our current investigation, six majorly dominated essential oil constituents were evaluated for their toxicity against adults and immature stages of oriental fruit flies, Bactrocera dorsalis, a worldwide fruit pest. The results indicated that carvacrol was the most toxic essential oil constituent (EOC) to adult flies, with LC50 of 19.48 mg/mL via fumigant assay, followed by thujone 75% mortality via ingestion toxicity test against adult fruit flies. Similarly, when larvae were dipped in different concentrations of EOCs, carvacrol appeared as the most toxic EOC with the lowest LC50 (29.12 mg/mL), followed by (-)-alpha-pinene (26.54 mg/mL) and (R)-(+)-limonene (29.12 mg/mL). In the oviposition deterrence tests, no egg was observed on oranges seedlings treated with 5% of each EOC (100% repellency). Regarding the repellency assay, a significantly higher number of flies (77%) were repelled from the Y-tube olfactometer arm containing (-)-alpha-pinene, followed by carvacrol (76%). Our results showed that the selected essential oil constituent has the potential to be developed as an alternative to synthetic pesticides against B. dorsalis. However, further research is required to assess the activities of these EOCs under open-field conditions.
Collapse
|
11
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
12
|
Wang S, Gao Y, Liu Z, Ren D, Sun H, Niu L, Yang D, Zhang D, Liang X, Shi R, Qi X, Lei A. Site-selective amination towards tertiary aliphatic allylamines. Nat Catal 2022. [DOI: 10.1038/s41929-022-00818-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Synergistic Effect of Bioactive Monoterpenes against the Mosquito, Culex pipiens (Diptera: Culicidae). Molecules 2022; 27:molecules27134182. [PMID: 35807427 PMCID: PMC9268466 DOI: 10.3390/molecules27134182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Mosquitoes represent one of the most important vectors and are responsible for the transmission of many arboviruses that affect human and animal health. The chemical method using synthetic insecticides disturbs the environmental system and promotes the appearance of resistant insect species. Therefore, this study investigated the insecticidal effect of some binary monoterpene combinations (1,8 cineole + α-pinene and carvone + R (+)-pulegone) using a mixture design approach. The fumigant toxicity was evaluated against Culex pipiens female adults using glass jars. The results show that the toxicity varies according to the proportions of each compound. Indeed, Mixture 1 (1,8-cineole + α-pinene) displayed a strong toxic effect (51.00 ± 0.86% after 24 h and 100.00 ± 0.70% after 48 h) when the pure compounds were tested at 0.25/0.75 proportions of 1,8-cineole and α-pinene, respectively. Nevertheless, the equal proportion (0.5/0.5) of carvone and R (+)-pulegone in Mixture 2 exhibited a toxic effect of 54.35 ± 0.75% after 24 h and 89.96 ± 0.14% after 48 h, respectively. For Mixture 1, the maximum area of mortality that the proposed model indicated was obtained between 0/1 and 0.25/0.75, while the maximum area of mortality in the case of Mixture 2 was obtained between 0.25/0.75 and 0.75/0.25. Moreover, the maximum possible values of mortality that could be achieved by the validated model were found to be 51.44% (after 24 h) and 100.24% (after 48 h) for Mixture 1 and 54.67% (after 24 h) and 89.99% (after 48 h) for Mixture 2. It can be said that all purev molecules tested through the binary mixtures acted together, which enhanced the insecticide’s effectiveness. These findings are very promising, as the chemical insecticide (deltamethrin) killed only 19.29 ± 0.01% and 34.05 ± 1.01% of the female adults after 24 h and 48 h, respectively. Thus, the findings of our research could help with the development of botanical insecticides that might contribute to management programs for controlling vectors of important diseases.
Collapse
|
14
|
Zayed A, Sobeh M, Farag MA. Dissecting dietary and semisynthetic volatile phenylpropenes: A compile of their distribution, food properties, health effects, metabolism and toxicities. Crit Rev Food Sci Nutr 2022; 63:11105-11124. [PMID: 35708064 DOI: 10.1080/10408398.2022.2087175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylpropenes represent a major subclass of plant volatiles, including eugenol, and (E)-anethole. They contribute to the flavor and aroma of many chief herbs and spices, to exert distinct notes in food, i.e., spicy anise- and clove-like to fruit. Asides from their culinary use, they appear to exert general health effects, whereas some effects are specific, e.g., eugenol being a natural local anesthetic. This review represents the most comprehensive overview of phenylpropenes with respect to their chemical structures, different health effects, and their food applications as flavor and food preservatives. Side effects and toxicities of these compounds represent the second main part of this review, as some were reported for certain metabolites generated inside the body. Several metabolic reactions mediating for phenylpropenes metabolism in rodents via cytochrome P450 (CYP450) and sulfotransferase (SULT) enzymes are presented being involved in their toxicities. Such effects can be lessened by influencing their pharmacokinetics through a matrix-derived combination effect via administration of herbal extracts containing SULT inhibitors, i.e., nevadensin in sweet basil. Moreover, structural modification of phenylpropanes appears to improve their effects and broaden their applications. Hence, such review capitalizing on phenylpropenes can help optimize their applications in nutraceuticals, cosmeceuticals, and food applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Sánchez-Martínez JD, Alvarez-Rivera G, Gallego R, Fagundes MB, Valdés A, Mendiola JA, Ibañez E, Cifuentes A. Neuroprotective potential of terpenoid-rich extracts from orange juice by-products obtained by pressurized liquid extraction. Food Chem X 2022; 13:100242. [PMID: 35498984 PMCID: PMC9040013 DOI: 10.1016/j.fochx.2022.100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 02/02/2022] [Indexed: 01/17/2023] Open
Abstract
Orange juice by-products valorized by green PLE process. Terpenoid-rich PLE extract with enhanced in-vitro neuroprotective activity. Molecular docking between terpenoids and active sites of the target enzymes. Selected PLE extracts show human cell-based neuroprotection capacity.
Pressurized liquid extraction (PLE) conditions were optimized to improve the recovery of orange (Citrus sinensis) by-products terpenoids. The neuroprotective potential of the PLE extracts were tested against a set of in-vitro assay (antioxidant (ABTS), reactive oxygen/nitrogen species (ROS/RNS)) as well as enzymatic tests (acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and lipoxygenase (LOX)). Gas chromatography coupled to high-resolution mass spectrometry (GC-q-TOF-MS) analysis revealed a higher enrichment in mono- and sesquiterpenoids of the PLE extracts with the highest neuroprotection capacity. In-silico molecular docking analysis showed the specific interaction of representative terpenoids with enzymes active sites. The results demonstrate that the selected extract at 100 °C and 30 minutes possesses high antioxidant (ABTSIC50 = 13.5 μg mL−1; ROSIC50 = 4.4 μg mL−1), anti-cholinesterase (AChEIC50 = 137.1 vg L−1; BChEIC50 = 147.0 μg mL−1) and anti-inflammatory properties (against IL-6 and LOXIC50 = 76.1 μg mL−1), with low cytotoxicity and protection against L-glutamic acid in cell models.
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Rocio Gallego
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Mariane Bittencourt Fagundes
- Department of Food Technology and Science, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Jose A Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
16
|
Li BY, Kang GQ, Huang M, Duan WG, Lin GS, Huang M, Wang X. Synthesis, bioactivity and computational simulation study of novel (Z)-3-caren-5-one oxime ethers as potential antifungal agents. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04690-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Development, Characterization, and Immunomodulatory Evaluation of Carvacrol-loaded Nanoemulsion. Molecules 2021; 26:molecules26133899. [PMID: 34202367 PMCID: PMC8271444 DOI: 10.3390/molecules26133899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 01/12/2023] Open
Abstract
Carvacrol (CV) is an essential oil with numerous therapeutic properties, including immunomodulatory activity. However, this effect has not been studied in nanoemulsion systems. The objective of this study was to develop an innovative carvacrol-loaded nanoemulsion (CVNE) for immunomodulatory action. The developed CVNE comprised of 5% w/w oily phase (medium chain triglycerides + CV), 2% w/w surfactants (Tween 80®/Span 80®), and 93% w/w water, and was produced by ultrasonication. Dynamic light scattering over 90 days was used to characterize CVNE. Cytotoxic activity and quantification of cytokines were evaluated in peripheral blood mononuclear cell (PBMC) culture supernatants. CVNE achieved a drug loading of 4.29 mg/mL, droplet size of 165.70 ± 0.46 nm, polydispersity index of 0.14 ± 0.03, zeta potential of −10.25 ± 0.52 mV, and good stability for 90 days. CVNE showed no cytotoxicity at concentrations up to 200 µM in PBMCs. CV diminished the production of IL-2 in the PBMC supernatant. However, CVNE reduced the levels of the pro-inflammatory cytokines IL-2, IL-17, and IFN-γ at 50 µM. In conclusion, a stable CVNE was produced, which improved the CV immunomodulatory activity in PBMCs.
Collapse
|
18
|
Ak G, Zengin G, Ceylan R, Fawzi Mahomoodally M, Jugreet S, Mollica A, Stefanucci A. Chemical composition and biological activities of essential oils from
Calendula officinalis
L. flowers and leaves. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gunes Ak
- Physiology and Biochemistry Research Laboratory Deparment of Biology Science Faculty Selcuk University Konya Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory Deparment of Biology Science Faculty Selcuk University Konya Turkey
| | - Ramazan Ceylan
- Physiology and Biochemistry Research Laboratory Deparment of Biology Science Faculty Selcuk University Konya Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences Faculty of Medicine and Health Sciences University of Mauritius Réduit Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences Faculty of Medicine and Health Sciences University of Mauritius Réduit Mauritius
| | - Adriano Mollica
- Department of Pharmacy University “G. d’Annunzio” of Chieti‐Pescara Chieti‐Pescara Italy
| | - Azzurra Stefanucci
- Department of Pharmacy University “G. d’Annunzio” of Chieti‐Pescara Chieti‐Pescara Italy
| |
Collapse
|
19
|
Nuzzo D, Picone P, Giardina C, Scordino M, Mudò G, Pagliaro M, Scurria A, Meneguzzo F, Ilharco LM, Fidalgo A, Alduina R, Presentato A, Ciriminna R, Di Liberto V. New Neuroprotective Effect of Lemon IntegroPectin on Neuronal Cellular Model. Antioxidants (Basel) 2021; 10:669. [PMID: 33923111 PMCID: PMC8145755 DOI: 10.3390/antiox10050669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lemon IntegroPectin obtained via hydrodynamic cavitation of organic lemon processing waste in water shows significant neuroprotective activity in vitro, as first reported in this study investigating the effects of both lemon IntegroPectin and commercial citrus pectin on cell viability, cell morphology, reactive oxygen species (ROS) production, and mitochondria perturbation induced by treatment of neuronal SH-SY5Y human cells with H2O2. Mediated by ROS, including H2O2 and its derivatives, oxidative stress alters numerous cellular processes, such as mitochondrial regulation and cell signaling, propagating cellular injury that leads to incurable neurodegenerative diseases. These results, and the absence of toxicity of this new pectic substance rich in adsorbed flavonoids and terpenes, suggest further studies to investigate its activity in preventing, retarding, or even curing neurological diseases.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.A.); (A.P.)
| | - Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.A.); (A.P.)
| | - Costanza Giardina
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (C.G.); (M.S.); (G.M.)
| | - Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (C.G.); (M.S.); (G.M.)
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (C.G.); (M.S.); (G.M.)
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (M.P.); (A.S.)
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (M.P.); (A.S.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Laura M. Ilharco
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.M.I.); (A.F.)
| | - Alexandra Fidalgo
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.M.I.); (A.F.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.A.); (A.P.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.A.); (A.P.)
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (M.P.); (A.S.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (C.G.); (M.S.); (G.M.)
| |
Collapse
|
20
|
Bektašević M, Politeo O, Carev I. Comparative Study of Chemical Composition, Cholinesterase Inhibition and Antioxidant Potential of
Mentha pulegium
L. Essential Oil. Chem Biodivers 2021; 18:e2000935. [DOI: 10.1002/cbdv.202000935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Mejra Bektašević
- Department of Biochemistry, University of Bihać Biotechnical Faculty Luke Marjanovića bb BA-77000 Bihać Bosnia and Herzegovina
| | - Olivera Politeo
- Department of Biochemistry, University of Split Faculty of Chemistry and Technology Ruđera Boškovića 35 HR-21000 Split Croatia
| | - Ivana Carev
- Department of Biochemistry, University of Split Faculty of Chemistry and Technology Ruđera Boškovića 35 HR-21000 Split Croatia
| |
Collapse
|
21
|
Szwajgier D, Baranowska-Wójcik E. Terpenes and Phenylpropanoids as Acetyl- and Butyrylcholinesterase Inhibitors: A Comparative Study. Curr Alzheimer Res 2020; 16:963-973. [PMID: 31660828 DOI: 10.2174/1567205016666191010105115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/31/2019] [Accepted: 09/28/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cholinesterase inhibitors are routinely applied in the treatment of Alzheimer's disease, and seeking new cholinesterase inhibitors is a priority. OBJECTIVES Twenty seven compounds were compared, including ones not previously tested. An attempt was undertaken to precisely describe the role of alcohol in the inhibitory activity. This paper underlines the role of a "false positive" blank sample in the routine analysis. METHODS The inhibition of cholinesterase was measured using Ellman's colorimetric method with a few modifications designed by the authors (including the "false-positive" effect). The inhibitory role of ethanol and methanol was also carefully evaluated. The present and past results were compared taking the source of enzyme and alcohol content into consideration. RESULTS For the first time, new inhibitors were identified, namely: methyl jasmonate, 1R-(-)-nopol ((anti-acetyl-(AChE) and butyrylcholinesterase (BChE) activity)) and 1,4-cineole, allo-aromadendrene, nerolidol, β-ionone, and (R)-(+)-pulegone (anti-BChE activity). Oleanolic acid and (+)-β-citronellene (not previously studied) proved to be inefficient inhibitors. For a number of well-known inhibitors (such as nerol, (-)-menthol, (+)-menthol, isoborneol, (-)-bornyl acetate, limonene, α-pinene, β-pinene, α- ionone, and eugenol) some serious discrepancies were observed between our findings and the results of previous studies. Ethanol and methanol showed no anti-AChE activity up to 0.29% (v/v) and 0.23% (v/v), respectively. Similarly, ethanol up to 0.33% (v/v) and methanol up to 0.29% (v/v) did not inhibit the activity of BChE. CONCLUSION It can be stated that the impact of alcohol should be precisely determined and that blank "false-positive" samples should be processed together with test samples. Furthermore, the effect of the enzyme origin on the result of this test must be taken into consideration.
Collapse
Affiliation(s)
- Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
22
|
Mocan A, Babotă M, Pop A, Fizeșan I, Diuzheva A, Locatelli M, Carradori S, Campestre C, Menghini L, Sisea CR, Sokovic M, Zengin G, Păltinean R, Bădărău S, C. Vodnar D, Crișan G. Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur. Antioxidants (Basel) 2020; 9:E480. [PMID: 32498441 PMCID: PMC7346212 DOI: 10.3390/antiox9060480] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Even though Salvia genus is one of the most known and studied taxa of Lamiaceae family, the knowledge regarding the chemical composition and health-related benefits of some locally used Salvia species (mostly endemic) is still scarce. In this regard, the present work aims to evaluate the chemical profile and potential bioactivities of 70% (v/v) ethanolic extracts obtained from the less-studied S. transsylvanica and S. glutinosa in comparison with S. officinalis. HPLC-PDA analysis revealed the presence of rutin and catechin as the main compounds in the extracts of the three studied species (using the employed HPLC method), whereas the presence of naringenin was highlighted only in S. glutinosa extract. Chlorogenic acid, rutin and quercetin were identified and quantified for the first time in S. transsylvanica extracts. The in vitro antioxidant capacity of each extract was tested through complementary methods (phosphomolybdenum assay, DPPH, ABTS, CUPRAC and FRAP assays), and correlated with the presence of phenolics (especially flavonoids) in high amounts. The neuroprotective and antidiabetic abilities of S. officinalis (the most active as AChE, BChE and α-glucosidase inhibitor), S. glutinosa (the most active as α-amylase inhibitor) and S. transsylvanica were also studied. For each extract it was determined the antimicrobial, antifungal and cytotoxic effects using in vitro assays. The obtained results confirm the potential of S. transsylvanica and S. glutinosa as promising sources of bioactive compounds and as a starting point for further analyses.
Collapse
Affiliation(s)
- Andrei Mocan
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.M.); (M.B.); (A.P.); (I.F.); (R.P.); (G.C.)
| | - Mihai Babotă
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.M.); (M.B.); (A.P.); (I.F.); (R.P.); (G.C.)
| | - Anca Pop
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.M.); (M.B.); (A.P.); (I.F.); (R.P.); (G.C.)
| | - Ionel Fizeșan
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.M.); (M.B.); (A.P.); (I.F.); (R.P.); (G.C.)
| | - Alina Diuzheva
- Department of Pharmacy, “G. d’Annunzio” University of Chieti—Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.D.); (M.L.); (S.C.); (C.C.)
| | - Marcello Locatelli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti—Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.D.); (M.L.); (S.C.); (C.C.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti—Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.D.); (M.L.); (S.C.); (C.C.)
| | - Cristina Campestre
- Department of Pharmacy, “G. d’Annunzio” University of Chieti—Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.D.); (M.L.); (S.C.); (C.C.)
| | - Luigi Menghini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti—Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.D.); (M.L.); (S.C.); (C.C.)
| | - Cristian R. Sisea
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Marina Sokovic
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia;
| | - Gokhan Zengin
- Faculty of Science, Selcuk University, Campus/Konya, 42250 Konya, Turkey;
| | - Ramona Păltinean
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.M.); (M.B.); (A.P.); (I.F.); (R.P.); (G.C.)
| | - Sabin Bădărău
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Dan C. Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Gianina Crișan
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.M.); (M.B.); (A.P.); (I.F.); (R.P.); (G.C.)
| |
Collapse
|
23
|
Karakaya S, Bingol Z, Koca M, Demirci B, Gulcin I, Baser KHC. Screening of non-alkaloid acetylcholinesterase and carbonic anhydrase isoenzymes inhibitors ofLeiotulus dasyanthus(K. Koch) Pimenov & Ostr. (Apiaceae). JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1746415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Songul Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Zeynebe Bingol
- Department of Medical Services and Techniques, Vocational School of Health Services, Gaziosmanpasa University, Tokat, Turkey
| | - Mehmet Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Betül Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| | - K. Hüsnü Can Baser
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia, Northern Cyprus
| |
Collapse
|
24
|
Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharm J 2019; 28:1-14. [PMID: 31920428 PMCID: PMC6950969 DOI: 10.1016/j.jsps.2019.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022] Open
Abstract
In current study is done antioxidant, anticholinesterase, and carbonic anhydrase isoenzymes I and II inhibition assays, screening of biological active compounds and electronic microscopy analysis of secretory canals of fruits, flowers, roots, and aerial parts extracts and essential oils of Angelica purpurascens. Phenolic constituents, antioxidant, and anti-lipid peroxidation potentials of variants were estimated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) processes. Cholinesterase inhibition effect was detected through Ellman’s method. The GC/ Mass Spectrometry (MS) and gas chromatography (GC)-flame Ionization Detector (FID) was used for essential oils analysis. NMR techniques was used for identification of the isolated compounds. The fruit hexane and dichloromethane fractions exhibited a greater antioxidant capacity and total phenolic content. The dichloromethane fraction of fruit demonstrated the most higher acetylcholinesterase inhibition (39.86 ± 2.63%), while the fruit hexane fraction displayed the best inhibition towards butyrylcholinesterase (84.02 ± 1.28%). Cytosolic isoenzymes of human carbonic anhydrase (hCA) I, and II isoenzymes were influentially suppressed by flower and fruit dichloromethane fractions with 1.650 and 2.020 µM IC50 values, respectively. The electronic microscopy analysis of secretory canals found that the small number of secretory canals were at leaf while the largest shape of secretory canals was at the fruit. The secretory canals of roots, aerial parts, and fruits include more monoterpene hydrocarbons, while the canals, existing in the flowers are qualified by a higher presence of sesquiterpenes β-caryophyllene (12.1%), germacrene D (4.5%) and ether octyl acetate (11.9%). The highest level of monoterpene β-phellandrene (47.6%) and limonene (8.2%) were found in the fruit essential oil. The next isolated compounds from fruits of A. purpurascens like stigmasterol, β-sitosterol, bergapten, and oxypeucedanin have shown high anticholinesterase and antioxidant activities.
Collapse
|
25
|
de Oliveira MS, da Cruz JN, Gomes Silva S, da Costa WA, de Sousa SHB, Bezerra FWF, Teixeira E, da Silva NJN, de Aguiar Andrade EH, de Jesus Chaves Neto AM, de Carvalho RN. Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Karakaya S, Koca M, Yılmaz SV, Yıldırım K, Pınar NM, Demirci B, Brestic M, Sytar O. Molecular Docking Studies of Coumarins Isolated from Extracts and Essential Oils of Zosima absinthifolia Link as Potential Inhibitors for Alzheimer's Disease. Molecules 2019; 24:molecules24040722. [PMID: 30781573 PMCID: PMC6412260 DOI: 10.3390/molecules24040722] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Coumarins and essential oils are the major components of the Apiaceae family and the Zosima genus. The present study reports anticholinesterase and antioxidant activities of extracts and essential oils from aerial parts, roots, flowers, fruits and coumarins—bergapten (1); imperatorin (2), pimpinellin (3) and umbelliferone (4)—isolated of the roots from Zosima absinthifolia. The investigation by light and scanning electron microscopy of the structures of secretory canals found different chemical compositions in the various types of secretory canals which present in the aerial parts, fruits and flowers. The canals, present in the aerial parts, are characterized by terpene hydrocarbons, while the secretory canals of roots, flowers and fruits include esters. Novel data of a comparative study on essential oils constituents of aerial parts, roots, flowers and fruits of Z. absinthfolia has been presented. The roots and fruits extract showed a high content of total phenolics and antioxidant activity. The GC-FID and GC-MS analysis revealed that the main components of the aerial parts, roots, flowers and fruits extracts were octanol (8.8%), octyl octanoate (7.6%), octyl acetate (7.3%); trans-pinocarvyl acetate (26.7%), β-pinene (8.9%); octyl acetate (19.9%), trans-p-menth-2-en-1-ol (4.6%); octyl acetate (81.6%), and (Z)-4-octenyl acetate (5.1%). The dichloromethane fraction of fruit and flower essential oil was characterized by the highest phenolics level and antioxidant activity. The dichloromethane fraction of fruit had the best inhibition against butyrylcholinesterase enzyme (82.27 ± 1.97%) which was higher then acetylcholinesterase inhibition (61.09 ± 4.46%) of umbelliferone. This study shows that the flowers and fruit of Z. absinthifolia can be a new potential resource of natural antioxidant and anticholinesterase compounds.
Collapse
Affiliation(s)
- Songul Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey.
| | - Mehmet Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey.
| | - Serdar Volkan Yılmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey.
| | - Kadir Yıldırım
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey.
| | - Nur Münevver Pınar
- Department of Biology, Faculty of Science, Ankara University, 06560 Ankara, Turkey.
| | - Betül Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26210 Eskisehir, Turkey.
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University in Nitra, 94976 Nitra, Slovak.
| | - Oksana Sytar
- Department of Plant Physiology, Slovak Agricultural University in Nitra, 94976 Nitra, Slovak.
- Department of Plant Biology, Educational and Scientific Center "Institute of Biology and Medicine", Kiev National University of Taras Shevchenko, Hlushkova Avenue, 2, 03127 Kyiv, Ukraine.
| |
Collapse
|