1
|
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review. J Pharm Anal 2023; 13:1429-1451. [PMID: 38223444 PMCID: PMC10785256 DOI: 10.1016/j.jpha.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
Collapse
Affiliation(s)
- Changhong Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
2
|
Kasztelan M, Zoladek S, Wieczorek W, Palys B. Template-Free Synthesized Gold Nanobowls Composed with Graphene Oxide for Ultrasensitive SERS Platforms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16960-16969. [PMID: 37674654 PMCID: PMC10478765 DOI: 10.1021/acs.jpcc.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
Engineering of plasmonic properties of gold nanostructures expands the field of their applications from photocatalysis and photothermal effects to ultrasensitive surface-enhanced Raman spectroscopy (SERS). The known methods of preparation of gold nanobowls involve the deposition of gold layer on polymers or silicon nanotemplates and the removal of the top layer of gold together with the template. Such gold nanobowls are characterized by very broad plasmonic bands due to the plasmon hybridization. The sharp edges on the top of nanobowls are potential sources of the strong electromagnetic field beneficial for SERS. We present a novel template-free synthesis of gold nanobowls (AuNBs). The AuNB layers are deposited on graphene oxide (GO) layers. We compare AuNBs with gold nanospheres (AuNSs) and gold nanourchins (AuNUs) having similar size. The gold nanoparticles are combined with pristine GO or graphene oxide conditioned in ammonia (GONH3) or graphene oxide conditioned in sodium hydroxide (GONaOH). The SERS properties of the hybrid supports were studied using rhodamine 6G (R6G) as the SERS probe. The 633 nm laser line was used, which falls out of the molecular resonance with R6G. The results indicate that AuNBs show largely higher enhancement factors when compared to AuNUs and AuNSs. Furthermore, the GO materials are able to modify the SERS enhancement by 1 order of magnitude. We explain the influence of the GO material by three factors: (1) enabling or disabling the charge transfer between gold and R6G, which is crucial for the chemical part of SERS enhancement; (2) causing the aggregation of gold nanoparticles and formation of hot spots; (3) dipole contribution to the electromagnetic enhancement through the abundance of polar groups on the surface.
Collapse
Affiliation(s)
- Mateusz Kasztelan
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Sylwia Zoladek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Władysław Wieczorek
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Barbara Palys
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
3
|
Zhang X, Li Y, Zhang K, Yin Y, Wang J, Wang L, Wang Z, Zhang R, Wang H, Zhang Z. Graphene oxide affects bacteriophage infection of bacteria by promoting the formation of biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163027. [PMID: 36963686 DOI: 10.1016/j.scitotenv.2023.163027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023]
Abstract
Graphene oxide (GO) is increasingly used in a range of fields, such as electronics, biosensors, drug delivery, and water treatment, and the likelihood of its release into the environment is increasing correspondingly. GO is involved in the formation of biofilms and leads bacteria to over proliferate, but the effects of GO on bacteriophage infection remain unexplored. We noted bacterial overgrowth in experiments when GO was used to treat the bacterial culture medium, leading us to question whether bacterial proliferation caused by GO affects phage infection of target bacteria. Treating Pseudomonas aeruginosa with GO at a low dosage (0.02 mg/mL) led to biofilm expansion in LB medium. Biofilm formation in the presence of GO affected the ability of bacteriophages to kill bacteria and reproduce. Similarly, the presence of GO deposits increased the ratio of bacteria to phage, providing a favorable environment for bacterial growth. Additionally, increasing the positive electrical charge in the culture environment inhibited the rejection of bacteriophages by negatively charged GO, improving phage reproduction. Finally, adding GO to sewage in imitation field experiments significantly increased the bacterial diversity and richness in the sewage, stimulating a significant increase in the variety and number of bacteria. Collectively, these results indicate that GO hinders phage infection by providing a bacterial refuge. The results of this study provide valuable insights into how GO interacts with bacteriophages to explore the effects on bacterial growth.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ying Li
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250102, China
| | - Kexin Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250102, China
| | - Yansong Yin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250102, China
| | - Jie Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Luocheng Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zhexing Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250102, China.
| | - Haijun Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China.
| | - Zhong Zhang
- Weifang Medical University, Weifang, 261053, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China.
| |
Collapse
|
4
|
Chen Y, An Q, Teng K, Liu C, Sun F, Li G. Application of SERS in In-Vitro Biomedical Detection. Chem Asian J 2023; 18:e202201194. [PMID: 36581747 DOI: 10.1002/asia.202201194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid and nondestructive biological detection method, holds great promise for clinical on spot and early diagnosis. In order to address the challenging demands of on spot detection of biomedical samples, a variety of strategies has been developed. These strategies include substrate structural and component engineering, data processing techniques, as well as combination with other analytical methods. This report summarizes the recent SERS developments for biomedical detection, and their promising applications in cancer detection, virus or bacterial infection detection, miscarriage spotting, neurological disease screening et al. The first part discusses the frequently used SERS substrate component and structures, the second part reports on the detection strategies for nucleic acids, proteins, bacteria, and virus, the third part summarizes their promising applications in clinical detection in a variety of illnesses, and the forth part reports on recent development of SERS in combination with other analytical techniques. The special merits, challenges, and perspectives are discussed in both introduction and conclusion sections.
Collapse
Affiliation(s)
- Yunfan Chen
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Kaixuan Teng
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Chao Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of, Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guangtao Li
- Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Rezakhani L, Fekri K, Rostaminasab G, Rahmati S. Exosomes: special nano-therapeutic carrier for cancers, overview on anticancer drugs. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:31. [PMID: 36460860 DOI: 10.1007/s12032-022-01887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
Chemotherapy drugs are the first line of cancer treatment, but problems such as low intratumoral delivery, poor bioavailability, and off-site toxicity must be addressed. Cancer-specific drug delivery techniques could improve the therapeutic outcome in terms of patient survival. The current study investigated the loading of chemotherapy drugs loaded into exosomes for cancer treatment. Exosomes are the smallest extracellular vesicles found in body fluids and can be used to transfer information by moving biomolecules from cell to cell. This makes them useful as carriers. As the membranes of these nanoparticles are similar to cell membranes, they can be easily transported to carry different components. As most chemotherapy drugs are not easily soluble in liquid, loading them into exosomes can be a suitable solution to this problem. This cancer treatment could avert the injection of high doses of drugs and provide a more appropriate release mechanism.
Collapse
Affiliation(s)
- Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiavash Fekri
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Recent Advances in Nanomaterials of Group XIV Elements of Periodic Table in Breast Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14122640. [PMID: 36559135 PMCID: PMC9781757 DOI: 10.3390/pharmaceutics14122640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer is one of the most common malignancies and a leading cause of cancer-related mortality among women worldwide. The elements of group XIV in the periodic table exhibit a wide range of chemical manners. Recently, there have been remarkable developments in the field of nanobiomedical research, especially in the application of engineered nanomaterials in biomedical applications. In this review, we concentrate on the recent investigations on the antiproliferative effects of nanomaterials of the elements of group XIV in the periodic table on breast cancer cells. In this review, the data available on nanomaterials of group XIV for breast cancer treatment has been documented, providing a useful insight into tumor biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
|
7
|
Chang WR, Hsiao C, Chen YF, Kuo CFJ, Chiu CW. Au Nanorods on Carbon-Based Nanomaterials as Nanohybrid Substrates for High-Efficiency Dynamic Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:41815-41826. [PMID: 36406539 PMCID: PMC9670688 DOI: 10.1021/acsomega.2c06485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 05/26/2023]
Abstract
Gold nanorods (AuNRs) with different aspect ratios were prepared by the seed-mediated growth method and combined with three carbon-based nanomaterials of multiple dimensions (i.e., zero-dimensional (0D) carbon black (CB), one-dimensional (1D) carbon nanotubes (CNTs), and two-dimensional (2D) graphene oxide (GO)). The AuNR/carbon-based nanomaterial hybrids were utilized in dynamic surface-enhanced Raman scattering (D-SERS). First, cetyltrimethylammonium bromide (CTAB) was used to stabilize and coat the AuNRs, enabling them to be dispersed in water and conferring a positive charge to the surface. AuNR/carbon-based nanomaterial hybrids were then formed via electrostatic attraction with the negatively charged carbon-based nanomaterials. Subsequently, the AuNR/carbon-based nanomaterial hybrids were utilized as large-area and highly sensitive Raman spectroscopy substrates. The AuNR/GO hybrids afforded the best signal enhancement because the thickness of GO was less than 5 nm, which enabled the AuNRs adsorbed on GO to produce a good three-dimensional hotspot effect. The enhancement factor (EF) of the AuNR/GO hybrids for the dye molecule Rhodamine 6G (R6G) reached 1 × 107, where the limit of detection (LOD) was 10-8 M. The hybrids were further applied in D-SERS (detecting samples transitioning from the wet state to the dry state). During solvent evaporation, the system spontaneously formed many hotspots, which greatly enhanced the SERS signal. The final experimental results demonstrated that the AuNR/GO hybrids afforded the best D-SERS signal enhancement. The EF value for R6G reached 1.1 × 108 after 27 min, with a limit of detection of 10-9 M at 27 min. Therefore, the AuNR/GO nanohybrids have extremely high sensitivity as molecular sensing elements for SERS and are also very suitable for the rapid detection of single molecules in water quality and environmental management.
Collapse
|
8
|
Sun M, Ren Z, Wei T, Huang Y, Zhang X, Zheng Q, Qin T. Preparation, characterization and immune activity of Codonopsis pilosula polysaccharide loaded in chitosan-graphene oxide. Int J Biol Macromol 2022; 221:1466-1475. [PMID: 36070821 DOI: 10.1016/j.ijbiomac.2022.08.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the effects of chitosan graphene oxide Codonopsis pilosula polysaccharide (CS-GO-CPP) complex on the immune function of macrophage cells (RAW264.7). In this experiment, chitosan (CS) was combined with graphene oxide (GO) by electrostatic action to prepare CS-GO nanocomposites, and it was used as a carrier to load Codonopsis pilosula polysaccharide (CPP) onto CS-GO to prepare CS-GO-CPP. Using infrared spectroscopy detection, zeta potential detection, and thermogravimetric analysis, we conduct a preliminary analysis of the structure of CS-GO-CPP. Macrophages were employed to evaluate CS-GO-CPP immunomodulatory activity and the possible mechanism responsible for the activation of macrophages in vitro. The results showed that compared with CPP, CS-GO-CPP did not change the basic structure of polysaccharide, and its thermal stability was improved. 0.78- 12.5 μg·mL-1 of CS-GO-CPP could significantly promote the phagocytic activity of RAW264.7 cells (P < 0.05) and significantly increase NO content, IL-4 and IFN-γ secretion, the expression of CD40, CD86, and F4/80 (P < 0.05). CS-GO-CPP might activate the NF-κB signaling pathway and induce the nuclear translocation of NF-κB p65. In conclusion, CS-GO-CPP has a capacity to activate RAW264.7 cells for an improvement of immunomodulation activities, which might be through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongyuan Huang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
9
|
Chauhan P, Bhargava A, Kumari R, Ratre P, Tiwari R, Kumar Srivastava R, Yu Goryacheva I, Kumar Mishra P. Surface-enhanced Raman scattering biosensors for detection of oncomiRs in breast cancer. Drug Discov Today 2022; 27:2121-2136. [PMID: 35460892 DOI: 10.1016/j.drudis.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as one of the most promising platforms for various biosensing applications. These sensing systems encompass the advantages of specificity, ultra-high sensitivity, stability, low cost, repeatability, and easy-to-use methods. Moreover, their ability to offer a molecular fingerprint and identify the target analyte at low levels make SERS a promising technique for detecting circulating cancer biomarkers with greater sensitivity and reliability. Among the various circulating biomolecules, oncomiRs are emerging as prominent biomarkers for the early screening of breast cancers (BCs). In this review, we provide a comprehensive understanding of different SERS-based biosensors and their application to identify BC-specific oncomiRs. We also discuss different SERS-based sensing strategies, nano-analytical frameworks, and challenges to be addressed for effective clinical translation.
Collapse
Affiliation(s)
- Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pooja Ratre
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
10
|
He Z, Yu L, Wang G, Ye C, Feng X, Zheng L, Yang S, Zhang G, Wei G, Liu Z, Xue Z, Ding G. Investigation of a Highly Sensitive Surface-Enhanced Raman Scattering Substrate Formed by a Three-Dimensional/Two-Dimensional Graphene/Germanium Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14764-14773. [PMID: 35306813 DOI: 10.1021/acsami.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional graphene (3D-graphene) is used in surface-enhanced Raman spectroscopy (SERS) because of its plasmonic nanoresonator structure and good ability to interact with light. However, a thin (3-5 nm) layer of amorphous carbon (AC) inevitably appears as a template layer between the 3D-graphene and object substrate when the 3D-graphene layer is synthesized, weakening the enhancement factor. Herein, two-dimensional graphene (2D-graphene) is employed as a template layer to directly synthesize 3D-graphene on a germanium (Ge) substrate via plasma-assisted chemical vapor deposition, bypassing the formation of an AC layer. The interaction and photoinduced charge transfer ability of the 3D-graphene/Ge heterojunction with incident light are improved. Moreover, the high density of electronic states close to the Fermi level of the heterojunction induces the adsorbed probe molecules to efficiently couple to the 3D-graphene-based SERS substrate. Our experimental results imply that the lowest concentrations of rhodamine 6G and rhodamine B that can be detected on the 3D/2D-graphene/Ge SERS substrate correspond to 10-10 M; for methylene blue, it is 10-8 M. The detection limits of the 3D/2D-graphene/Ge SERS substrate with respect to 3-hydroxytyramine hydrochloride and melamine (in milk) are both less than 1 ppm. This work may provide a viable and convenient alternative method for preparing 3D-graphene SERS substrates. It also constitutes a new approach to developing SERS substrates with remarkable performance levels.
Collapse
Affiliation(s)
- Zhengyi He
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Lingyan Yu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xiaoqiang Feng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Li Zheng
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Siwei Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Guanglin Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Genwang Wei
- Academy for Advanced Interdisciplinary Studies and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zhiduo Liu
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Guqiao Ding
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
11
|
Krystyjan M, Khachatryan G, Khachatryan K, Krzan M, Ciesielski W, Żarska S, Szczepankowska J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers (Basel) 2022; 14:948. [PMID: 35267771 PMCID: PMC8912318 DOI: 10.3390/polym14050948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
Nanotechnology is a dynamically developing field of science, due to the unique physical, chemical and biological properties of nanomaterials. Innovative structures using nanotechnology have found application in diverse fields: in agricultural and food industries, where they improve the quality and safety of food; in medical and biological sciences; cosmetology; and many other areas of our lives. In this article, a particular attention is focused on carbon nanomaterials, especially graphene, as well as carbon nanotubes and carbon quantum dots that have been successfully used in biotechnology, biomedicine and broadly defined environmental applications. Some properties of carbon nanomaterials prevent their direct use. One example is the difficulty in synthesizing graphene-based materials resulting from the tendency of graphene to aggregate. This results in a limitation of their use in certain fields. Therefore, in order to achieve a wider use and better availability of nanoparticles, they are introduced into matrices, most often polysaccharides with a high hydrophilicity. Such composites can compete with synthetic polymers. For this purpose, the carbon-based nanoparticles in polysaccharides matrices were characterized. The paper presents the progress of ground-breaking research in the field of designing innovative carbon-based nanomaterials, and applications of nanotechnology in diverse fields that are currently being developed is of high interest and shows great innovative potential.
Collapse
Affiliation(s)
- Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Wojciech Ciesielski
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (W.C.); (S.Ż.)
| | - Sandra Żarska
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (W.C.); (S.Ż.)
| | - Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
12
|
Manousiouthakis E, Park J, Hardy JG, Lee JY, Schmidt CE. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomater 2022; 139:22-42. [PMID: 34339871 DOI: 10.1016/j.actbio.2021.07.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future. STATEMENT OF SIGNIFICANCE: This review addresses the use of conductive and electroactive materials for neural tissue regeneration, which is of significant interest to a broad readership, and of particular relevance to the growing community of scientists, engineers and clinicians in academia and industry who develop novel medical devices for tissue engineering and regenerative medicine. The review covers the materials that may be employed (primarily focusing on derivatives of fullerenes, graphene and conjugated polymers) and techniques used to analyze materials composed thereof, followed by sections on the application of these materials to nervous tissues (i.e., peripheral nerve, spinal cord, brain, optical, and auditory tissues) throughout the body.
Collapse
Affiliation(s)
- Eleana Manousiouthakis
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Christine E Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States.
| |
Collapse
|
13
|
Chen Q, Che C, Liu J, Gong Z, Si M, Yang S, Yang G. Construction of an exosome-functionalized graphene oxide based composite bionic smart drug delivery system and its anticancer activity. NANOTECHNOLOGY 2022; 33:175101. [PMID: 35008083 DOI: 10.1088/1361-6528/ac49bf] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide has covalently modified by chito oligosaccharides andγ-polyglutamic acid to form GO-CO-γ-PGA, which exhibits excellent performance as a drug delivery carrier, but this carrier did not have the ability to actively target. In this study, the targeting property of breast cancer tumor cell exosomes was exploited to give GO-CO-γ-PGA the ability to target breast tumor cells (MDA-MB-231), and the drug mitoxantrone (MIT) was loaded to finally form EXO-GO-CO-γ-PGA-MIT with an encapsulation efficiency of 73.02%. The pH response of EXO-GO-CO-γ-PGA showed a maximum cumulative release rate of 56.59% (pH 5.0, 120 h) and 6.73% (pH 7.4, 120 h) for MIT at different pH conditions.In vitrocellular assays showed that EXO-GO-CO-γ-PGA-MIT was more potent in killing MDA-MB-231 cells due to its targeting ability and had a significantly higher pro-apoptotic capacity compared to GO-CO-γ-PGA-MIT. The results showed that this bionic nano-intelligent drug delivery system has good drug slow release function and it can increase the local drug concentration of tumor and enhance the pro-apoptotic ability of MIT, so this newly synthesized bionic drug delivery carriers (EXO-GO-CO-γ-PGA-MIT) has potential application in breast cancer treatment.
Collapse
Affiliation(s)
- Qi Chen
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Chengchuan Che
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Zhijin Gong
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Shanshan Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| |
Collapse
|
14
|
Hu XY, Song Z, Yang ZW, Li JJ, Liu J, Wang HS. Cancer drug resistance related microRNAs: recent advances in detection methods. Analyst 2022; 147:2615-2632. [DOI: 10.1039/d2an00171c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MiRNAs are related to cancer drug resistance through various mechanisms. The advanced detection methods for the miRNAs are reviewed.
Collapse
Affiliation(s)
- Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Wei Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jia-Jing Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
15
|
Yuan C, Fang J, de la Chapelle ML, Zhang Y, Zeng X, Huang G, Yang X, Fu W. Surface-enhanced Raman scattering inspired by programmable nucleic acid isothermal amplification technology. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Żygieło M, Piotrowski P, Witkowski M, Cichowicz G, Szczytko J, Królikowska A. Reduced Self-Aggregation and Improved Stability of Silica-Coated Fe 3O 4/Ag SERS-Active Nanotags Functionalized With 2-Mercaptoethanesulfonate. Front Chem 2021; 9:697595. [PMID: 34222201 PMCID: PMC8241903 DOI: 10.3389/fchem.2021.697595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocomposites combining magnetic and plasmonic properties are very attractive within the field of surface-enhanced Raman scattering (SERS) spectroscopy. Applications presented so far take advantage of not only the cooperation of both components but also synergy (enhanced properties), leading to multi-approach analysis. While many methods were proposed to synthesize such plasmonic-magnetic nanoparticles, the issue of their collective magnetic behavior, inducing irreversible self-aggregation, has not been addressed yet. Thus, here we present a simple and fast method to overcome this problem, employing 2-mercaptoethanesulfonate (MES) ions as both a SERS tag and primer molecules in the silica-coating process of the previously fabricated Fe3O4/Ag nanocomposite. The use of MES favored the formation of silica-coated nanomaterial comprised of well-dispersed small clusters of Fe3O4/Ag nanoparticles. Furthermore, adsorbed MES molecules provided a reliable SERS response, which was successfully detected after magnetic assembly of the Fe3O4/Ag@MES@SiO2 on the surface of the banknote. Improved chemical stability after coating with a silica layer was also found when the nanocomposite was exposed to suspension of yeast cells. This work reports on the application of 2-mercaptoethanesulfonate not only providing a photostable SERS signal due to a non-aromatic Raman reporter but also acting as a silica-coating primer and a factor responsible for a substantial reduction of the self-aggregation of the plasmonic-magnetic nanocomposite. Additionally, here obtained Fe3O4/Ag@MES@SiO2 SERS nanotags showed the potential as security labels for the authentication purposes, retaining its original SERS performance after deposition on the banknote.
Collapse
Affiliation(s)
- Maria Żygieło
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | | | - Jacek Szczytko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
17
|
Zhu C, Zhao Q, Wang X, Li Z, Hu X. Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Thakkar SV, Malfatti L. Silica-graphene porous nanocomposites for environmental remediation: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111519. [PMID: 33113395 DOI: 10.1016/j.jenvman.2020.111519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
With the increase of industrialization, there is an urgent need for developing technologies to detect and remove toxic pollutants from water bodies. The pollutants are often released to the environment due to the consumption of raw materials that are necessary for the production of technological goods (such as chemical and pharmaceutical compounds, metals, and alloys or foods). Amongst all the remediation techniques, adsorption is considered as one of the preferred techniques, due to its fast and efficient removal of contaminants. Novel materials, which are engineered for selective and responsive water remediation, have also recently revealed a strong potential in the detection of pollutants. Here, current trends of silica-graphene (SG) porous composites for the removal of oils, organic solvents, heavy metals, and dyes are reviewed in detail. Insights on the modifications of composites to enhance their sorption performance have been highlighted. In addition, the detection of pollutants using porous SG nanocomposites is also critically reviewed. Overall, SG composites reveal a strong potential as nanostructure materials with improved efficiency for environmental-based applications.
Collapse
Affiliation(s)
- Swapneel Vijay Thakkar
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Luca Malfatti
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| |
Collapse
|
19
|
Xing Y, Han J, Wu X, Pierce DT, Zhao JX. Graphene/gold nanoparticle composites for ultrasensitive and versatile biomarker assay using single-particle inductively-coupled plasma/mass spectrometry. Analyst 2021; 145:7932-7940. [PMID: 33025955 PMCID: PMC8932399 DOI: 10.1039/d0an01019g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive and versatile assay for biomarkers has been developed using graphene/gold nanoparticles (AuNPs) composites and single-particle inductively-coupled plasma/mass spectrometry (spICP-MS). Thrombin was chosen as a model biomarker for this study. AuNPs modified with thrombin aptamers were first non-selectively adsorbed onto the surface of graphene oxide (GO) to form GO/AuNPs composites. In the presence of thrombin, the AuNPs desorbed from the GO/AuNPs composites due to a conformation change of the thrombin aptamer after binding with thrombin. The desorbed AuNPs were proportional to the concentration of thrombin and could be quantified by spICP-MS. By counting the individual AuNPs in the spICP-MS measurement, the concentration of thrombin could be determined. This assay achieved an ultralow detection limit of 4.5 fM with a broad linear range from 10 fM to 100 pM. The method also showed excellent selectivity and reproducibility when a complex protein matrix was evaluated. Furthermore, the diversity and ready availability of ssDNA ligands make this method a versatile new technique for ultrasensitive detection of a wide variety of biomarkers in clinical diagnostics.
Collapse
Affiliation(s)
- Yuqian Xing
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA.
| | | | | | | | | |
Collapse
|
20
|
Vermisoglou E, Panáček D, Jayaramulu K, Pykal M, Frébort I, Kolář M, Hajdúch M, Zbořil R, Otyepka M. Human virus detection with graphene-based materials. Biosens Bioelectron 2020; 166:112436. [PMID: 32750677 PMCID: PMC7375321 DOI: 10.1016/j.bios.2020.112436] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.
Collapse
Affiliation(s)
- Eleni Vermisoglou
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Ivo Frébort
- Centre of the Region Haná (CRH), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (UMTM), Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic.
| |
Collapse
|
21
|
Graphene oxide anchored with sulfonic acid-functionalized glycerin: production, characterization and catalytic performance for the synthesis of N,N′-alkylidene bisamides. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04197-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Plonska-Brzezinska ME. Carbon Nanomaterials: Perspective of their Applications in Biomedicine. Curr Med Chem 2020; 26:6832-6833. [PMID: 31912770 DOI: 10.2174/092986732638191211150955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marta E Plonska-Brzezinska
- Department of Organic Chemistry Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Bialystok, Poland
| |
Collapse
|