1
|
Sopjani M, Falco F, Impellitteri F, Guarrasi V, Nguyen Thi X, Dërmaku-Sopjani M, Faggio C. Flavonoids derived from medicinal plants as a COVID-19 treatment. Phytother Res 2024; 38:1589-1609. [PMID: 38284138 DOI: 10.1002/ptr.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease. Through its viral spike (S) protein, the virus enters and infects epithelial cells by utilizing angiotensin-converting enzyme 2 as a host cell's receptor protein. The COVID-19 pandemic had a profound impact on global public health and economies. Although various effective vaccinations and medications are now available to prevent and treat COVID-19, natural compounds derived from medicinal plants, particularly flavonoids, demonstrated therapeutic potential to treat COVID-19 disease. Flavonoids exhibit dual antiviral mechanisms: direct interference with viral invasion and inhibition of replication. Specifically, they target key viral molecules, particularly viral proteases, involved in infection. These compounds showcase significant immunomodulatory and anti-inflammatory properties, effectively inhibiting various inflammatory cytokines. Additionally, emerging evidence supports the potential of flavonoids to mitigate the progression of COVID-19 in individuals with obesity by positively influencing lipid metabolism. This review aims to elucidate the molecular structure of SARS-CoV-2 and the underlying mechanism of action of flavonoids on the virus. This study evaluates the potential anti-SARS-CoV-2 properties exhibited by flavonoid compounds, with a specific interest in their structure and mechanisms of action, as therapeutic applications for the prevention and treatment of COVID-19. Nevertheless, a significant portion of existing knowledge is based on theoretical frameworks and findings derived from in vitro investigations. Further research is required to better assess the effectiveness of flavonoids in combating SARS-CoV-2, with a particular emphasis on in vivo and clinical investigations.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, Prishtina, Kosova
| | - Francesca Falco
- Institute for Marine Biological Resources and Biotechnology (IRBIM)-CNR, Mazara del Vallo, Italy
| | | | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Xuan Nguyen Thi
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
- Department of Eco sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
2
|
Hu Z, Li Y, Zhang L, Jiang Y, Long C, Yang Q, Yang M. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: state of the art review. Front Immunol 2024; 15:1250884. [PMID: 38482018 PMCID: PMC10933078 DOI: 10.3389/fimmu.2024.1250884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Fibroblast-like synoviocytes (FLS) are important components of the synovial membrane. They can contribute to joint damage through crosstalk with inflammatory cells and direct actions on tissue damage pathways in rheumatoid arthritis (RA). Recent evidence suggests that, compared with FLS in normal synovial tissue, FLS in RA synovial tissue exhibits significant differences in metabolism. Recent metabolomic studies have demonstrated that metabolic changes, including those in glucose, lipid, and amino acid metabolism, exist before synovitis onset. These changes may be a result of increased biosynthesis and energy requirements during the early phases of the disease. Activated T cells and some cytokines contribute to the conversion of FLS into cells with metabolic abnormalities and pro-inflammatory phenotypes. This conversion may be one of the potential mechanisms behind altered FLS metabolism. Targeting metabolism can inhibit FLS proliferation, providing relief to patients with RA. In this review, we aimed to summarize the evidence of metabolic changes in FLS in RA, analyze the mechanisms of these metabolic alterations, and assess their effect on RA phenotype. Finally, we aimed to summarize the advances and challenges faced in targeting FLS metabolism as a promising therapeutic strategy for RA in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Luo TT, Wu YJ, Yin Q, Chen WG, Zuo J. The Involvement of Glucose and Lipid Metabolism Alteration in Rheumatoid Arthritis and Its Clinical Implication. J Inflamm Res 2023; 16:1837-1852. [PMID: 37131409 PMCID: PMC10149064 DOI: 10.2147/jir.s398291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Obviously, immune cells like T cells and macrophages play a major role in rheumatoid arthritis (RA). On one hand, the breakdown of immune homeostasis directly induces systemic inflammation; on the other hand, these cells initiate and perpetuate synovitis and tissue damages through the interaction with fibroblast-like synoviocytes (FLS). In recent years, the pathological link between metabolic disorders and immune imbalance has received increasing attention. High energy demand of immune cells leads to the accumulation of metabolic byproducts and inflammatory mediators. They act on various metabolism-sensitive signal pathways as well as relevant transcription factors, such as HIF-1α, and STATs. These molecular events will impact RA-related effectors like circulating immune cells and joint-resident cells in return, allowing the continuous progression of systemic inflammation, arthritic manifestations, and life-threatening complications. In other words, metabolic complications are secondary pathological factors for the progression of RA. Therefore, the status of energy metabolism may be an important indicator to evaluate RA severity, and in-depth explorations of the mechanisms underlying the mystery of how RA-related metabolic disorders develop will provide useful clues to further clarify the etiology of RA, and inspire the discovery of new anti-rheumatic targets. This article reviews the latest research progress on the interactions between immune and metabolism systems in the context of RA. Great importance is attached to the changes in certain pathways controlling both immune and metabolism functions during RA progression.
Collapse
Affiliation(s)
- Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Correspondence: Jian Zuo, Email
| |
Collapse
|
4
|
Li G, Brumback BD, Huang L, Zhang DM, Yin T, Lipovsky CE, Hicks SC, Jimenez J, Boyle PM, Rentschler SL. Acute Glycogen Synthase Kinase-3 Inhibition Modulates Human Cardiac Conduction. JACC Basic Transl Sci 2022; 7:1001-1017. [PMID: 36337924 PMCID: PMC9626903 DOI: 10.1016/j.jacbts.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) inhibition has emerged as a potential therapeutic target for several diseases, including cancer. However, the role for GSK-3 regulation of human cardiac electrophysiology remains ill-defined. We demonstrate that SB216763, a GSK-3 inhibitor, can acutely reduce conduction velocity in human cardiac slices. Combined computational modeling and experimental approaches provided mechanistic insight into GSK-3 inhibition-mediated changes, revealing that decreased sodium-channel conductance and tissue conductivity may underlie the observed phenotypes. Our study demonstrates that GSK-3 inhibition in human myocardium alters electrophysiology and may predispose to an arrhythmogenic substrate; therefore, monitoring for adverse arrhythmogenic events could be considered.
Collapse
Key Words
- ABC, active β-catenin
- APD, action potential duration
- BDM, 2,3-butanedione monoxime
- CV, conduction velocity
- Cx43, connexin 43
- GNa, sodium-channel conductance
- GOF, gain of function
- GSK-3 inhibitor
- GSK-3, glycogen synthase kinase 3
- INa, sodium current
- LV, left ventricle
- NaV1.5, pore-forming α-subunit protein of the voltage-gated cardiac sodium channel
- PCR, polymerase chain reaction
- RMP, resting membrane potential
- RT-qPCR, reverse transcription-quantitative polymerase chain reaction
- SB2, SB216763
- SB216763
- cDNA, complementary DNA
- dVm/dtmax, maximum upstroke velocity
- electrophysiology
- human cardiac slices
Collapse
Affiliation(s)
- Gang Li
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
| | - Brittany D. Brumback
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
| | - Lei Huang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - David M. Zhang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Catherine E. Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Stephanie C. Hicks
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Jesus Jimenez
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Patrick M. Boyle
- Department of Bioengineering, Center for Cardiovascular Biology, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, Missouri, USA
| |
Collapse
|
5
|
Intracellular signaling of the AMP-activated protein kinase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:171-207. [DOI: 10.1016/bs.apcsb.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2018; 19:783-791. [PMID: 30535469 PMCID: PMC6323245 DOI: 10.3892/mmr.2018.9713] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of this review is to summarize the research progress of PI3K/Akt signaling pathway in erythropoiesis and glycolysis. Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is activated by numerous genes and leads to protein kinase B (Akt) binding to the cell membrane, with the help of phosphoinositide-dependent kinase, in the PI3K/Akt signal transduction pathway. Threonine and serine phosphorylation contribute to Akt translocation from the cytoplasm to the nucleus and further mediates enzymatic biological effects, including those involved in cell proliferation, apoptosis inhibition, cell migration, vesicle transport and cell cancerous transformation. As a key downstream protein of the PI3K/Akt signaling pathway, hypoxia-inducible factor (HIF)-1 is closely associated with the concentration of oxygen in the environment. Maintaining stable levels of HIF-1 protein is critical under normoxic conditions; however, HIF-1 levels quickly increase under hypoxic conditions. HIF-1α is involved in the acute hypoxic response associated with erythropoietin, whereas HIF-2α is associated with the response to chronic hypoxia. Furthermore, PI3K/Akt can reduce the synthesis of glycogen and increase glycolysis. Inhibition of glycogen synthase kinase 3β activity by phosphorylation of its N-terminal serine increases accumulation of cyclin D1, which promotes the cell cycle and improves cell proliferation through the PI3K/Akt signaling pathway. The PI3K/Akt signaling pathway is closely associated with a variety of enzymatic biological effects and glucose metabolism.
Collapse
Affiliation(s)
- Youbang Xie
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuefeng Shi
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Kuo Sheng
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Guoxiong Han
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Wenqian Li
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Qiangqiang Zhao
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Baili Jiang
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jianming Feng
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jianping Li
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yuhai Gu
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|