1
|
Wang X, Chen S, Wang X, Song Z, Wang Z, Niu X, Chen X, Chen X. Application of artificial hibernation technology in acute brain injury. Neural Regen Res 2024; 19:1940-1946. [PMID: 38227519 DOI: 10.4103/1673-5374.390968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Controlling intracranial pressure, nerve cell regeneration, and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury. There is currently a lack of effective treatment methods. Hibernation has the characteristics of low temperature, low metabolism, and hibernation rhythm, as well as protective effects on the nervous, cardiovascular, and motor systems. Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body's metabolism, lowering the body's core temperature, and allowing the body to enter a state similar to hibernation. This review introduces artificial hibernation technology, including mild hypothermia treatment technology, central nervous system regulation technology, and artificial hibernation-inducer technology. Upon summarizing the relevant research on artificial hibernation technology in acute brain injury, the research results show that artificial hibernation technology has neuroprotective, anti-inflammatory, and oxidative stress-resistance effects, indicating that it has therapeutic significance in acute brain injury. Furthermore, artificial hibernation technology can alleviate the damage of ischemic stroke, traumatic brain injury, cerebral hemorrhage, cerebral infarction, and other diseases, providing new strategies for treating acute brain injury. However, artificial hibernation technology is currently in its infancy and has some complications, such as electrolyte imbalance and coagulation disorders, which limit its use. Further research is needed for its clinical application.
Collapse
Affiliation(s)
- Xiaoni Wang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shulian Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xiaoyu Wang
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhen Song
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziqi Wang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaochu Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| |
Collapse
|
2
|
Liu D, Li N, Zhu Y, Chen Q, Fan X, Feng J. Diagnosis of human angiostrongyliasis in a case of hydrocephalus using next-generation sequencing: a case report and literature review. BMC Neurol 2024; 24:281. [PMID: 39134956 PMCID: PMC11318341 DOI: 10.1186/s12883-024-03663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/02/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Angiostrongyliasis cantonensis is a severe yet rare parasitic infection caused by the larvae of Angiostrongylus cantonensis. The primary characteristic feature of this foodborne illness in humans is eosinophilic meningitis. Recently, there has been a gradual increase in reported cases globally. Due to the lack of typical clinical symptoms, signs, and specific laboratory tests, early diagnosis of this disease poses significant challenges. Failure to diagnose and treat this condition promptly can result in fatalities. METHODS We present the case of a 13-year-old male patient who initially presented with fever and headache. The patient was preliminarily diagnosed with bacterial meningitis and received treatment with antibacterial drugs. However, the patient's condition worsened, and he developed progressive consciousness disturbances. Eventually, metagenomic next-generation sequencing (mNGS) testing of cerebrospinal fluid samples indicated Angiostrongylus cantonensis infection. Following treatment with albendazole and prednisone, the patient made a full recovery. We include this case report as part of a literature review to emphasize the potential applications of mNGS in the early diagnosis of Angiostrongyliasis cantonensis. CONCLUSION mNGS technology plays a crucial role in the diagnosis of angiostrongyliasis cantonensis. As this technology continues to evolve and be applied, we believe it will play an increasingly important role in diagnosing, treating, and monitoring angiostrongyliasis cantonensis.
Collapse
Affiliation(s)
- Dayuan Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China
| | - Ning Li
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China
| | - Yubo Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China
| | - Qianhua Chen
- Hainan Medical University, No.3 Xueyuan Road, Longhua District, Haikou City, Hainan Province, 571199, China
| | - Xudong Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China
| | - Jigao Feng
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China.
| |
Collapse
|
3
|
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023; 12:6653. [PMID: 37892791 PMCID: PMC10607511 DOI: 10.3390/jcm12206653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition that results in brain damage in newborns due to insufficient blood and oxygen supply during or after birth. HIE is a major cause of neurological disability and mortality in newborns, with over one million neonatal deaths occurring annually worldwide. The severity of brain injury and the outcome of HIE depend on several factors, including the cause of oxygen deprivation, brain maturity, regional blood flow, and maternal health conditions. HIE is classified into mild, moderate, and severe categories based on the extent of brain damage and resulting neurological issues. The pathophysiology of HIE involves different phases, including the primary phase, latent phase, secondary phase, and tertiary phase. The primary and secondary phases are characterized by episodes of energy and cell metabolism failures, increased cytotoxicity and apoptosis, and activated microglia and inflammation in the brain. A tertiary phase occurs if the brain injury persists, characterized by reduced neural plasticity and neuronal loss. Understanding the cellular and molecular aspects of the different phases of HIE is crucial for developing new interventions and therapeutics. This review aims to discuss the pathophysiology of HIE, therapeutic hypothermia (TH), the only approved therapy for HIE, ongoing developments of adjuvants for TH, and potential future drugs for HIE.
Collapse
Affiliation(s)
- Amaresh K Ranjan
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
| | - Anil Gulati
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
- College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
4
|
Zhao J, Xia C, Tang Y, Wan H. Role of PERK-mediated pathway in the effect of mild hypothermia after cerebral ischaemia/reperfusion. Eur J Clin Invest 2023; 53:e14040. [PMID: 37337313 DOI: 10.1111/eci.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Hypothermia is an effective method of reducing brain injury caused by a variety of neurological insults. It is aimed to elucidate whether a change in the expression of PERK-mediated pathway proteins is an indicator of the neuroprotective effect of mild hypothermia after cerebral ischaemia/reperfusion. METHODS One hundred and ninety-two male C57BL/6 mice were randomly divided into three groups: a sham group, a cerebral normothermic ischaemia/reperfusion (I/R) group and a cerebral hypothermic I/R group. A cerebral ischaemia model was established by ligating the bilateral common carotid artery for 15 min. Mice in the hypothermia group stayed in a cage that was set at 33°C, sprayed with a spray of 70% ethanol, and blown with two high-speed fans. The state of neurons was assessed on micropreparations stained with haematoxylin-eosin and TUNEL. The expressions of GRP78, p-perk, p-eif2α, ATF4 and CHOP were measured by western blot analysis 6, 12, 24 and 72 h after reperfusion. RESULTS The number of surviving cells was significantly higher in the hypothermia group than in the group without hypothermia (p < .05). The GRP78 expression in the hypothermia group was statistically higher (p < .05) than in the ischaemia/reperfusion group. Optical densities of p-perk, p-eif2α and ATF4 in hippocampus CA1 neurons ischaemia were statistically significantly lower in the hypothermia group than in the ischaemia/reperfusion group (p < .05). The CHOP expression in the hypothermia group was statistically lower (p < .05) than in the ischaemia/reperfusion group. CONCLUSION Mild hypothermia for 6 h promoted moderate neuroprotection by mediating the expression of GRP78, p-PERK, p-eIF2α, ATF4 and CHOP.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Anesthesiology, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Chenzhong Xia
- Department of Anesthesiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yingying Tang
- Department of Anesthesiology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Haifang Wan
- Department of Anesthesiology, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| |
Collapse
|
5
|
Zhang Z, Liu X, Yang Z, Mo X. Study on the protective effect of RNA-binding motif protein 3 in mild hypothermia oxygen-glucose deprivation/reoxygenation cell model. Cryobiology 2023; 112:104544. [PMID: 37211323 DOI: 10.1016/j.cryobiol.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/13/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Mild hypothermia is proven neuroprotective in clinical practice. While hypothermia leads to the decrease of global protein synthesis rate, it upregulates a small subset of protein including RNA-binding motif protein 3 (RBM3). In this study, we treated mouse neuroblastoma cells (N2a) with mild hypothermia before oxygen-glucose deprivation/reoxygenation (OGD/R) and discovered the decrease of apoptosis rate, down-regulation of apoptosis-associated protein and enhancement of cell viability. Overexpression of RBM3 via plasmid exerted similar effect while silencing RBM3 by siRNAs partially reversed the protective effect exerted by mild hypothermia pretreatment. The protein level of Reticulon 3(RTN3), a downstream gene of RBM3, also increased after mild hypothermia pretreatment. Silencing RTN3 weakened the protective effect of mild hypothermia pretreatment or RBM3 overexpression. Also, the protein level of autophagy gene LC3B increased after OGD/R or RBM3 overexpression while silencing RTN3 decreased this trend. Furthermore, immunofluorescence observed enhanced fluorescence signal of LC3B and RTN3 as well as a large number of overlaps after RBM3 overexpressing. In conclusion, RBM3 plays a cellular protective role by regulating apoptosis and viability via its downstream gene RTN3 in the hypothermia OGD/R cell model and autophagy may participate in it.
Collapse
Affiliation(s)
- Zhixuan Zhang
- Department of Cardiothoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China; Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoxu Liu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Leys K, Stroe MS, Annaert P, Van Cruchten S, Carpentier S, Allegaert K, Smits A. Pharmacokinetics during therapeutic hypothermia in neonates: from pathophysiology to translational knowledge and physiologically-based pharmacokinetic (PBPK) modeling. Expert Opin Drug Metab Toxicol 2023; 19:461-477. [PMID: 37470686 DOI: 10.1080/17425255.2023.2237412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/13/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Perinatal asphyxia (PA) still causes significant morbidity and mortality. Therapeutic hypothermia (TH) is the only effective therapy for neonates with moderate to severe hypoxic-ischemic encephalopathy after PA. These neonates need additional pharmacotherapy, and both PA and TH may impact physiology and, consequently, pharmacokinetics (PK) and pharmacodynamics (PD). AREAS COVERED This review provides an overview of the available knowledge in PubMed (until November 2022) on the pathophysiology of neonates with PA/TH. In vivo pig models for this setting enable distinguishing the effect of PA versus TH on PK and translating this effect to human neonates. Available asphyxia pig models and methodological considerations are described. A summary of human neonatal PK of supportive pharmacotherapy to improve neurodevelopmental outcomes is provided. EXPERT OPINION To support drug development for this population, knowledge from clinical observations (PK data, real-world data on physiology), preclinical (in vitro and in vivo (minipig)) data, and molecular and cellular biology insights can be integrated into a predictive physiologically-based PK (PBPK) framework, as illustrated by the I-PREDICT project (Innovative physiology-based pharmacokinetic model to predict drug exposure in neonates undergoing cooling therapy). Current knowledge, challenges, and expert opinion on the future directions of this research topic are provided.
Collapse
Affiliation(s)
- Karen Leys
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences KU Leuven, Leuven, Belgium
| | - Marina-Stefania Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences KU Leuven, Leuven, Belgium
- BioNotus GCV, Niel, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, GA, Rotterdam, The Netherlands
- Child and Youth Institute, KU Leuven, Leuven, Belgium
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Child and Youth Institute, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Shevelev OA, Petrova MV, Mengistu EM, Yuriev MY, Kostenkova IZ, Vesnin SG, Kanarskii MM, Zhdanova MA, Goryanin I. Correction of Local Brain Temperature after Severe Brain Injury Using Hypothermia and Medical Microwave Radiometry (MWR) as Companion Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13061159. [PMID: 36980467 PMCID: PMC10047658 DOI: 10.3390/diagnostics13061159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
The temperature of the brain can reflect the activity of its different regions, allowing us to evaluate the connections between them. A study involving 111 patients in a vegetative state or minimally conscious state used microwave radiometry to measure their cortical temperature. The patients were divided into a main group receiving a 10-day selective craniocerebral hypothermia (SCCH) procedure, and a control group receiving basic therapy and rehabilitation. The main group showed a significant improvement in consciousness level as measured by CRS-R assessment on day 14 compared to the control group. Temperature heterogeneity increased in patients who received SCCH, while remaining stable in the control group. The use of microwave radiometry to assess rehabilitation effectiveness and the inclusion of SCCH in rehabilitation programs appears to be a promising approach.
Collapse
Affiliation(s)
- Oleg A Shevelev
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
- Department of Anaesthesiology and Intensive Care, Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Marina V Petrova
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
- Department of Anaesthesiology and Intensive Care, Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Elias M Mengistu
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
- Department of Anaesthesiology and Intensive Care, Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Mikhail Y Yuriev
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
| | - Inna Z Kostenkova
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
| | - Sergey G Vesnin
- Medical Microwave Radiometry (MMWR) LTD, Edinburgh EH10 5LZ, UK
| | - Michael M Kanarskii
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
| | - Maria A Zhdanova
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
| | - Igor Goryanin
- School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, UK
- Biological Systems Unit, Okinawa Institute Science and Technology, Onna 904-0495, Japan
| |
Collapse
|
8
|
Huang J, Zhu H, Yu P, Ma Y, Gong J, Fu Y, Song H, Huang M, Luo J, Jiang J, Gao X, Feng J, Jiang G. Recombinant High-Density Lipoprotein Boosts the Therapeutic Efficacy of Mild Hypothermia in Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:26-38. [PMID: 35833835 DOI: 10.1021/acsami.2c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traumatic brain injury (TBI) leads to neuropsychiatric symptoms and increased risk of neurodegenerative disorders. Mild hypothermia is commonly used in patients suffering from severe TBI. However, its effect for long-term protection is limited, mostly because of its insufficient anti-inflammatory and neuroprotective efficacy and restricted treatment duration. Recombinant high-density lipoprotein (rHDL), which possesses anti-inflammatory and antioxidant activity and blood-brain barrier (BBB) permeability, was expected to potentially strengthen the therapeutic effect of mild hypothermia in TBI treatment. To test this hypothesis and optimize the regimen for combination therapy, the efficacy of mild hypothermia plus concurrent or sequential rHDL on oxidative stress, inflammatory reaction, and cell survival in the damaged brain cells was evaluated. It was found that the effect of combining mild hypothermia with concurrent rHDL was modest, as mild hypothermia inhibited the cellular uptake and lesion-site-targeting delivery of rHDL. In contrast, the combination of mild hypothermia with sequential rHDL more powerfully improved the anti-inflammatory and antioxidant activities, promoted nerve cell survival and BBB restoration, and ameliorated neurologic changes, which thus remarkably restored the spatial learning and memory ability of TBI mice. Collectively, these findings suggest that rHDL may serve as a novel nanomedicine for adjunctive therapy of TBI and highlight the importance of timing of combination therapy for optimal treatment outcome.
Collapse
Affiliation(s)
- Jialin Huang
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai 200127, China
| | - Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai 201399, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China
| | - Yuxiao Ma
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai 200127, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai 201399, China
| | - Yuli Fu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Huahua Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Luo
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jiyao Jiang
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai 200127, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junfeng Feng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai 200127, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
9
|
You JS, Kim JY, Yenari MA. Therapeutic hypothermia for stroke: Unique challenges at the bedside. Front Neurol 2022; 13:951586. [PMID: 36262833 PMCID: PMC9575992 DOI: 10.3389/fneur.2022.951586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has shown promise as a means to improving neurological outcomes at several neurological conditions. At the clinical level, it has been shown to improve outcomes in comatose survivors of cardiac arrest and in neonatal hypoxic ischemic encephalopathy, but has yet to be convincingly demonstrated in stroke. While numerous preclinical studies have shown benefit in stroke models, translating this to the clinical level has proven challenging. Major obstacles include cooling patients with typical stroke who are awake and breathing spontaneously but often have significant comorbidities. Solutions around these problems include selective brain cooling and cooling to lesser depths or avoiding hyperthermia. This review will cover the mechanisms of protection by therapeutic hypothermia, as well as recent progress made in selective brain cooling and the neuroprotective effects of only slightly lowering brain temperature. Therapeutic hypothermia for stroke has been shown to be feasible, but has yet to be definitively proven effective. There is clearly much work to be undertaken in this area.
Collapse
Affiliation(s)
- Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, The San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Midori A. Yenari
| |
Collapse
|
10
|
Wang L, Sun Y, Kong F, Jiang Y, An M, Jin B, Cao D, Li R, Guan X, Liang S, Abudurexiti S, Gong P. Mild Hypothermia Alleviates Complement C5a-Induced Neuronal Autophagy During Brain Ischemia-Reperfusion Injury After Cardiac Arrest. Cell Mol Neurobiol 2022:10.1007/s10571-022-01275-8. [PMID: 36006573 DOI: 10.1007/s10571-022-01275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
After restoration of spontaneous circulation (ROSC) following cardiac arrest, complements can be activated and excessive autophagy can contribute to the brain ischemia-reperfusion (I/R) injury. Mild hypothermia (HT) protects against brain I/R injury after ROSC, but the mechanisms have not been fully elucidated. Here, we found that HT significantly inhibited the increases in serum NSE, S100β, and C5a, as well as neurologic deficit scores, TUNEL-positive cells, and autophagic vacuoles in the pig brain cortex after ROSC. The C5a receptor 1 (C5aR1) mRNA and the C5a, C5aR1, Beclin 1, LC3-II, and cleaved caspase-3 proteins were significantly increased, but the P62 protein and the PI3K/Akt/mTOR pathway-related proteins were significantly reduced in pigs after ROSC or neuronal oxygen-glucose deprivation/reoxygenation. HT could significantly attenuate the above changes in NT-treated neurons. Furthermore, C5a treatment induced autophagy and apoptosis and reduced the PI3K/Akt/mTOR pathway-related proteins in cultured neurons, which could be reversed by C5aR1 antagonist PMX205. Our findings demonstrated that C5a could bind to C5aR1 to induce neuronal autophagy during the brain I/R injury, which was associated with the inhibited PI3K/Akt/mTOR pathway. HT could inhibit C5a-induced neuronal autophagy by regulating the C5a-C5aR1 interaction and the PI3K/Akt/mTOR pathway, which might be one of the neuroprotective mechanisms underlying I/R injury. The C5a receptor 1 (C5aR1) mRNA and the C5a, C5aR1, Beclin 1, LC3-II, and cleaved caspase-3 proteins were significantly increased, but the P62 protein and the PI3K/Akt/mTOR pathway-related proteins were significantly reduced in pigs after ROSC or neuronal oxygen-glucose deprivation/reoxygenation. Mild hypothermia (HT) could significantly attenuate the above changes in NT-treated neurons. Furthermore, C5a treatment induced autophagy and apoptosis and reduced the PI3K/Akt/mTOR pathway-related proteins in cultured neurons, which could be reversed by C5aR1 antagonist PMX205. Proposed mechanism by which HT protects against brain I/R injury by repressing C5a-C5aR1-induced excessive autophagy. Complement activation in response to brain I/R injury generates C5a that can interact with C5aR1 to inactivate mTOR, probably through the PI3K-AKT pathway, which can finally lead to autophagy activation. The excessively activated autophagy ultimately contributes to cell apoptosis and brain injury. HT may alleviate complement activation and then reduce C5a-induced autophagy to protect against brain I/R injury. HT, mild hypothermia; I/R, ischemia reperfusion.
Collapse
Affiliation(s)
- Ling Wang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yuanyuan Sun
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Fang Kong
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yi Jiang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Mengmeng An
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Beibei Jin
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Da Cao
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Ruifang Li
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Xiaolan Guan
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shuangshuang Liang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Subi Abudurexiti
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Ping Gong
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
11
|
Neuroprotective Effects of Pharmacological Hypothermia on Hyperglycolysis and Gluconeogenesis in Rats after Ischemic Stroke. Biomolecules 2022; 12:biom12060851. [PMID: 35740974 PMCID: PMC9220898 DOI: 10.3390/biom12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.
Collapse
|
12
|
Cooling and Sterile Inflammation in an Oxygen-Glucose-Deprivation/Reperfusion Injury Model in BV-2 Microglia. Mediators Inflamm 2021; 2021:8906561. [PMID: 34776788 PMCID: PMC8589512 DOI: 10.1155/2021/8906561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Cold-inducible RNA-binding protein (CIRBP) has been shown to be involved not only in cooling-induced cellular protection but also as a mediator of sterile inflammation, a critical mechanism of the innate immune response in ischemia/reperfusion (I/R) injury. The role of microglia and its activation in cerebral I/R injury warrants further investigation as both detrimental and regenerative properties have been described. Therefore, we investigated the effects of cooling, specifically viability, activation, and release of damage associated molecular patterns (DAMPs) on oxygen glucose deprivation/reperfusion- (OGD/R-) induced injury in murine BV-2 microglial cells. Methods Murine BV-2 microglial cells were exposed to 2 to 6 h OGD (0.2% O2 in glucose- and serum-free medium) followed by up to 19 h of reperfusion, simulated by restoration of oxygen (21% O2) and nutrients. Cells were maintained at either normothermia (37°C) or cooled to 33.5°C, 1 h after experimental start. Cultured supernatants were harvested after exposure to OGD for analysis of DAMP secretions, including high-mobility group box 1 (HMGB1), heat shock protein 70 (HSP70), and CIRBP, and cytotoxicity was assessed by lactate dehydrogenase releases after exposure to OGD and reperfusion. Intracellular cold-shock proteins CIRBP and RNA-binding motif 3 (RBM3) as well as caspases 9, 8, and 3 were also analyzed via Western blot analysis. Furthermore, inducible nitric oxide synthase (iNOS), ionized calcium-binding adaptor molecule 1 (Iba1), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), interleukin-1α (IL-1α), monocyte chemotactic protein 1 (MCP-1), transforming growth factor β (TGFβ), CIRBP, and RBM3 gene expressions were assessed via reverse transcription polymerase chain reaction, and TNF-α, IL-6, and IL-1β releases into the cultured supernatants were assessed via enzyme-linked immunosorbent assays (ELISA). Results Prolonged exposure to OGD resulted in increased BV-2 necrotic cell death, which was attenuated by cooling. Cooling also significantly induced cold-shock proteins CIRBP and RBM3 gene expressions, with CIRBP expression more rapidly regulated than RBM3 and translatable to significantly increased protein expression. DAMPs including HMGB-1, HSP70, and CIRBP could be detected in cultured supernatants after 6 h of OGD with CIRBP release being significantly attenuated by cooling. Exposure to OGD suppressed cytokine gene expressions of IL-1β, TNF-α, MCP-1, and TGFβ independently of temperature management, whereas cooling led to a significant increase in IL-1α gene expression after 6 h of OGD. In the reperfusion phase, TNF-α and MCP-1 gene expressions were increased, and cooling was associated with significantly lower TGFβ gene expression. Interestingly, cooled Normoxia groups had significant upregulations of microglial activation marker, Iba1, IL-1β, and TNF-α gene expressions. Conclusion BV-2 microglial cells undergo necrotic cell death resulting in DAMP release due to OGD/R-induced injury. Cooling conveyed neuroprotection in OGD/R-injury as observable in increased cell viability as well as induced gene expressions of cold shock proteins. As cooling alone resulted in both upregulation of microglial activation, expression of proinflammatory cytokines, and cold shock protein transcript and protein expression, temperature management might have ambiguous effects in sterile inflammation. However, cooling resulted in a significant decrease of extracellular CIRBP, which has recently been characterized as a novel DAMP and a potent initiator and mediator of inflammation.
Collapse
|
13
|
Wang J, Li J, Chen B, Shen Y, Wang J, Wang K, Yin C, Li Y. Interaction between gender and post resuscitation interventions on neurological outcome in an asphyxial rat model of cardiac arrest. BMC Cardiovasc Disord 2021; 21:441. [PMID: 34530726 PMCID: PMC8443961 DOI: 10.1186/s12872-021-02262-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Previous clinical studies have suggested an effect of gender on outcome after out-of-hospital cardiac arrest, but the results are conflicting and there is no uniform agreement regarding gender differences in survival and prognosis. The present study was aimed to investigate the interaction between gender and post resuscitation interventions on neurological outcome in an asphyxial rat model of cardiac arrest. METHODS Asphyxia was induced by blocking the endotracheal tube in 120 adult Sprague-Dawley rats (60 males and 60 females) at the same age. Cardiopulmonary resuscitation (CPR) was started after 5 min of untreated cardiac arrest. Animals were randomized into one of the three post resuscitation care intervention groups (n = 40, 20 males) immediately after resuscitation: (1) normothermic control (NC): ventilated with 2% N2/98% O2 for 1 h under normothermia; (2) targeted temperature management (TTM): ventilated with 2% N2/98% O2 for 1 h under hypothermia; (3) hydrogen inhalation (HI): ventilated with 2% H2/98% O2 for 1 h under normothermia. Physiological variables were recorded during the 5 h post resuscitation monitoring period. Neurological deficit score (NDS) and accumulative survival were used to assess 96 h outcomes. Mutual independence analysis and Mantel-Haenszel stratified analysis were used to explore the associations among gender, intervention and survival. RESULTS The body weights of female rats were significantly lighter than males, but CPR characteristics did not differ between genders. Compared with male rats, females had significantly lower mean arterial pressure, longer onset time of the electroencephalogram (EEG) burst and time to normal EEG trace (TTNT) in the NC group; relatively longer TTNT in the TTM group; and substantially longer TTNT, lower NDSs, and higher survival in the HI group. Mutual independence analysis revealed that both gender and intervention were associated with neurological outcome. Mantel-Haenszel stratified analysis demonstrated that female rats had significantly higher survival rate than males when adjusted for the confounder intervention. CONCLUSION In this rat model cardiac arrest and CPR, gender did not affect resuscitation but associated with neurological outcome. The superiority of female rats in neurological recovery was affected by post resuscitation interventions and female rats were more likely to benefit from hydrogen therapy.
Collapse
Affiliation(s)
- Jianjie Wang
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, 400038, China
| | - Jingru Li
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, 400038, China
| | - Bihua Chen
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, 400038, China
| | - Yiming Shen
- Department of Emergency, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Juan Wang
- Department of Emergency, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Kaifa Wang
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, 400038, China
| | - Changlin Yin
- Department of Intensive Care, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Yongqin Li
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
14
|
Manual Kollareth DJ, Zirpoli H, Ten VS, Deckelbaum RJ. Acute Injection of Omega-3 Triglyceride Emulsion Provides Very Similar Protection as Hypothermia in a Neonatal Mouse Model of Hypoxic-Ischemic Brain Injury. Front Neurol 2021; 11:618419. [PMID: 33519700 PMCID: PMC7843448 DOI: 10.3389/fneur.2020.618419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia (HT) is a currently accepted treatment for neonatal asphyxia and is a promising strategy in adult stroke therapy. We previously reported that acute administration of docosahexaenoic acid (DHA) triglyceride emulsion (tri-DHA) protects against hypoxic-ischemic (HI) injury in neonatal mice. We questioned if co-treatment with HT and tri-DHA would achieve synergic effects in protecting the brain from HI injury. Neonatal mice (10-day old) subjected to HI injury were placed in temperature-controlled chambers for 4 h of either HT (rectal temperature 31–32°C) or normothermia (NT, rectal temperature 37°C). Mice were treated with tri-DHA (0.375 g tri-DHA/kg bw, two injections) before and 1 h after initiation of HT. We observed that HT, beginning immediately after HI injury, reduced brain infarct volume similarly to tri-DHA treatment (~50%). Further, HT delayed 2 h post-HI injury provided neuroprotection (% infarct volume: 31.4 ± 4.1 vs. 18.8 ± 4.6 HT), while 4 h delayed HT did not protect against HI insult (% infarct volume: 30.7 ± 5.0 vs. 31.3 ± 5.6 HT). HT plus tri-DHA combination treatment beginning at 0 or 2 h after HI injury did not further reduce infarct volumes compared to HT alone. Our results indicate that HT offers similar degrees of neuroprotection against HI injury compared to tri-DHA treatment. HT can only be provided in tertiary care centers, requires intense monitoring and can have adverse effects. In contrast, tri-DHA treatment may be advantageous in providing a feasible and effective strategy in patients after HI injury.
Collapse
Affiliation(s)
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Vadim S Ten
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States.,Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Research Progress of the Application of Hypothermia in the Eye. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3897168. [PMID: 33381263 PMCID: PMC7758138 DOI: 10.1155/2020/3897168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Hypothermia is widely used in the medical field to protect organs or tissues from damage. Different research fields have different explanations of the protection mechanism of hypothermia. Hypothermia is also widely used in the field of ophthalmology, for example, in the eye bank, the preservation of corneal tissue and the preservation of the eyeball. Low temperature can also be applied to some ophthalmic diseases, such as allergic conjunctivitis, retinal ischemia, and retinal hypoxia. It is used to relieve eye symptoms or reduce tissue damage. Hypothermic techniques have important applications in ophthalmic surgery, such as corneal refractive surgery, vitrectomy surgery, and ciliary body cryotherapy for end-stage glaucoma. Hypothermia can reduce the inflammation of the cornea and protect the retinal tissue. The eyeball is a complex organ, including collagen tissue of the eyeball wall and retinal nerve tissue and retinal blood vessels. The mechanism of low temperature protecting eye tissue is complicated. It is important to understand the mechanism of hypothermia and its applications in ophthalmology. This review introduces the mechanism of hypothermia and its application in the eye banks, eye diseases (allergic conjunctivitis, retinal ischemia, and hypoxia), and eye surgeries (corneal transplant surgery, corneal refractive surgery, and vitrectomy).
Collapse
|
16
|
Previti S, Vivancos M, Rémond E, Beaulieu S, Longpré JM, Ballet S, Sarret P, Cavelier F. Insightful Backbone Modifications Preventing Proteolytic Degradation of Neurotensin Analogs Improve NT S1-Induced Protective Hypothermia. Front Chem 2020; 8:406. [PMID: 32582624 PMCID: PMC7291367 DOI: 10.3389/fchem.2020.00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic hypothermia represents a brain-protective strategy for multiple emergency situations, such as stroke or traumatic injury. Neurotensin (NT), which exerts its effects through activation of two G protein-coupled receptors, namely NTS1 and NTS2, induces a strong and long-lasting decrease in core body temperature after its central administration. Growing evidence demonstrates that NTS1 is the receptor subtype mediating the hypothermic action of NT. As such, potent NTS1 agonists designed on the basis of the minimal C-terminal NT(8-13) bioactive fragment have been shown to produce mild hypothermia and exert neuroprotective effects under various clinically relevant conditions. The high susceptibility of NT(8-13) to protease degradation (half-life <2 min) represents, however, a serious limitation for its use in pharmacological therapy. In light of this, we report here a structure-activity relationship study in which pairs of NT(8-13) analogs have been developed, based on the incorporation of a reduced Lys8-Lys9 bond. To further stabilize the peptide bonds, a panel of backbone modifications was also inserted along the peptide sequence, including Sip10, D-Trp11, Dmt11, Tle12, and TMSAla13. Our results revealed that the combination of appropriate chemical modifications leads to compounds exhibiting improved resistance to proteolytic cleavages (>24 h; 16). Among them, the NT(8-13) analogs harboring the reduced amine bond combined with the unnatural amino acids TMSAla13 (4) and Sip10 (6) or the di-substitution Lys11 - TMSAla13 (12), D-Trp11-TMSAla13 (14), and Dmt11-Tle12 (16) produced sustained hypothermic effects (−3°C for at least 1 h). Importantly, we observed that hypothermia was mainly driven by the increased stability of the NT(8-13) derivatives, instead of the high binding-affinity at NTS1. Altogether, these results reveal the importance of the reduced amine bond in optimizing the metabolic properties of the NT(8-13) peptide and support the development of stable NTS1 agonists as first drug candidate in neuroprotective hypothermia.
Collapse
Affiliation(s)
- Santo Previti
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Departments of Bioengineering Sciences and Chemistry, Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mélanie Vivancos
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sabrina Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steven Ballet
- Departments of Bioengineering Sciences and Chemistry, Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
17
|
Kurisu K, You J, Zheng Z, Won SJ, Swanson RA, Yenari MA. Cofilin-actin rod formation in experimental stroke is attenuated by therapeutic hypothermia and overexpression of the inducible 70 kD inducible heat shock protein (Hsp70). Brain Circ 2019; 5:225-233. [PMID: 31950099 PMCID: PMC6950512 DOI: 10.4103/bc.bc_52_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cofilin-actin rods are covalently linked aggregates of cofilin-1 and actin. Under ischemic conditions, these rods have been observed in neuronal dendrites and axons and may contribute to the loss of these processes. Hypothermia (Hypo) and the 70 kD inducible heat shock protein (Hsp70) are both known to improve outcomes after stroke, but the mechanisms are uncertain. Here, we evaluated the effect of these factors on cofilin-actin rod formation in a mouse model of stroke. MATERIALS AND METHODS Mice were subjected to distal middle cerebral artery occlusion (dMCAO) and treated with Hypo using a paradigm previously shown to be neuroprotective. We similarly studied mice that overexpressed transgenic (Tg) or were deficient knockout (Ko) in the inducible 70 kDa heat shock protein (Hsp70), also previously shown to be protective by our group and others. Cofilin-actin rod formation was assessed by histological analysis at 4 and 24 h after dMCAO. Its expression was analyzed in three different regions, namely, infarct core (the center of the infarct), middle cerebral artery (MCA) borderzone (the edge of the brain regions supplied by the MCA), and the ischemic borderzone (border of ischemic lesion). Ischemic lesion size and neurological deficits were also assessed. RESULTS Both Hypo-treated and Hsp70 Tg mice had smaller lesion sizes and improved neurological outcomes, whereas Hsp70 Ko mice had larger lesion sizes and worsened neurological outcomes. Cofilin-actin rods were increased after stroke, but were reduced by therapeutic Hypo and in Hsp70 Tg mice. In contrast, cofilin-actin rods were increased in ischemic brains of Hsp70 Ko mice. CONCLUSIONS Cofilin-actin rod formation was suppressed under the conditions of neuroprotection and increased under circumstances where outcome was worsened. This suggests that cofilin-actin rods may act to participate in or exacerbate ischemic pathology and warrants further study as a potential therapeutic target.
Collapse
Affiliation(s)
- Kota Kurisu
- University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jesung You
- University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.,Department of Emergency Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Zhen Zheng
- University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Seok Joon Won
- University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Raymond A Swanson
- University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Midori A Yenari
- University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|