1
|
Wang X, Yuan Q, Xiao Y, Cai X, Yang Z, Zeng W, Mi Y, Zhang C. Pterostilbene, a Resveratrol Derivative, Improves Ovary Function by Upregulating Antioxidant Defenses in the Aging Chickens via Increased SIRT1/Nrf2 Expression. Antioxidants (Basel) 2024; 13:935. [PMID: 39199181 PMCID: PMC11351833 DOI: 10.3390/antiox13080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is recognized as a prominent factor contributing to follicular atresia and ovarian aging, which leads to decreased laying performance in hens. Reducing oxidative stress can improve ovarian function and prolong the laying period in poultry. This study investigates the impact of Pterostilbene (PTS), a natural antioxidant, on ovarian oxidative stress in low-laying chickens. Thirty-six Hy-Line White laying chickens were evenly divided into four groups and fed diets containing varying doses of PTS for 15 consecutive days. The results showed that dietary supplementation with PTS significantly increased the laying rate, with the most effective group exhibiting a remarkable 42.7% increase. Furthermore, PTS significantly enhanced the antioxidant capacity of aging laying hens, as evidenced by increased levels of glutathione, glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in the ovaries, livers, and serum. Subsequent experiments revealed decreased expressions of Bax, Caspase-3, and γ-H2AX, along with an increased expression of BCL-2 in the ovaries and livers of laying hens. PTS supplementation also positively affects fat metabolism by reducing abdominal fat accumulation and promoting fat transfer from the liver to the ovary. To elucidate the mechanism underlying the effects of PTS on ovarian function, a series of in vitro experiments were conducted. These in vitro experiments revealed that PTS pretreatment restored the antioxidant capacity of D-galactose-induced small white follicles by upregulating SIRT1/Nrf2 expression. This protective effect was inhibited by EX-527, a specific inhibitor of SIRT1. These findings suggest that the natural antioxidant PTS has the potential to regulate cell apoptosis and fat metabolism in laying chickens by ameliorating oxidative stress, thereby enhancing laying performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| |
Collapse
|
2
|
Zhang L, Zhang J, Zang H, Yin Z, Guan P, Yu C, Shan A, Feng X. Dietary pterostilbene exerts potential protective effects by regulating lipid metabolism and enhancing antioxidant capacity on liver in broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:921-933. [PMID: 38372476 DOI: 10.1111/jpn.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Intensive breeding of broilers met the increasing demands of human for broiler products, but it raised their increased susceptibility to various stressors resulting in the disorder of lipid metabolism. Pterostilbene, the methoxylated analogue of resveratrol, exhibits astonishing functions of antioxidant, anti-inflammatory and glycolipid regulatory. The study aimed to elucidate the protective effects of pterostilbene on broiler liver and to explore the potential mechanisms. A total of 480 one-day-old male Arbor Acres (AA) broilers were randomly divided into four groups: the control group (basal diet) and pterostilbene groups (PT200, PT400, and PT600 feeding with basal diet containing 200, 400 and 600 mg/kg pterostilbene, respectively). The results showed that the dietary pterostilbene supplementation significantly improved the ADG of broilers. Dietary pterostilbene supplementation regulated the expression levels of the genes Sirt1 and AMPK and the downstream genes related to lipid metabolism to protect liver function and reduce lipid accumulation in broilers. Dietary pterostilbene supplementation upregulated the expression levels of the Nrf2 gene and its downstream antioxidant genes (SOD, CAT, HO-1, NQO-1, GPX) and phase II detoxification enzyme-related genes (GST, GCLM, GCLC). Collectively, pterostilbene was confirmed the positive effects as a feed additive on lipid metabolism and antioxidant via regulating Sirt1/AMPK and Nrf2 signalling pathways in broilers.
Collapse
Affiliation(s)
- Licong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Jingyang Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Haoran Zang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Zesheng Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Peiyue Guan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Chunting Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Anshan Shan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Xingjun Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| |
Collapse
|
3
|
Liu P, Tang W, Xiang K, Li G. Pterostilbene in the treatment of inflammatory and oncological diseases. Front Pharmacol 2024; 14:1323377. [PMID: 38259272 PMCID: PMC10800393 DOI: 10.3389/fphar.2023.1323377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Pterostilbene (PTS), a naturally occurring analog of resveratrol (RSV), has garnered significant attention due to its potential therapeutic effects in treating inflammatory and oncological diseases. This comprehensive review elucidates the pharmacological properties, mechanisms of action, and therapeutic potential of PTS. Various studies indicate that PTS exhibits anti-inflammatory, antioxidant, and antitumour properties, potentially making it a promising candidate for clinical applications. Its influence on regulatory pathways like NF-κB and PI3K/Akt underscores its diverse strategies in addressing diseases. Additionally, PTS showcases a favorable pharmacokinetic profile with better oral bioavailability compared to other stilbenoids, thus enhancing its therapeutic potential. Given these findings, there is an increased interest in incorporating PTS into treatment regimens for inflammatory and cancer-related conditions. However, more extensive clinical trials are imperative to establish its safety and efficacy in diverse patient populations.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Kali Xiang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
4
|
Jiang Y, Zhou Y, Xu W, Wang X, Jin H, Bao X, Lu C. Induction of Sestrin2 by pterostilbene suppresses ethanol-triggered hepatocyte senescence by degrading CCN1 via p62-dependent selective autophagy. Cell Biol Toxicol 2023; 39:729-749. [PMID: 34405320 DOI: 10.1007/s10565-021-09635-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 01/16/2023]
Abstract
Hepatocyte senescence is a key event participating in the progression of alcoholic liver disease. Autophagy is a critical biological process that controls cell fates by affecting cell behaviors like senescence. Pterostilbene is a natural compound with hepatoprotective potential; however, its implication for alcoholic liver disease was not understood. This study was aimed to investigate the therapeutic effect of pterostilbene on alcoholic liver disease and elucidate the potential mechanism. Our results showed that pterostilbene alleviated ethanol-triggered hepatocyte damage and senescence. Intriguingly, pterostilbene decreased the protein abundance of cellular communication network factor 1 (CCN1) in ethanol-exposed hepatocytes, which was essential for pterostilbene to execute its anti-senescent function. In vivo studies verified the anti-senescent effect of pterostilbene on hepatocytes of alcohol-intoxicated mice. Pterostilbene also relieved senescence-associated secretory phenotype (SASP), redox imbalance, and steatosis by suppressing hepatic CCN1 expression. Mechanistically, pterostilbene-forced CCN1 reduction was dependent on posttranscriptional regulation via autophagy machinery but not transcriptional regulation. To be specific, pterostilbene restored autophagic flux in damaged hepatocytes and activated p62-mediated selective autophagy to recognize and lead CCN1 to autolysosomes for degradation. The protein abundance of Sestrin2 (SESN2), a core upstream modulator of autophagy pathway, was decreased in ethanol-administrated hepatocytes but rescued by co-treatment with pterostilbene. Induction of SESN2 protein by pterostilbene rescued ethanol-triggered autophagic dysfunction in hepatocytes, which then reduced senescence-associated markers, postponed hepatocyte senescence, and relieved alcohol-caused liver injury and inflammation. In conclusion, this work discovered a novel compound pterostilbene with therapeutic implications for alcoholic liver disease and uncover its underlying mechanism.
Collapse
Affiliation(s)
- Yiming Jiang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Wenxuan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Mechanistic insights into dietary (poly)phenols and vascular dysfunction-related diseases using multi-omics and integrative approaches: Machine learning as a next challenge in nutrition research. Mol Aspects Med 2023; 89:101101. [PMID: 35728999 DOI: 10.1016/j.mam.2022.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Dietary (poly)phenols have been extensively studied for their vasculoprotective effects and consequently their role in preventing or delaying onsets of cardiovascular and metabolic diseases. Even though early studies have ascribed the vasculoprotective properties of (poly)phenols primarily on their putative free radical scavenging properties, recent data indicate that in biological systems, (poly)phenols act primarily through genomic and epigenomic mechanisms. The molecular mechanisms underlying their health properties are still not well identified, mainly due to the use of physiologically non-relevant conditions (native molecules or extracts at high concentrations, rather than circulating metabolites), but also due to the use of targeted genomic approaches aiming to evaluate the effect only on few specific genes, thus preventing to decipher detailed molecular mechanisms involved. The use of state-of-the-art untargeted analytical methods represents a significant breakthrough in nutrigenomics, as these methods enable detailed insights into the effects at each specific omics level. Moreover, the implementation of multi-omics approaches allows integration of different levels of regulation of cellular functions, to obtain a comprehensive picture of the molecular mechanisms of action of (poly)phenols. In combination with bioinformatics and the methods of machine learning, multi-omics has potential to make a huge contribution to the nutrition science. The aim of this review is to provide an overview of the use of the omics, multi-omics, and integrative approaches in studying the vasculoprotective properties of dietary (poly)phenols and address the potentials for use of the machine learning in nutrigenomics.
Collapse
|
6
|
Li Y, Sun C, Zhang Y, Chen X, Huang H, Han L, Xing H, Zhao D, Chen X, Zhang Y. Phase I Metabolism of Pterostilbene, a Dietary Resveratrol Derivative: Metabolite Identification, Species Differences, Isozyme Contribution, and Further Bioactivation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:331-346. [PMID: 36538288 DOI: 10.1021/acs.jafc.2c05334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pterostilbene (PTE), a dietary derivative of resveratrol, displayed pleiotropic health-promoting activities. This study aimed to explore the metabolic profiles and species differences of the phase I metabolism of PTE and to investigate subsequent detoxification after PTE bioactivation. PTE was found to be biotransformed to two pharmacologically active metabolites, pinostilbene and 3'-hydroxypterostilbene, in vivo and in vitro with substantial species differences. Human CYP1A2 was proved to be mainly responsible for the demethylation and 3'-hydroxylation of PTE, with its contribution to a demethylation of 94.5% and to a 3'-hydroxylation of 97.9%. An in vitro glutathione trapping experiment revealed the presence of an ortho-quinone intermediate formed by further oxidation of 3'-hydroxypterostilbene. Human glutathione S-transferase isoforms A2, T1, and A1 inactivated the ortho-quinone intermediate by catalyzing glutathione conjugation, implicating a potential protective pathway against PTE bioactivation-derived toxicity. Overall, this study provided a comprehensive view of PTE phase I metabolism and facilitated its further development as a promising nutraceutical.
Collapse
Affiliation(s)
- Ying Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Changcheng Sun
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yutian Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Xiang Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haoyan Huang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Luyao Han
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
A Glimpse of necroptosis and diseases. Biomed Pharmacother 2022; 156:113925. [DOI: 10.1016/j.biopha.2022.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
|
8
|
Wang H, Xu J, Dong P, Li Y, Cui Y, Li H, Li H, Zhang J, Wang S, Dai L. Comprehensive Analysis of Pterostilbene Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Plus Mass Spectrometer with Multiple Data-Mining Methods. ACS OMEGA 2022; 7:38561-38575. [PMID: 36340088 PMCID: PMC9631410 DOI: 10.1021/acsomega.2c03924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Pterostilbene, a stilbene phytoalexin, is mainly obtained from blueberries and grape vines; however, its metabolic mechanisms were unclear in vivo. In the present study, three different methods were used to prepare biological samples, and then, an efficient strategy based on ultrahigh-performance liquid chromatography coupled with mass spectrometry was developed to screen and identify pterostilbene metabolites in rat urine, plasma, liver, and feces. In order to elucidate pterostilbene or its metabolites involved in vitro, this study was assessed by the liver microsome system. As a result, a total of 88 pterostilbene metabolites were characterized. Among them, 77 metabolites in vivo and 14 metabolites in vitro were found; 50 and 38 metabolites were observed in rat plasma and urine, while only 4 and 12 metabolites were detected in rat feces and liver, inferring that plasma and urine possessed more diverse types of pterostilbene metabolites; 41 metabolic products were obtained by solid-phase extraction, and 9 and 10 metabolites were screened by methanol precipitation and acetonitrile precipitation, respectively, indicating that solid-phase extraction could be adopted as the most acceptable method for pterostilbene metabolism. The results also demonstrated that pterostilbene mainly underwent glucosylation, dehydrogenation, hydrogenation, demethoxylation, sulfation, NAC binding, methylene ketogenic, acetylation, and methylation. In summary, this research provides an idea for the further study of drug metabolism.
Collapse
Affiliation(s)
- Hong Wang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Jing Xu
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Pingping Dong
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| | - Yanan Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Yifang Cui
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Huajian Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Haoran Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Jiayu Zhang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shaoping Wang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Long Dai
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
9
|
Fels JA, Casalena G, Konrad C, Holmes HE, Dellinger RW, Manfredi G. Gene expression profiles in sporadic ALS fibroblasts define disease subtypes and the metabolic effects of the investigational drug EH301. Hum Mol Genet 2022; 31:3458-3477. [PMID: 35652455 DOI: 10.1093/hmg/ddac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023] Open
Abstract
Metabolic alterations shared between the nervous system and skin fibroblasts have emerged in ALS. Recently, we found that a subgroup of sporadic ALS (sALS) fibroblasts (sALS1) is characterized by metabolic profiles distinct from other sALS cases (sALS2) and controls, suggesting that metabolic therapies could be effective in sALS. The metabolic modulators nicotinamide riboside and pterostilbene (EH301) are under clinical development for the treatment of ALS. Here, we studied the transcriptome and metabolome of sALS cells to understand the molecular bases of sALS metabotypes and the impact of EH301. Metabolomics and transcriptomics were investigated at baseline and after EH301 treatment. Moreover, weighted gene co-expression network analysis (WGCNA) was used to investigate the association of metabolic and clinical features. We found that the sALS1 transcriptome is distinct from sALS2 and that EH301 modifies gene expression differently in sALS1, sALS2, and controls. Furthermore, EH301 had strong protective effects against metabolic stress, an effect linked to anti-inflammatory and antioxidant pathways. WGCNA revealed that ALS functional rating scale and metabotypes are associated with gene modules enriched for cell cycle, immunity, autophagy, and metabolism genes, which are modified by EH301. Meta-analysis of publicly available transcriptomics data from induced motor neurons by Answer ALS confirmed functional associations of genes correlated with disease traits. A subset of genes differentially expressed in sALS fibroblasts was used in a machine learning model to predict disease progression. In conclusion, multi-omics analyses highlighted differential metabolic and transcriptomic profiles in patient-derived fibroblast sALS, which translate into differential responses to the investigational drug EH301.
Collapse
Affiliation(s)
- Jasmine A Fels
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065.,Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY 10065
| | - Gabriella Casalena
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | | | | | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| |
Collapse
|
10
|
Tan S, Bai J, Xu M, Zhang L, Wang Y. Thioredoxin-1 Activation by Pterostilbene Protects Against Doxorubicin-Induced Hepatotoxicity via Inhibiting the NLRP3 Inflammasome. Front Pharmacol 2022; 13:841330. [PMID: 35496300 PMCID: PMC9043100 DOI: 10.3389/fphar.2022.841330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Doxorubicin (DOX) has been widely used in cancer treatment. However, DOX can cause a range of significant side effects, of which hepatotoxicity is a common one, and therefore limits its clinical use. Pterostilbene (PTS) has been shown to exhibit anti-oxidant and anti-inflammatory effects in the treatment of liver diseases but whether PTS could protect against hepatotoxicity in DOX-treated mice is unknown. Methods: In our study, we use C57/BL6J mice and the HepG2 cell line. We divided the mice in 4 groups: the control, the PTS treatment, the DOX treatment, and the DOX + PTS treatment group. Liver histopathology was judged by performing hematoxylin–eosin and Masson staining. Immunohistochemistry was used to perform the expression of NLRP3. The levels of serum alanine transaminase (ALT) and aspartate transaminase (AST) were evaluated. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and DCFH-DA staining were used to evaluate the oxidative injury. Western blot and real-time PCR were applied to evaluate the expressions of proteins and mRNA. MTT was used to evaluate DOX-induced cell injury and the protective effects of PTS. Recombinant Trx-1 was used to analyze the mechanism of PTS. A TUNEL assay was used to detect apoptosis in DOX-induced HepG2 cells and the protective effects of PTS. Results: PTS ameliorated DOX-induced liver pathological changes and the levels of AST and ALT. PTS also decreased the level of MDA, increased the level of SOD, GSH, and the expression of Trx-1 in DOX-treated mice. PTS decreased the levels of NLRP3 and IL-1β mRNA and the expressions of their proteins in DOX-treated mice. In addition, PTS also decreased the expression of Cleaved Caspase-3 and BAX and increased the expression of BCL-2. In vitro, after treatment with recombinant Trx-1, ROS and NLRP3 inflammasome were both decreased. Treatment with PTS could rescue the downregulation of Trx-1, decreased the ROS level and the NLRP3 inflammasome, and protected HepG2 cells against DOX-induced apoptosis. Conclusion: The results show that PTS exhibits protective effects against DOX-induced liver injuries via suppression of oxidative stress, fibrosis, NLRP3 inflammasome stimulation, and cell apoptosis which might lead to a new approach of preventing DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shiqing Tan
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Bai
- Nutrition and Food Hygiene, Dalian Medical University, Dalian, China
| | - Mingxi Xu
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Longying Zhang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Longying Zhang, ; Ying Wang,
| | - Ying Wang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Longying Zhang, ; Ying Wang,
| |
Collapse
|
11
|
Guo J, Wang J, Guo R, Shao H, Guo L. Pterostilbene protects the optic nerves and retina in a murine model of experimental autoimmune encephalomyelitis via activation of SIRT1 signaling. Neuroscience 2022; 487:35-46. [DOI: 10.1016/j.neuroscience.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
12
|
Native Cyclodextrins as Complexation Agents for Pterostilbene: Complex Preparation and Characterization in Solution and in the Solid State. Pharmaceutics 2021; 14:pharmaceutics14010008. [PMID: 35056903 PMCID: PMC8777607 DOI: 10.3390/pharmaceutics14010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Pterostilbene (3,5-dimethoxy-4′-hydroxystilbene, PTB) is a natural dietary stilbene, occurring primarily in blueberries and Pterocarpus marsupium heartwood. The interest in this compound is related to its different biological and pharmacological properties, such as its antioxidant, anti-inflammatory, and anticarcinogenic activities and its capacity to reduce and regulate cholesterol and blood sugar levels. Nevertheless, its use in therapy is hindered by its low aqueous solubility; to overcome this limitation we studied the feasibility of the use of cyclodextrins (CDs) as solubility-enhancing agents. CDs are natural macrocyclic oligomers composed of α-d-glucose units linked by α-1,4 glycosidic bonds to form torus-shaped molecules, responsible for inclusion complex formation with organic molecules. In particular, the aim of this study was to evaluate the feasibility of complexation between PTB and native CDs using various preparative methods. The isolated solid products were characterized using differential scanning calorimetry (DSC), simultaneous thermogravimetric/DSC analysis (TGA/DSC), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) on powder and single crystals. The results indicated little or no evidence of the affinity of PTB to complex with α-CD using the kneading method. However, with β-CD and γ-CD thermal analysis revealed an interaction which was also corroborated by FT-IR and 1H-NMR spectroscopy. With β-CD, a hydrated complex of PTB was isolated and its characterization by single-crystal XRD revealed, for the first time, the mode of inclusion of the PTB molecule in the cavity of a CD. To complement the solid-state data, liquid-phase studies were carried out to establish the effect of CDs on the aqueous solubility of PTB and to determine the complex stoichiometries and the association constants for complex formation. Phase-solubility studies showed AL-type profiles for α- and β-CD and a BS profile for γ-CD, with K1:1 values of 1144, 4950, and 133 M−1 for α-CD·PTB, β-CD·PTB, and γ-CD·PTB, respectively. The stoichiometry of CD·PTB complexes, determined by Job’s method, revealed for each system a 1:1 molar ratio. The dissolution rate of PTB was approximately doubled just by employing simple physical mixtures, but the best performance was achieved by products obtained via kneading and co-precipitation, which effected the complete dissolution of PTB in 40 and 20 min for β-CD and γ-CD, respectively.
Collapse
|
13
|
Ma C, Xiang J, Huang G, Zhao Y, Wang X, Wu H, Jiang K, Liang Z, Kang L, Yang G, Yang S. Pterostilbene Alleviates Cholestasis by Promoting SIRT1 Activity in Hepatocytes and Macrophages. Front Pharmacol 2021; 12:785403. [PMID: 34899349 PMCID: PMC8656168 DOI: 10.3389/fphar.2021.785403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background and purpose: FXR is a promising target for the treatment of human cholestatic liver disease (CLD). SIRT1 is a deacetylase which promotes FXR activity through deacetylating FXR. Pterostilbene (PTE) is an activator of SIRT1. However, the role of PTE in cholestasis has so far not been investigated. We examined whether PTE treatment alleviate liver injury in DDC or ANIT-induced experimental cholestasis, and explored the underlying mechanisms. Experimental approach: Mice with DDC- or ANIT-induced cholestasis were treated with different dose of PTE. Primary hepatocytes and bone marrow derived macrophages were used in vitro to assess the molecular mechanism by which PTE may improve CLD. Identical doses of UDCA or PTE were administered to DDC- or ANIT-induced cholestasis mice. Key results: PTE intervention attenuated DDC or ANIT-induced cholestasis. PTE inhibited macrophage infiltration and activation in mouse liver through the SIRT1-p53 signaling pathway, and it improved hepatic bile metabolism through the SIRT1-FXR signaling pathway. Compare with UDCA, the same doses of PTE was more effective in improving cholestatic liver injury caused by DDC or ANIT. Conclusion and implications: SIRT1 activation in macrophages may be an effective CLD treatment avenue. Using CLD models, we thus identified PTE as a novel clinical candidate compound for the treatment of CLD.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Guixiao Huang
- The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yaxi Zhao
- Department of Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xinyu Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Han Wu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Kewei Jiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Shenzhen, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shu Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Shao Y, Wang X, Zhou Y, Jiang Y, Wu R, Lu C. Pterostilbene attenuates RIPK3-dependent hepatocyte necroptosis in alcoholic liver disease via SIRT2-mediated NFATc4 deacetylation. Toxicology 2021; 461:152923. [PMID: 34474091 DOI: 10.1016/j.tox.2021.152923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Receptor-interacting protein kinase (RIPK) 3-dependent necroptosis plays a critical role in alcoholic liver disease. RIPK3 also facilitates steatosis, oxidative stress, and inflammation. Pterostilbene (PTS) has favorable hepatoprotective activities. The present study was aimed to reveal the therapeutic effects of PTS on ethanol-induced hepatocyte necroptosis and further illustrate possible molecular mechanisms. Human hepatocytes LO2 were incubated with 100 mM ethanol for 24 h to mimic alcoholic hepatocyte injury. Results showed that PTS at 20 μM reduced damage-associated molecular patterns (DAMPs) release, including IL-1α and high-mobility group box 1 (HMGB1), and blocked necroptotic signaling, evidenced by decreased RIPK1 and RIPK3 expression. Trypan blue staining visually showed that PTS reduced nonviable hepatocytes after ethanol exposure, which was counteracted by adenovirus-mediated ectopic overexpression of RIPK3 but not RIPK1. Besides, PTS inhibited ethanol-induced hepatocyte steatosis via restricting lipogenesis and enhancing lipolysis, decreased oxidative stress via rescuing mitochondrial membrane potential, reducing oxidative system, and enhancing antioxidant system, and relieved inflammation evidenced by decreased expression of proinflammatory factors. Notably, RIPK3 overexpression diminished these protective effects of PTS. Subsequent work indicated that PTS suppressed the expression and nuclear translocation of nuclear factor of activated T-cells 4 (NFATc4), an acetylated protein, in ethanol-exposed hepatocytes, while NFATc4 overexpression impaired the negative regulation of PTS on RIPK3 and DAMPs release. Further, PTS rescued sirtuin 2 (SIRT2) expression, and SIRT2 knockdown abrogated the inhibitory effects of PTS on nuclear translocation and acetylation status of NFATc4 in ethanol-incubated hepatocytes. In conclusion, PTS attenuated RIPK3-dependent hepatocyte necroptosis after ethanol exposure via SIRT2-mediated NFATc4 deacetylation.
Collapse
Affiliation(s)
- Yunyun Shao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ruoman Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Gut Microbiota Induced by Pterostilbene and Resveratrol in High-Fat-High-Fructose Fed Rats: Putative Role in Steatohepatitis Onset. Nutrients 2021; 13:nu13051738. [PMID: 34065444 PMCID: PMC8160898 DOI: 10.3390/nu13051738] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Resveratrol and its 2-methoxy derivative pterostilbene are two phenolic compounds that occur in foodstuffs and feature hepato-protective effects. This study is devoted to analysing and comparing the metabolic effects of pterostilbene and resveratrol on gut microbiota composition in rats displaying NAFLD induced by a diet rich in saturated fat and fructose. The associations among changes induced by both phenolic compounds in liver status and those induced in gut microbiota composition were also analysed. For this purpose, fifty Wistar rats were distributed in five experimental groups: a group of animals fed a standard diet (CC group) and four additional groups fed a high-fat high-fructose diet alone (HFHF group) or supplemented with 15 or 30 mg/kg bw/d of pterostilbene (PT15 and PT30 groups, respectively) or 30 mg/kg bw/d of resveratrol (RSV30 group). The dramatic changes induced by high-fat high-fructose feeding in the gut microbiota were poorly ameliorated by pterostilbene or resveratrol. These results suggest that the specific changes in microbiota composition induced by pterostilbene (increased abundances of Akkermansia and Erysipelatoclostridium, and lowered abundance of Clostridum sensu stricto 1) may not entirely explain the putative preventive effects on steatohepatitis.
Collapse
|
16
|
Liu J, Xu J, Mi Y, Yang Y, Li Q, Zhou D, Wei K, Chen G, Li N, Hou Y. Pterostilbene alleviates cerebral ischemia and reperfusion injury in rats by modulating microglial activation. Food Funct 2021; 11:5432-5445. [PMID: 32490497 DOI: 10.1039/d0fo00084a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a severe neurological disease without known effective therapy. Microglia-mediated neuroinflammation plays an important role in ischemic stroke. Therefore, finding a safe and effective microglial activation inhibitor might lead to an effective therapeutic strategy against ischemic stroke. In this project, our goal was to explore both the mechanism and effect of pterostilbene in MCAO/R rats. The potential effect of pterostilbene on ischemic stroke was tested using MCAO/R rats and its effect on microglial activation was tested in LPS-stimulated BV-2 cells. In vivo, pterostilbene decreased the neurological scores, brain water content and infarct volume in MCAO/R rats. Pterostilbene increased the number of mature neurons, decreased the number of activated microglia, and reduced iNOS and IL-1β mRNA expression. Pterostilbene inhibited phosphorylated-IκBα expression, thus promoting IκBα expression and inhibiting ROS overexpression. In vitro, pterostilbene inhibited the expression of inflammatory cytokines and suppressed NAPDH activity as well as activation of both the NF-κB pathway and ROS production. To our knowledge, our study is the first to demonstrate that pterostilbene-mediated alleviation of cerebral ischemia and reperfusion injury in rats may be correlated with the inhibition of the ROS/NF-κB-mediated inflammatory pathway in microglia, indicating the potential for the use of pterostilbene as a candidate therapeutic compound for ischemic stroke.
Collapse
Affiliation(s)
- Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China. and Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Jikai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China. and Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, China. and Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Yanqiu Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.
| | - Qing Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China.
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China. and Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| |
Collapse
|
17
|
Nutraceutical Properties of Polyphenols against Liver Diseases. Nutrients 2020; 12:nu12113517. [PMID: 33203174 PMCID: PMC7697723 DOI: 10.3390/nu12113517] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Current food tendencies, suboptimal dietary habits and a sedentary lifestyle are spreading metabolic disorders worldwide. Consequently, the prevalence of liver pathologies is increasing, as it is the main metabolic organ in the body. Chronic liver diseases, with non-alcoholic fatty liver disease (NAFLD) as the main cause, have an alarming prevalence of around 25% worldwide. Otherwise, the consumption of certain drugs leads to an acute liver failure (ALF), with drug-induced liver injury (DILI) as its main cause, or alcoholic liver disease (ALD). Although programs carried out by authorities are focused on improving dietary habits and lifestyle, the long-term compliance of the patient makes them difficult to follow. Thus, the supplementation with certain substances may represent a more easy-to-follow approach for patients. In this context, the consumption of polyphenol-rich food represents an attractive alternative as these compounds have been characterized to be effective in ameliorating liver pathologies. Despite of their structural diversity, certain similar characteristics allow to classify polyphenols in 5 groups: stilbenes, flavonoids, phenolic acids, lignans and curcuminoids. Herein, we have identified the most relevant compounds in each group and characterized their main sources. By this, authorities should encourage the consumption of polyphenol-rich products, as most of them are available in quotidian life, which might reduce the socioeconomical burden of liver diseases.
Collapse
|
18
|
Pterostilbene Attenuates Cocultured BV-2 Microglial Inflammation-Mediated SH-SY5Y Neuronal Oxidative Injury via SIRT-1 Signalling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3986348. [PMID: 32831997 PMCID: PMC7426790 DOI: 10.1155/2020/3986348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Microglial inflammation plays an important part in the progression of multiple neurological diseases, including neurodegenerative diseases, stroke, depression, and traumatic encephalopathy. Here, we aimed to explore the role of pterostilbene (PTE) in the microglial inflammatory response and subsequent damage of cocultured neural cells and partially explain the underlying mechanisms. In the coculture system of lipopolysaccharide-activated BV-2 microglia and SH-SY5Y neuroblastoma, PTE (only given to BV-2) exhibited protection on SH-SY5Y cells, evidenced by improved SH-SY5Y morphology and viability and LDH release. It also attenuated SH-SY5Y apoptosis and oxidative stress, evidenced by TUNEL and DCFH-DA staining, as well as MDA, SOD, and GSH levels. Moreover, PTE upregulated SIRT-1 expression and suppressed acetylation of NF-κB p65 subunit in BV-2 microglia, thus decreasing the inflammatory factors, including TNF-α and IL-6. Furthermore, the effects above were reversed by SIRT-1 inhibitor EX527. These results suggest that PTE reduces the microglia-mediated inflammatory response and alleviates subsequent neuronal apoptosis and oxidative injury via increasing SIRT-1 expression and inhibiting the NF-κB signalling pathway.
Collapse
|
19
|
Afifi M, Alkaladi A, Abomughaid MM, Abdelazim AM. Nanocurcumin improved glucose metabolism in streptozotocin-induced diabetic rats: a comparison study with Gliclazide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25271-25277. [PMID: 32347481 DOI: 10.1007/s11356-020-08941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
In the present study, the biochemical effect of nanocurcumin (nanoCUR) compared with Gliclazide (GLZ) on the diabetic rats was studied. Forty male albino rats (Sprague Dawley) weighted 110 ± 20 g were used. Rats were randomly separated into two groups. Control, received no treatment. Streptozotocin (STZ)-induced diabetic groups take 5 ml/kg of STZ in normal saline daily for 30 days, further divided into diabetic non-treated group, did not receive any treatment: diabetic group treated by nanoCUR, received 15 mg/kg/day of nanoCUR orally for 30 days; diabetic group treated by GLZ, received 2 mg/kg/day of GLZ for 30 days. The mean body weights of all rats were registered and serum samples were collected for determination of fasting blood glucose (FBG), insulin concentration, liver glucokinase (GK), and glycogen synthase (GS) activities. Liver tissues were collected for determination of mRNA expression of insulin (INS), insulin receptor A (IRA), glucokinase (GK), and glucose transporter 2 (GLUT2). The results revealed a significant reduction of body weight in diabetic rats, with no significant differences in nanoCUR and GLZ groups. There was a decline in FBG levels and significant elevation of INS levels, GK, and GS activities in diabetic rats received nanoCUR and GLZ. mRNA expression of INS, IRA, GK, and GLUT2 significantly upregulated in diabetic rats received nanoCUR and GLZ. The amazing observation was a non-significant difference in all measured parameters between nanoCUR and GLZ groups. In conclusion, nanoCUR is able to improve cellular uptake of glucose, the hepatic insulin signaling, and insulin sensitivity in diabetic rats. Its effect was similar to standard hypoglycemic drug (GLZ).
Collapse
Affiliation(s)
- Mohamed Afifi
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia.
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Ali Alkaladi
- College of Science, Department of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Aaser M Abdelazim
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
20
|
Chu XY, Yang SZ, Zhu MQ, Zhang DY, Shi XC, Xia B, Yuan Y, Liu M, Wu JW. Isorhapontigenin Improves Diabetes in Mice via Regulating the Activity and Stability of PPARγ in Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3976-3985. [PMID: 32178518 DOI: 10.1021/acs.jafc.0c00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isorhapontigenin is a natural bioactive stilbene isolated from various plants and fruits. It has been reported to exhibit several physiological activities including anticancer and anti-inflammation activity in vitro and in experimental animal models. This study aimed to investigate whether isorhapontigenin exerts antidiabetic effects in vivo. To this end, diabetic db/db mice were treated with either 25 mg kg-1 of isorhapontigenin or vehicle intraperitoneally for a period of 5 weeks. The results show that isorhapontigenin treatment significantly reduced postprandial levels of glucose, insulin, as well as free fatty acid, three markers of diabetes. Further studies show that isorhapontigenin treatment markedly improves insulin sensitivity and glucose tolerance of db/db mice as shown by ITT and GTT. Together, these physiological results show that isorhapontigenin possesses antidiabetic properties in vivo. Mechanistically, the isorhapontigenin-mediated antidiabetic effect is caused by favorable changes in adipose tissue, including reductions in adipocyte diameter and improved adipose insulin sensitivity. Further studies with 3T3-L1 cells show that isorhapontigenin treatment promotes preadipocyte differentiation by upregulation of the activity of the master adipogenic regulator PPARγ and deceleration of its proteasomal degradation. Together, our results establish for the first time an important role of isorhapontigenin as a potential nutraceutical agent for diabetes treatment.
Collapse
Affiliation(s)
- Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Effects of resveratrol and its derivative pterostilbene on brown adipose tissue thermogenic activation and on white adipose tissue browning process. J Physiol Biochem 2020; 76:269-278. [PMID: 32170654 DOI: 10.1007/s13105-020-00735-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
The main function of brown adipose tissue (BAT) is thermogenesis, a process mediated by uncoupling protein 1 (UCP1), which is located in the inner mitochondrial membrane and acts uncoupling oxidative phosphorylation from ATP production, thereby dissipating energy as heat. White adipose tissue can also express UCP1 positive cells due to a process known as browning. This phenomenon could also increase the thermogenic effect in the classical brown adipose depots. BAT thermogenesis depends, among other factors on both, nutritional conditions and food availability. Indeed, some studies have found that BAT recruitment and function are enhanced by some food components. The present study focuses on the effects of resveratrol and pterostilbene, two phenolic compounds belonging to the stilbene group, on BAT thermogenic activation and white adipose tissue browning process. The reported studies, carried out in cell cultures and animal models, show that both resveratrol and pterostilbene induce thermogenic capacity in interscapular BAT by increasing mitochondriogenesis, as well as enhancing fatty acid oxidation and glucose disposal. In addition, resveratrol seems to promote browning by activating peroxisome proliferator-activated receptor (PPAR), while the lack of changes in mitochondrial biogenesis suggests that probably the browning process occurs by direct resveratrol-mediated upregulation of ucp1 mRNA expression.
Collapse
|