1
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
He Y, Wu Q. The Effect of Extracellular Vesicles on Thrombosis. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10342-w. [DOI: 10.1007/s12265-022-10342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The risk of cardiovascular events caused by acute thrombosis is high, including acute myocardial infarction, acute stroke, acute pulmonary embolism, and deep vein thrombosis. In this review, we summarize the roles of extracellular vesicles of different cellular origins in various cardiovascular events associated with acute thrombosis, as described in the current literature, to facilitate the future development of a precise therapy for thrombosis caused by such vesicles. We hope that our review will indicate a new horizon in the field of cardiovascular research with regard to the treatment of acute thrombosis, especially targeting thrombosis caused by extracellular vesicles secreted by individual cells. As more emerging technologies are being developed, new diagnostic and therapeutic strategies related to EVs are expected to be identified for related diseases in the future.
Collapse
|
3
|
Han X, Li T, Wang T, Wang B, Li Y, Wang L, Lu Z, Wu A, Liu L, Pan G, Zhao M. Circulating microparticles are associated with plaque burden and cause eNOS uncoupling in patients with carotid atherosclerosis. Front Pharmacol 2022; 13:976644. [DOI: 10.3389/fphar.2022.976644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aims: The study aimed to evaluate the correlation of different microparticle (MP) phenotypes with plaque burden and their diagnostic value and preliminarily explore the role of MPs in atherosclerosis (AS).Methods: Carotid intima-media thickness (CIMT) and maximal plaque area in 23 patients with carotid atherosclerosis (CAS) and 22 healthy subjects were measured by ultrasound. Transmission electron microscopy, nanoparticle tracking analysis and western blot were used to identify MPs. Flow cytometry assay measured absolute number of MPs, and receiver operating characteristic (ROC) analysis was used to assess the relationship between plaque burden and MPs. To study the preliminary mechanism of MPs in AS, MPs were administered to 32 male Kunming mice, which were randomly divided into control, CAS, healthy, and tetrahydrobiopterin (BH4) groups. Hematoxylin-eosin staining, immunohistochemistry staining, and Western blot were adopted to detect relevant indexes 24 h after the injection.Results: The plasma levels of CD45+ leukocyte-derived microparticle (LMP), CD11a+ LMP, CD11a+/CD45+ LMP, and CD31+/CD42b+ platelet-derived microparticle (PMP) in CAS patients were significantly higher than those in healthy subjects, and were positively correlated with the maximal plaque area. Moreover, the levels of CD11a+ LMP, CD11a+/CD45+ LMP were also positively correlated with CIMT. The area under the ROC curve of the four MPs was 0.689, 0.747, 0.741, and 0.701, respectively. Compared with healthy subjects, MPs from CAS patients resulted in a significantly lower expression of endothelial nitric oxide synthase (eNOS) dimer/monomer, and BH4 could improve eNOS uncoupling. Moreover, the level of VCAM-1 in intima in the CAS group was significantly higher than in the other three groups.Conclusion: CD11a+ LMP and CD11a+/CD45+ LMP might be potential biomarkers for CAS prediction. BH4-related eNOS uncoupling occurs in CAS patients, and circulating MPs from them lead to endothelial dysfunction through eNOS uncoupling.
Collapse
|
4
|
Risk stratification of patients with SARS-CoV-2 by tissue factor expression in circulating extracellular vesicles. Vascul Pharmacol 2022; 145:106999. [PMID: 35597450 PMCID: PMC9116046 DOI: 10.1016/j.vph.2022.106999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 01/08/2023]
Abstract
Inflammatory response following SARS-CoV-2 infection results in substantial increase of amounts of intravascular pro-coagulant extracellular vesicles (EVs) expressing tissue factor (CD142) on their surface. CD142-EV turned out to be useful as diagnostic biomarker in COVID-19 patients. Here we aimed at studying the prognostic capacity of CD142-EV in SARS-CoV-2 infection. Expression of CD142-EV was evaluated in 261 subjects admitted to hospital for pneumonia and with a positive molecular test for SARS-CoV-2. The study population consisted of a discovery cohort of selected patients (n = 60) and an independent validation cohort including unselected consecutive enrolled patients (n = 201). CD142-EV levels were correlated with post-hospitalization course of the disease and compared to the clinically available 4C Mortality Score as referral. CD142-EV showed a reliable performance to predict patient prognosis in the discovery cohort (AUC = 0.906) with an accuracy of 81.7%, that was confirmed in the validation cohort (AUC = 0.736). Kaplan-Meier curves highlighted a high discrimination power in unselected subjects with CD142-EV being able to stratify the majority of patients according to their prognosis. We obtained a comparable accuracy, being not inferior in terms of prediction of patients' prognosis and risk of mortality, with 4C Mortality Score. The expression of surface vesicular CD142 and its reliability as prognostic marker was technically validated using different immunocapture strategies and assays. The detection of CD142 on EV surface gains considerable interest as risk stratification tool to support clinical decision making in COVID-19.
Collapse
|
5
|
Lin H, Chen H, Qi B, Jiang Y, Lian N, Zhuang X, Yu Y. Brain-derived extracellular vesicles mediated coagulopathy, inflammation and apoptosis after sepsis. Thromb Res 2021; 207:85-95. [PMID: 34583153 DOI: 10.1016/j.thromres.2021.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The activation of coagulation, inflammation and other pathways is the basic response of the host to infection in sepsis, but this response also causes damage to the host. Brain-derived extracellular vesicles (BDEVs) have been reported to cause a hypercoagulable state that can rapidly develop into consumptive coagulopathy, which is consistent with the pathophysiological process of sepsis-induced coagulopathy. However, the role of BDEVs in sepsis-induced coagulopathy remains unclear. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats were used for sepsis modeling using cecal ligation puncture (CLP). Flow cytometry was used to measure the levels of circulating BDEVs. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum levels of plasminogen activator inhibitor type 1 (PAI-1), thrombin-antithrombin (TAT), D-dimer, fibrinogen(Fib), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6. Nanoparticle tracking analysis (NTA) and Transmission electron microscopy (TEM) were used to identify BDEVs. Western blot (WB) was used to determine the expression of glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), bax, bcl-2 and cleaved caspase-3. Hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining were performed to detect tissue injury. Survival was monitored over the course of 168 h. RESULTS We found that a large number of BDEVs were released into the circulating blood in septic rats. Moreover, we observed that BDEVs injection activated the systemic coagulation reaction and induced lung, liver and kidney inflammation and apoptosis(P < .05). Compared with BDEVs from sham-operated rats, BDEVs from septic rats exacerbated this process(P < .05). CONCLUSIONS This finding suggests that inhibiting BDEVs may yield therapeutic benefits in the treatment of sepsis-induced coagulopathy.
Collapse
Affiliation(s)
- Huaying Lin
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bo Qi
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Jiang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoli Zhuang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
6
|
Brambilla M, Canzano P, Becchetti A, Tremoli E, Camera M. Letter by Brambilla et al Regarding Article, "Patients With COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated With Severity and Mortality-Brief Report". Arterioscler Thromb Vasc Biol 2021; 41:e379-e380. [PMID: 34038167 DOI: 10.1161/atvbaha.121.316188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marta Brambilla
- Centro Cardiologico Monzino IRCCS, Milan, Italy (M.B., P.C., A.B., E.T., M.C.)
| | - Paola Canzano
- Centro Cardiologico Monzino IRCCS, Milan, Italy (M.B., P.C., A.B., E.T., M.C.)
| | - Alessia Becchetti
- Centro Cardiologico Monzino IRCCS, Milan, Italy (M.B., P.C., A.B., E.T., M.C.)
| | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, Milan, Italy (M.B., P.C., A.B., E.T., M.C.)
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy (M.B., P.C., A.B., E.T., M.C.).,Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (M.C.)
| |
Collapse
|
7
|
Affiliation(s)
- Dimitris Tousoulis
- 1st Cardiology Department, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Nikolaos Papageorgiou
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield EC1A 7BE, London, United Kingdom
| |
Collapse
|