1
|
Bellavita R, Braccia S, Piccolo M, Bialecki P, Ferraro MG, Graziano SF, Esposito E, Donadio F, Bryszewska M, Irace C, Pedziwiatr-Werbicka E, Falanga A, Galdiero S. Shielding siRNA by peptide-based nanofibers: An efficient approach for turning off EGFR gene in breast cancer. Int J Biol Macromol 2024; 292:139219. [PMID: 39733890 DOI: 10.1016/j.ijbiomac.2024.139219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Peptide-based self-assembled nanosystems show great promise as non-viral gene and siRNA delivery vectors. In the current study, we designed and functionalized nanofibers for the delivery of siRNA, targeting and silencing EGFR gene overexpressed in triple-negative breast cancer. The nanofiber-mediated siRNA delivery was characterized in terms of zeta potential, morphology, and structural stability by circular dichroism spectroscopy. In cytotoxicity studies, nanofibers presented high biocompatibility showing a negligible effect on cell viability both on healthy and cancer cell lines. The binding between nanofibers and EGFR-siRNA was investigated and ascertained by performing different biophysical studies. The complex siRNA:NF was stable over time, under fetal bovine serum, temperature and ionic strength effects. Moreover, nanofibers effectiveness in stabilizing and delivering an ad hoc selected siRNA for EGFR gene expression silencing was verified in a preclinical model of triple-negative breast cancer. Specifically, a significant gene knockdown was obtained with the complex siRNA:NF, that is comparable with the effect obtained by lipofectamine/siRNA transfection. This effective gene silencing derived from the successful internalization of nanofibers by cancer cells as observed by confocal microscopy. These results suggested that this peptide-based nanofiber could be an effective and safe systemic siRNA delivery system for application in biomedical areas.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Simone Braccia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Piotr Bialecki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Sossio Fabio Graziano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Emanuela Esposito
- Institute of Applied Sciences and Intelligent Systems (ISASI), Naples Cryo Electron Microscopy Laboratory - EYE LAB, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Federica Donadio
- Institute of Applied Sciences and Intelligent Systems (ISASI), Naples Cryo Electron Microscopy Laboratory - EYE LAB, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Carlo Irace
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, Portici, 80055 Portici, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
2
|
Fateh ST, Aghaii AH, Aminzade Z, Shahriari E, Roohpour N, Koosha F, Dezfuli AS. Inorganic nanoparticle-cored dendrimers for biomedical applications: A review. Heliyon 2024; 10:e29726. [PMID: 38694058 PMCID: PMC11061704 DOI: 10.1016/j.heliyon.2024.e29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Hybrid nanostructures exhibit a synergistic combination of features derived from their individual components, showcasing novel characteristics resulting from their distinctive structure and chemical/physical properties. Surface modifiers play a pivotal role in shaping INPs' primary attributes, influencing their physicochemical properties, stability, and functional applications. Among these modifiers, dendrimers have gained attention as highly effective multifunctional agents for INPs, owing to their unique structural qualities, dendritic effects, and physicochemical properties. Dendrimers can be seamlessly integrated with diverse inorganic nanostructures, including metal NPs, carbon nanostructures, silica NPs, and QDs. Two viable approaches to achieving this integration involve either growing or grafting dendrimers, resulting in inorganic nanostructure-cored dendrimers. The initial step involves functionalizing the nanostructures' surface, followed by the generation of dendrimers through stepwise growth or attachment of pre-synthesized dendrimer branches. This hybridization imparts superior qualities to the resulting structure, including biocompatibility, solubility, high cargo loading capacity, and substantial functionalization potential. Combining the unique properties of dendrimers with those of the inorganic nanostructure cores creates a multifunctional system suitable for diverse applications such as theranostics, bio-sensing, component isolation, chemotherapy, and cargo-carrying applications. This review summarizes the recent developments, with a specific focus on the last five years, within the realm of dendrimers. It delves into their role as modifiers of INPs and explores the potential applications of INP-cored dendrimers in the biomedical applications.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Zahra Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Huang J, Zhang J, Sun C, Yang R, Sheng M, Hu J, Kai G, Han B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117022. [PMID: 37572929 DOI: 10.1016/j.jep.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy is a common cancer treatment strategy. However, its effectiveness is constrained by toxicity and adverse effects. The Lamiaceae herb Salvia miltiorrhiza Bunge has a long history of therapeutic use in the treatment of blood stasis illnesses, which are believed by traditional Chinese medicine to be connected to cancer. AIM OF THE STUDY This review summarized the common toxicity of chemotherapy and the potential chemo-adjuvant effect and mechanisms of active ingredients from S. miltiorrhiza, hoping to provide valuable information for the development and application of S. miltiorrhiza resources. MATERIALS AND METHODS The literatures were retrieved from PubMed, Web of Science, Baidu Scholar and Google Scholar databases from 2002 to 2022. The inclusion criteria were studies reporting that S. miltiorrhiza or its constituents enhanced the efficiency of chemotherapy drugs or reduced the side effects. RESULTS Salvianolic acid A, salvianolic acid B, salvianolic acid C, rosmarinic acid, tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone I and miltirone are the primary adjuvant chemotherapy components of S. miltiorrhiza. The mechanisms mainly involve inhibiting proliferation, metastasis, and angiogenesis, inducing apoptosis, regulating autophagy and tumor microenvironment. In addition, they also improve chemotherapy drug-induced side effects. CONCLUSIONS The bioactive compounds of S. miltiorrhiza are shown to inhibit proliferation, metastasis, and angiogenesis, induce apoptosis and autophagy, regulate immunity and tumor microenvironment when combined with chemotherapy drugs. However, further clinical studies are required to validate the current studies.
Collapse
Affiliation(s)
- Jiayan Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Chengtao Sun
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Miaomiao Sheng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Tan KF, In LLA, Vijayaraj Kumar P. Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:2944-2981. [PMID: 37435615 DOI: 10.1021/acsabm.3c00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Gold nanoparticles (AuNPs) have undergone significant research for their use in the treatment of cancer. Numerous researchers have established their potent antitumor properties, which have greatly impacted the treatment of cancer. AuNPs have been used in four primary anticancer treatment modalities, namely radiation, photothermal therapy, photodynamic therapy, and chemotherapy. However, the ability of AuNPs to destroy cancer is lacking and can even harm healthy cells without the right direction to transport them to the tumor microenvironment. Consequently, a suitable targeting technique is needed. Based on the distinct features of the human tumor microenvironment, this review discusses four different targeting strategies that target the four key features of the tumor microenvironment, including abnormal vasculature, overexpression of specific receptors, an acidic microenvironment, and a hypoxic microenvironment, to direct surface-functionalized AuNPs to the tumor microenvironment and increase antitumor efficacies. In addition, some current completed or ongoing clinical trials of AuNPs will also be discussed below to further reinforce the concept of using AuNPs in anticancer therapy.
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Vasileva L, Gaynanova G, Valeeva F, Belyaev G, Zueva I, Bushmeleva K, Sibgatullina G, Samigullin D, Vyshtakalyuk A, Petrov K, Zakharova L, Sinyashin O. Mitochondria-Targeted Delivery Strategy of Dual-Loaded Liposomes for Alzheimer's Disease Therapy. Int J Mol Sci 2023; 24:10494. [PMID: 37445673 DOI: 10.3390/ijms241310494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Liposomes modified with tetradecyltriphenylphosphonium bromide with dual loading of α-tocopherol and donepezil hydrochloride were successfully designed for intranasal administration. Physicochemical characteristics of cationic liposomes such as the hydrodynamic diameter, zeta potential, and polydispersity index were within the range from 105 to 115 nm, from +10 to +23 mV, and from 0.1 to 0.2, respectively. In vitro release curves of donepezil hydrochloride were analyzed using the Korsmeyer-Peppas, Higuchi, First-Order, and Zero-Order kinetic models. Nanocontainers modified with cationic surfactant statistically better penetrate into the mitochondria of rat motoneurons. Imaging of rat brain slices revealed the penetration of nanocarriers into the brain. Experiments on transgenic mice with an Alzheimer's disease model (APP/PS1) demonstrated that the intranasal administration of liposomes within 21 days resulted in enhanced learning abilities and a reduction in the formation rate of Aβ plaques in the entorhinal cortex and hippocampus of the brain.
Collapse
Affiliation(s)
- Leysan Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Farida Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Grigory Belyaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Irina Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Kseniya Bushmeleva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., 420111 Kazan, Russia
- Institute for Radio-Electronics and Telecommunications, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., 420111 Kazan, Russia
| | - Alexandra Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
7
|
Guo WB, Wu C, Yang L, Miao AJ. Pre-exposure to titanium or iron oxide nanoparticles suppresses the subsequent cellular uptake of gold nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162491. [PMID: 36889398 DOI: 10.1016/j.scitotenv.2023.162491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Humans are exposed to a wide variety of natural and engineered nanoparticles (NPs) during their lifetime. However, the effects of pre-exposure to NPs on subsequent uptake of other NPs have not been investigated. In the present study, we investigated the effects of pre-exposure to three NPs (TiO2, Fe2O3, and SiO2 NPs) on the subsequent uptake of gold NPs (AuNPs) by hepatocellular carcinoma cells (HepG2). When HepG2 cells were pre-exposed to TiO2 or Fe2O3 NPs, but not SiO2 NPs for 2 days, their subsequent uptake of AuNPs was inhibited. Such inhibition was also observed in human cervical cancer (HeLa) cells, suggesting that this phenomenon is present in different cell types. The mechanisms underlying the inhibitory effect of NP pre-exposure include altered plasma membrane fluidity due to changes in lipid metabolism and reduced intracellular ATP production due to decreased intracellular oxygen. Despite the inhibitory effects of NP pre-exposure, full recovery was observed after transferring the cells to medium without NPs, even when the pre-exposure time was extended from 2 days to 2 weeks. Overall, the pre-exposure effects observed in the present study should be considered in the biological application and risk evaluation of NPs.
Collapse
Affiliation(s)
- Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
8
|
Sharma A, Jaiswal V, Park M, Lee HJ. Biogenic silver NPs alleviate LPS-induced neuroinflammation in a human fetal brain-derived cell line: Molecular switch to the M2 phenotype, modulation of TLR4/MyD88 and Nrf2/HO-1 signaling pathways, and molecular docking analysis. BIOMATERIALS ADVANCES 2023; 148:213363. [PMID: 36881963 DOI: 10.1016/j.bioadv.2023.213363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Silver nanoparticles (AgNPs) have inconsistent findings against inflammation. Although a wealth of literature on the beneficial effects of green-synthesized AgNPs has been published, a detailed mechanistic study of green AgNPs on the protective effects against lipopolysaccharide (LPS)-induced neuroinflammation using human microglial cells (HMC3) has not yet been reported. For the first time, we studied the inhibitory effect of biogenic AgNPs on inflammation and oxidative stress induced by LPS in HMC3 cells. X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy were used to characterize AgNPs produced from honeyberry. Co-treatment with AgNPs significantly reduced mRNA expressions of inflammatory molecules such as interleukin (IL)-6 and tumor necrosis factor-α, while increasing the expressions of anti-inflammatory markers such as IL-10 and transforming growth factor (TGF)-β. HMC3 cells were also switched from M1 to M2, as shown by lower expression of M1 markers such as cluster of differentiation (CD)80, CD86, and CD68 and higher expression of M2 markers such as CD206, CD163, and triggering receptors expressed on myeloid cells (TREM2). Furthermore, AgNPs inhibited LPS-induced toll-like receptor (TLR)4 signaling, as evidenced by decreased expression of myeloid differentiation factor 88 (MyD88) and TLR4. In addition, AgNPs reduced the production of reactive oxygen species (ROS) and enhanced the expression of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), while decreasing the expression of inducible nitric oxide synthase. The docking score of the honeyberry phytoconstituents ranged from -14.93 to - 4.28 KJ/mol. In conclusion, biogenic AgNPs protect against neuroinflammation and oxidative stress by targeting TLR4/MyD88 and Nrf2/HO-1 signaling pathways in a LPS-induced in vitro model. Biogenic AgNPs could be utilized as potential nanomedicine against LPS-induced inflammatory disorders.
Collapse
Affiliation(s)
- Anshul Sharma
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Varun Jaiswal
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Miey Park
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hae-Jeung Lee
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
9
|
Cardellini J, Ridolfi A, Donati M, Giampietro V, Severi M, Brucale M, Valle F, Bergese P, Montis C, Caselli L, Berti D. Probing the coverage of nanoparticles by biomimetic membranes through nanoplasmonics. J Colloid Interface Sci 2023; 640:100-109. [PMID: 36842416 DOI: 10.1016/j.jcis.2023.02.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Although promising for biomedicine, the clinical translation of inorganic nanoparticles (NPs) is limited by low biocompatibility and stability in biological fluids. A common strategy to circumvent this drawback consists in disguising the active inorganic core with a lipid bilayer coating, reminiscent of the structure of the cell membrane to redefine the chemical and biological identity of NPs. While recent reports introduced membrane-coating procedures for NPs, a robust and accessible method to quantify the integrity of the bilayer coverage is not yet available. To fill this gap, we prepared SiO2 nanoparticles (SiO2NPs) with different membrane coverage degrees and monitored their interaction with AuNPs by combining microscopic, scattering, and optical techniques. The membrane-coating on SiO2NPs induces spontaneous clustering of AuNPs, whose extent depends on the coating integrity. Remarkably, we discovered a linear correlation between the membrane coverage and a spectral descriptor for the AuNPs' plasmonic resonance, spanning a wide range of coating yields. These results provide a fast and cost-effective assay to monitor the compatibilization of NPs with biological environments, essential for bench tests and scale-up. In addition, we introduce a robust and scalable method to prepare SiO2NPs/AuNPs hybrids through spontaneous self-assembly, with a high-fidelity structural control mediated by a lipid bilayer.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Andrea Ridolfi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands(1)
| | - Melissa Donati
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | | | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Marco Brucale
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Francesco Valle
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Paolo Bergese
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Florence, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden(1).
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Application of Plant Polysaccharide Nanoparticles as Polymeric Carrier Materials for the Construction of Medicine Carriers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Dual-Functionalized Nanoliposomes Achieve a Synergistic Chemo-Phototherapeutic Effect. Int J Mol Sci 2022; 23:ijms232112817. [PMID: 36361615 PMCID: PMC9653560 DOI: 10.3390/ijms232112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11lip), the photodynamic agent protoporphyrin IX (PpIXlip), or their combination (CPT11-PpIXlip). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.
Collapse
|
12
|
Anti-cancer and bactericidal activity of electrospun chitosan/poly(ethylene oxide)/papaya nanofibres. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Yang X, Wang Y, Zhao J, Rong H, Chen Y, Xiong M, Ye X, Yu S, Hu H. Coordinated regulation of BACH1 and mitochondrial metabolism through tumor-targeted self-assembled nanoparticles for effective triple negative breast cancer combination therapy. Acta Pharm Sin B 2022; 12:3934-3951. [PMID: 36213532 PMCID: PMC9532561 DOI: 10.1016/j.apsb.2022.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022] Open
Abstract
The poor prognosis of triple negative breast cancer (TNBC) results from a lack of approved targeted therapies coupled with aggressive proliferation and metastasis, which is associated with high recurrence and short overall survival. Here we developed a strategy by employing tumor-targeted self-assembled nanoparticles to coordinately regulate BACH1 (BTB domain and CNC homology 1) and mitochondrial metabolism. The BACH1 inhibitor hemin and mitochondria function inhibitor berberine derivative (BD) were used to prepare nanoparticles (BH NPs) followed by the modification of chondroitin sulfate (CS) on the surface of BH NPs to achieve tumor targeting (CS/BH NPs). CS/BH NPs were found to be able to inhibit tumor migration and invasion by significantly decreasing the amounts of tumor cell metabolites, glycolysis and metastasis-associated proteins, which were related to the inhibition of BACH1 function. Meanwhile, decreased mitochondrial membrane potential, activated caspase 3/9 and increased ROS production demonstrated coordinated regulation of BACH1 and mitochondrial metabolism. In a xenograft mice model of breast cancer, CS/BH NPs significantly inhibited tumor growth and metastasis due to the synergetic effect of hemin and BD without showing obvious toxicities for major organs. In sum, the results of efficacy and safety experiments suggest potential clinical significance of the prepared self-assembled CS/BH nanoparticles for the treatment of TNBC.
Collapse
Affiliation(s)
- Xuan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yalong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junke Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hehui Rong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujun Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Mengting Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxing Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Holsæter AM, Wizgird K, Karlsen I, Hemmingsen JF, Brandl M, Škalko-Basnet N. How docetaxel entrapment, vesicle size, zeta potential and stability change with liposome composition-A formulation screening study. Eur J Pharm Sci 2022; 177:106267. [PMID: 35872073 DOI: 10.1016/j.ejps.2022.106267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022]
Abstract
Limitations of the anticancer drug product Taxotere® have encouraged researchers to entrap the active ingredient docetaxel (DTX) into nanocarriers such as liposomes. However, until now no DTX-liposome formulation has reached the clinic. Hence, in the present study, different Soy-PC based DTX-liposome formulations were screened in an attempt to identify lipid-compositions with promising DTX-entrapment (DTX-EE). Various other quality attributes, such as vesicle size and morphology, poly dispersity index (PDI), zeta potential (ZP), stability and in vitro drug release were also investigated. In an initial study, the inclusion of charged lipids within the liposome bilayer was observed to have a positive effect on DTX-EE. Thus, cationic DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and anionic DMPG (1,2-Dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) lipids were selected for further investigations. With anionic DMPG, only a temporary rise in EE was gained with ≥ 20% (w/w) DMPG in Soy-PC lipid-based liposomes, whereas a concentration-dependent increase in EE was observed with cationic DOTAP. A DTX-EE > 95% was obtained with only 5% (w/w) DOTAP in Soy-PC, while neutral liposomes formed from Soy-PC alone, gave 41.5% DTX-EE. In the stability study, a DOTAP concentration > 10% (w/w) in Soy-PC was found to facilitate a stable DTX-EE > 90% after 12 weeks storage. The positive effect of cationic lipids on the EE was confirmed when replacing cholesterol (CHOL), initially shown to suppress DTX-entrapment, with cationic 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]Cholesterol (DC-CHOL). Here, DTX-EE was improved from 29.8% to 92.0% (w/w) with 10% (w/w) CHOL and DC-CHOL in Soy-PC, respectively. Finally, PEGylation of DOTAP-liposomes with DSPE-PEG2000 and DSPE-PEG750 reduced the DTX-EE relative to DOTAP-liposome with no PEGylation. As with the DMPG-liposomes, a temporarily raised affinity between DTX and liposomes was obtained with anionic DSPE-PEGylation of Soy-PC liposomes, however, this effect was not maintained after 4 weeks storage. However, in a dialysis set-up, cationic DOTAP-liposomes released DTX to a higher extent than PEGylated liposomes. Thus, the optimal formulation with regard to storage stability and in vivo performance need to be investigated further, applying conditions that are closer to mimic the in vivo-situation. Applying the Dual Asymmetric Centrifugation (DAC) method in liposome production appears favourable due to its good reproducibility. The observed increase in DTX entrapment with cationic lipids or PEGylation appears scalable into pilot manufacturing scale.
Collapse
Affiliation(s)
- Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Kristina Wizgird
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9037, Norway; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg, Freiburg 79085, Germany
| | - Iselin Karlsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Jeanette Frimand Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9037, Norway; Drug Transport and Delivery, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Martin Brandl
- Drug Transport and Delivery, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9037, Norway
| |
Collapse
|
15
|
Gang W, Hao H, Yong H, Ruibing F, Chaowen L, Yizheng H, Chao L, Haitao Z. Therapeutic Potential of Triptolide in Treating Bone-Related Disorders. Front Pharmacol 2022; 13:905576. [PMID: 35784734 PMCID: PMC9240268 DOI: 10.3389/fphar.2022.905576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Triptolide, a diterpene triepoxide, is a pharmacologically active compound isolated from a Chinese medicinal herb Tripterygium wilfordii Hook F (TwHF). Triptolide has attracted considerable attention in recent times due to its multiple biological and pharmaceutical activities, with an emphasis on therapeutic importance in the treatment of diverse disorders. With essential medicinal implications, TwHF's extracts have been used as anti-inflammatory, antiproliferative, antioxidative, and immunosuppressive agents for centuries, with continuous and relevant modifications to date to enhance its utility in several diseases and pathophysiology. Here, in this review, we accentuate the studies, highlighting the effects of triptolide on treating bone-related disorders, both inflammatory and cancerous, particularly osteosarcoma, and their manifestations. Based on this review, future avenues could be estimated for potential research strategies, molecular mechanisms, and outcomes that might contribute toward reinforcing new dimensions in the clinical application of triptolide in treating bone-related disorders.
Collapse
Affiliation(s)
- Wu Gang
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hu Hao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Huang Yong
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Feng Ruibing
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | | | - Huang Yizheng
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Li Chao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Zhang Haitao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
16
|
Ratkaj I, Mušković M, Malatesti N. Targeting Microenvironment of Melanoma and Head and Neck Cancers
in Photodynamic Therapy. Curr Med Chem 2022; 29:3261-3299. [DOI: 10.2174/0929867328666210709113032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Background:
Photodynamic therapy (PDT), in comparison to other skin cancers,
is still far less effective for melanoma, due to the strong absorbance and the role of
melanin in cytoprotection. The tumour microenvironment (TME) has a significant role in
tumour progression, and the hypoxic TME is one of the main reasons for melanoma progression
to metastasis and its resistance to PDT. Hypoxia is also a feature of solid tumours
in the head and neck region that indicates negative prognosis.
Objective:
The aim of this study was to individuate and describe systematically the main
strategies in targeting the TME, especially hypoxia, in PDT against melanoma and head
and neck cancers (HNC), and assess the current success in their application.
Methods:
PubMed was used for searching, in MEDLINE and other databases, for the
most recent publications on PDT against melanoma and HNC in combination with the
TME targeting and hypoxia.
Results:
In PDT for melanoma and HNC, it is very important to control hypoxia levels,
and amongst the different approaches, oxygen self-supply systems are often applied. Vascular
targeting is promising, but to improve it, optimal drug-light interval, and formulation
to increase the accumulation of the photosensitiser in the tumour vasculature, have to
be established. On the other side, the use of angiogenesis inhibitors, such as those interfering
with VEGF signalling, is somewhat less successful than expected and needs to be
further investigated.
Conclusion:
The combination of PDT with immunotherapy by using multifunctional nanoparticles
continues to develop and seems to be the most promising for achieving a
complete and lasting antitumour effect.
Collapse
Affiliation(s)
- Ivana Ratkaj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Martina Mušković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
17
|
George R, Hehlgans S, Fleischmann M, Rödel C, Fokas E, Rödel F. Advances in nanotechnology-based platforms for survivin-targeted drug discovery. Expert Opin Drug Discov 2022; 17:733-754. [PMID: 35593177 DOI: 10.1080/17460441.2022.2077329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Due to its unique functional impact on multiple cancer cell circuits including proliferation, apoptosis, tumor dissemination, DNA damage repair and immune response, the inhibitor of apoptosis protein (IAP) survivin has gained high interest as a molecular target and a multitude of therapeutics were developed to interfere with survivin expression and functionality. First clinical evaluations of these therapeutics, however, were disappointing highlighting the need to develop advanced delivery systems of survivin-targeting molecules to increase stability, bioavailability as well as the selective guidance to tumor tissue. AREAS COVERED : This review focuses on advancements in nanocarriers to molecularly target survivin in human malignancies. A plethora of nanoparticle platforms, including liposomes, polymeric systems, dendrimers, inorganic nanocarriers, RNA/DNA nanotechnology and exosomes are discussed in the background of survivin-tailored RNA interference, small molecule inhibitors, dominant negative mutants or survivin vaccination or combined modality treatment with chemotherapeutic drugs and photo- dynamic/photothermal strategies. EXPERT OPINION Novel therapeutic approaches include the use of biocompatible nanoformulations carrying gene silencing or drug molecules to directly or indirectly target proteins, allow for a more precise and controlled delivery of survivin therapeutics. Moreover, surface modification of these nanocarriers may result in a tumor entity specific delivery. Therefore, nanomedicine exploiting survivin-tailored strategies in a multimodal background is considered the way forwaerd to enhance the development of future personalized medicine.
Collapse
Affiliation(s)
- Rosemol George
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Maximillian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| |
Collapse
|
18
|
Kotakadi SM, Borelli DPR, Nannepaga JS. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front Bioeng Biotechnol 2022; 10:789016. [PMID: 35547173 PMCID: PMC9081342 DOI: 10.3389/fbioe.2022.789016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetotactic bacteria (MTB) are aquatic microorganisms have the ability to biomineralize magnetosomes, which are membrane-enclosed magnetic nanoparticles. Magnetosomes are organized in a chain inside the MTB, allowing them to align with and traverse along the earth’s magnetic field. Magnetosomes have several potential applications for targeted cancer therapy when isolated from the MTB, including magnetic hyperthermia, localized medication delivery, and tumour monitoring. Magnetosomes features and properties for various applications outperform manufactured magnetic nanoparticles in several ways. Similarly, the entire MTB can be regarded as prospective agents for cancer treatment, thanks to their flagella’s ability to self-propel and the magnetosome chain’s ability to guide them. MTBs are conceptualized as nanobiots that can be guided and manipulated by external magnetic fields and are driven to hypoxic areas, such as tumor sites, while retaining the therapeutic and imaging characteristics of isolated magnetosomes. Furthermore, unlike most bacteria now being studied in clinical trials for cancer treatment, MTB are not pathogenic but might be modified to deliver and express certain cytotoxic chemicals. This review will assess the current and prospects of this burgeoning research field and the major obstacles that must be overcome before MTB can be successfully used in clinical treatments.
Collapse
Affiliation(s)
- Sai Manogna Kotakadi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | | | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
- *Correspondence: John Sushma Nannepaga, , orcid.org/0000-0002-8739-9936
| |
Collapse
|
19
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
20
|
A state-of-the-art review on the application of various pharmaceutical nanoparticles as a promising technology in cancer treatment. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021; 1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Liver cancer is one of the most common cancers worldwide and is also one of the most difficult cancers to treat, resulting in almost one million deaths per year, and the danger of this cancer is compounded when the tumor is nonresectable. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has the third highest mortality rate worldwide. Considering the morbid statistics surrounding this cancer it is a popular research topic to target for better therapy practices. This review summarizes the role of nanotechnology in these endeavors. Nanoparticles (NPs) are a very broad class of material and many different kinds have been used to potentially combat liver cancer. Gold, silver, platinum, metal oxide, calcium, and selenium NPs as well as less common materials are all inorganic NPs that have been used as a therapeutic, carrier, or imaging agent in drug delivery systems (DDS) and these efforts are described. Carbon-based NPs, including polymeric, polysaccharide, and lipid NPs as well as carbon dots, have also been widely studied for this purpose and the role they play in DDS for the treatment of liver cancer is illustrated in this review. The multifunctional nature of many NPs described herein, allows these systems to display high anticancer activity in vitro and in vivo and highlights the advantage of and need for combinatorial therapy in treating this difficult cancer. These works are summarized, and future directions are presented for this promising field.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
22
|
Ansari SA, Ficiarà E, D’Agata F, Cavalli R, Nasi L, Casoli F, Albertini F, Guiot C. Step-by-Step Design of New Theranostic Nanoformulations: Multifunctional Nanovectors for Radio-Chemo-Hyperthermic Therapy under Physical Targeting. Molecules 2021; 26:molecules26154591. [PMID: 34361743 PMCID: PMC8348950 DOI: 10.3390/molecules26154591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
While investigating the possible synergistic effect of the conventional anticancer therapies, which, taken individually, are often ineffective against critical tumors, such as central nervous system (CNS) ones, the design of a theranostic nanovector able to carry and deliver chemotherapy drugs and magnetic hyperthermic agents to the target radiosensitizers (oxygen) was pursued. Alongside the original formulation of polymeric biodegradable oxygen-loaded nanostructures, their properties were fine-tuned to optimize their ability to conjugate therapeutic doses of drugs (doxorubicin) or antitumoral natural substances (curcumin). Oxygen-loaded nanostructures (diameter = 251 ± 13 nm, ζ potential = −29 ± 5 mV) were finally decorated with superparamagnetic iron oxide nanoparticles (SPIONs, diameter = 18 ± 3 nm, ζ potential = 14 ± 4 mV), producing stable, effective and non-agglomerating magnetic nanovectors (diameter = 279 ± 17 nm, ζ potential = −18 ± 7 mV), which could potentially target the tumoral tissues under magnetic driving and are monitorable either by US or MRI imaging.
Collapse
Affiliation(s)
- Shoeb Anwar Ansari
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| | - Eleonora Ficiarà
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
- Correspondence:
| | - Federico D’Agata
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Lucia Nasi
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Francesca Casoli
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Franca Albertini
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| |
Collapse
|
23
|
Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13081135. [PMID: 34452096 PMCID: PMC8397943 DOI: 10.3390/pharmaceutics13081135] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional cancer chemotherapies often exhibit insufficient therapeutic outcomes and dose-limiting toxicity. Therefore, there is a need for novel therapeutics and formulations with higher efficacy, improved safety, and more favorable toxicological profiles. This has promoted the development of nanomedicines, including systems for drug delivery, but also for imaging and diagnostics. Nanoparticles loaded with drugs can be designed to overcome several biological barriers to improving efficiency and reducing toxicity. In addition, stimuli-responsive nanocarriers are able to release their payload on demand at the tumor tissue site, preventing premature drug loss. This review focuses on ultrasound-triggered drug delivery by nanocarriers as a versatile, cost-efficient, non-invasive technique for improving tissue specificity and tissue penetration, and for achieving high drug concentrations at their intended site of action. It highlights aspects relevant for ultrasound-mediated drug delivery, including ultrasound parameters and resulting biological effects. Then, concepts in ultrasound-mediated drug delivery are introduced and a comprehensive overview of several types of nanoparticles used for this purpose is given. This includes an in-depth compilation of the literature on the various in vivo ultrasound-responsive drug delivery systems. Finally, toxicological and safety considerations regarding ultrasound-mediated drug delivery with nanocarriers are discussed.
Collapse
|
24
|
Almanghadim HG, Nourollahzadeh Z, Khademi NS, Tezerjani MD, Sehrig FZ, Estelami N, Shirvaliloo M, Sheervalilou R, Sargazi S. Application of nanoparticles in cancer therapy with an emphasis on cell cycle. Cell Biol Int 2021; 45:1989-1998. [PMID: 34233087 DOI: 10.1002/cbin.11658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
Owing to their unique characteristics, nanoparticles (NPs) could be incorporated into valuable therapeutic modalities for different diseases; however, there are many concerns about risk factors in human applications. NPs carry therapeutic chemicals that could improve the outcome of cancer therapies. Nowadays, NPs are being recognized as important and strategic agents in treatment of several disorders due to their unique properties in targeting malignant cells in tumor sites. Numerous investigations have shown that the majority of chemotherapeutic agents can be modified through entrapment in submicron colloidal systems. Still, there are problems and limitations in application of NPs in cancer therapy. The aim of the present study is to focus on potential NPs usage in cancer treatment with an emphasis on the cell cycle of malignant cells.
Collapse
Affiliation(s)
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Neda Estelami
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
25
|
Pędziwiatr-Werbicka E, Gorzkiewicz M, Horodecka K, Lach D, Barrios-Gumiel A, Sánchez-Nieves J, Gómez R, de la Mata FJ, Bryszewska M. PEGylation of Dendronized Gold Nanoparticles Affects Their Interaction with Thrombin and siRNA. J Phys Chem B 2021; 125:1196-1206. [PMID: 33481607 DOI: 10.1021/acs.jpcb.0c10177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of nonviral carriers based on nanomaterials is a promising strategy for modern gene therapy aimed at protecting the genetic material against degradation and enabling its efficient cellular uptake. To improve the effectiveness of nanocarriers in vivo, they are often modified with poly(ethylene glycol) (PEG) to reduce their toxicity, limit nonspecific binding by proteins in the bloodstream, and extend blood half-life. Thus, the selection of an appropriate degree of surface PEGylation is crucial to preserve the interaction of nanoparticles with the genetic material and to ensure its efficient transport to the site of action. Our research focuses on the use of innovative gold nanoparticles (AuNPs) coated with cationic carbosilane dendrons as carriers of siRNA. In this study, using dynamic light scattering and zeta potential measurements, circular dichroism, and gel electrophoresis, we investigated dendronized AuNPs modified to varying degrees with PEG in terms of their interactions with siRNA and thrombin to select the most promising PEGylated carrier for further research.
Collapse
Affiliation(s)
- Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Katarzyna Horodecka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Dominika Lach
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Andrea Barrios-Gumiel
- Department of Organic and Inorganic Chemistry and Research Chemistry Institute "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain.,Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Institute "Ramón y Cajal" for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Javier Sánchez-Nieves
- Department of Organic and Inorganic Chemistry and Research Chemistry Institute "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain.,Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Institute "Ramón y Cajal" for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry and Research Chemistry Institute "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain.,Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Institute "Ramón y Cajal" for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry and Research Chemistry Institute "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain.,Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Institute "Ramón y Cajal" for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| |
Collapse
|
26
|
Roberto S, Piergiorgio D, Antonio ZM. Lymph node staging for colorectal cancer: Green is the new black. Dig Liver Dis 2020; 52:1379-1380. [PMID: 33127364 DOI: 10.1016/j.dld.2020.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Santambrogio Roberto
- UOC di Chirurgia Generale PO Fatebenefratelli - ASST Fatebenefratelli Sacco Milano, Italy.
| | - Danelli Piergiorgio
- UOC di Chirurgia Generale PO Sacco - ASST Fatebenefratelli Sacco, Milano Italy
| | - Zappa Marco Antonio
- UOC di Chirurgia Generale PO Fatebenefratelli - ASST Fatebenefratelli Sacco Milano, Italy
| |
Collapse
|
27
|
In Vitro Selective Suppression of Tumor Cells by an Oncolytic Peptide in Pancreatic Ductal Adenocarcinoma. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Xu Z, Feng Q, Wang M, Zhao H, Lin Y, Zhou S. Green Biosynthesized Silver Nanoparticles With Aqueous Extracts of Ginkgo Biloba Induce Apoptosis via Mitochondrial Pathway in Cervical Cancer Cells. Front Oncol 2020; 10:575415. [PMID: 33194686 PMCID: PMC7606942 DOI: 10.3389/fonc.2020.575415] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Biosynthetic silver nanoparticles (AgNPs), specifically formed using medicinal plant extracts, have recently exhibited a remarkable therapeutic effect due to their anticancer potential. Here, we synthesized AgNPs using an aqueous extract of Ginkgo biloba leaves and evaluated its activity against cervical cancer (CCa) and the related molecular mechanisms. The physiochemical properties of the AgNPs were measured by ultraviolet-visible spectrophotometry, nanometre particle size analyzer and transmission electron microscopy. The AgNPs effects on cell proliferation and apoptosis were investigated through MTT, MTS, and colony formation assay; Hoechst 33258 staining; and flow cytometry. The intracellular ROS and oxidative stress levels were assessed using the appropriate commercial kits. Apoptosis-related protein levels were determined by western blotting. We prepared a series of different sized ginkgo extract synthesized AgNPs (GB-AgNPs), and the smallest mean particle size was 40.2 ± 1.2 nm with low polydispersity (0.091 ± 0.011), zeta potential values showed -34.56 mV. Compared to the controls, the GB-AgNP treatment inhibited the cell proliferation and induced the apoptosis of HeLa and SiHa cells. In addition, GB-AgNP treatment led to markedly increased levels of intracellular ROS, the release of cytochrome c (Cyt C) from mitochondria into the cytosol and the cleavage of caspase -9 and -3 in both CCa cell lines. Moreover, NAC, an ROS scavenger, eliminated the effect of GB-AgNPs on the HeLa and SiHa cells. This study reveals that GB-AgNPs suppresses cancer cell proliferation and induces apoptosis by upregulating intracellular ROS generation and inducing the activation of the caspase-dependent mitochondrial apoptotic pathway in CCa cells. Thus, GB-AgNPs may be a potential alternative drug for CCa therapy.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Qi Feng
- Jiangsu Provincial Key Laboratory of Veterinary Bio-pharmaceutical High-tech Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Min Wang
- Health and Family Planning Commission of Wanzai County of Jiangxi Province, Yichun, China
| | - Huange Zhao
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Yingying Lin
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
29
|
Kuzajewska D, Wszołek A, Żwierełło W, Kirczuk L, Maruszewska A. Magnetotactic Bacteria and Magnetosomes as Smart Drug Delivery Systems: A New Weapon on the Battlefield with Cancer? BIOLOGY 2020; 9:E102. [PMID: 32438567 PMCID: PMC7284773 DOI: 10.3390/biology9050102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
An important direction of research in increasing the effectiveness of cancer therapies is the design of effective drug distribution systems in the body. The development of the new strategies is primarily aimed at improving the stability of the drug after administration and increasing the precision of drug delivery to the destination. Due to the characteristic features of cancer cells, distributing chemotherapeutics exactly to the microenvironment of the tumor while sparing the healthy tissues is an important issue here. One of the promising solutions that would meet the above requirements is the use of Magnetotactic bacteria (MTBs) and their organelles, called magnetosomes (BMs). MTBs are commonly found in water reservoirs, and BMs that contain ferromagnetic crystals condition the magnetotaxis of these microorganisms. The presented work is a review of the current state of knowledge on the potential use of MTBs and BMs as nanocarriers in the therapy of cancer. The growing amount of literature data indicates that MTBs and BMs may be used as natural nanocarriers for chemotherapeutics, such as classic anti-cancer drugs, antibodies, vaccine DNA, and siRNA. Their use as transporters increases the stability of chemotherapeutics and allows the transfer of individual ligands or their combinations precisely to cancerous tumors, which, in turn, enables the drugs to reach molecular targets more effectively.
Collapse
Affiliation(s)
- Danuta Kuzajewska
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Agata Wszołek
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St, 70-111 Szczecin, Poland;
| | - Lucyna Kirczuk
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Agnieszka Maruszewska
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| |
Collapse
|