1
|
Zhu JY, Guo L. Exercise-regulated lipolysis: Its role and mechanism in health and diseases. J Adv Res 2024:S2090-1232(24)00550-2. [PMID: 39613256 DOI: 10.1016/j.jare.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Exercise has received considerable attention because of its importance not just in regulating physiological function, but also in ameliorating multiple pathological processes. Among these processes, lipolysis may play an important role in exercise-induced benefits. It is generally accepted that active lipolysis contributes to breakdown of fats, leading to the release of free fatty acids (FFAs) that serve as an energy source for muscles and other tissues during exercise. However, the significance of lipolysis in the context of exercise has not been fully understood. This review comprehensively outlines the potential regulatory mechanisms by which exercise stimulates lipolysis. The potential roles of exercise-mediated lipolysis in various physiological and pathological processes are also summarized. Additionally, we also discussed the potential non-classical effects of key lipolytic effectors induced by exercise. This will enhance our understanding of how exercise improves lipolytic function to bring about beneficial effects, offering new insights into potential therapeutic avenues for promoting health and alleviating diseases.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438.
| |
Collapse
|
2
|
Rubinić I, Kurtov M, Likić R. Novel Pharmaceuticals in Appetite Regulation: Exploring emerging gut peptides and their pharmacological prospects. Pharmacol Res Perspect 2024; 12:e1243. [PMID: 39016695 PMCID: PMC11253306 DOI: 10.1002/prp2.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 06/22/2024] [Indexed: 07/18/2024] Open
Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.
Collapse
Affiliation(s)
- Igor Rubinić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of RijekaRijekaCroatia
- Clinical Pharmacology unitClinical Hospital Center RijekaRijekaCroatia
| | - Marija Kurtov
- Division of Clinical Pharmacology and Toxicology, Department of Internal MedicineUniversity Hospital “Sveti Duh”ZagrebCroatia
| | - Robert Likić
- Department of Internal MedicineSchool of Medicine University of ZagrebZagrebCroatia
| |
Collapse
|
3
|
Cornejo MP, Fernandez G, Cabral A, Barrile F, Heredia F, García Romero G, Zubimendi Sampieri JP, Quelas JI, Cantel S, Fehrentz JA, Alonso A, Pla R, Ferran JL, Andreoli MF, De Francesco PN, Perelló M. GHSR in a Subset of GABA Neurons Controls Food Deprivation-Induced Hyperphagia in Male Mice. Endocrinology 2024; 165:bqae061. [PMID: 38815068 DOI: 10.1210/endocr/bqae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation-induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice.
Collapse
Affiliation(s)
- María Paula Cornejo
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Gimena Fernandez
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Agustina Cabral
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Franco Barrile
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Florencia Heredia
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Guadalupe García Romero
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | | | | | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia 30100, Spain
- Institute of Biomedical Research of Murcia-IMIB, Virgen de la Arrixaca University Hospital, Murcia 30100, Spain
| | - Ramon Pla
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia 30100, Spain
- Institute of Biomedical Research of Murcia-IMIB, Virgen de la Arrixaca University Hospital, Murcia 30100, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia 30100, Spain
- Institute of Biomedical Research of Murcia-IMIB, Virgen de la Arrixaca University Hospital, Murcia 30100, Spain
| | - María Florencia Andreoli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP Sor María Ludovica de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala 751 24, Sweden
| | - Pablo Nicolas De Francesco
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
4
|
Gajewska A, Strzelecki D, Gawlik-Kotelnicka O. Ghrelin as a Biomarker of "Immunometabolic Depression" and Its Connection with Dysbiosis. Nutrients 2023; 15:3960. [PMID: 37764744 PMCID: PMC10537261 DOI: 10.3390/nu15183960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin, a gastrointestinal peptide, is an endogenous ligand of growth hormone secretagogue receptor 1a (GHSR1a), which is mainly produced by X/A-like cells in the intestinal mucosa. Beyond its initial description as a growth hormone (GH) secretagogue stimulator of appetite, ghrelin has been revealed to have a wide range of physiological effects, for example, the modulation of inflammation; the improvement of cardiac performance; the modulation of stress, anxiety, taste sensation, and reward-seeking behavior; and the regulation of glucose metabolism and thermogenesis. Ghrelin secretion is altered in depressive disorders and metabolic syndrome, which frequently co-occur, but it is still unknown how these modifications relate to the physiopathology of these disorders. This review highlights the increasing amount of research establishing the close relationship between ghrelin, nutrition, microbiota, and disorders such as depression and metabolic syndrome, and it evaluates the ghrelinergic system as a potential target for the development of effective pharmacotherapies.
Collapse
Affiliation(s)
- Agata Gajewska
- Faculty of Medicine, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
5
|
Wang L, Chen Q, Pang J. The effects and mechanisms of ghrelin upon angiogenesis in human coronary artery endothelial cells under hypoxia. Peptides 2023; 160:170921. [PMID: 36496009 DOI: 10.1016/j.peptides.2022.170921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), has been found to stimulate angiogenesis both in vivo and in vitro. However, the effect of ghrelin upon angiogenesis, and the corresponding mechanisms of ghrelin therein, in human coronary artery endothelial cells (HCAECs) under hypoxia is still unknown. Our study found that ghrelin significantly increased HCAECs proliferation, migration, in vitro angiogenesis, and microvessel sprouting from the aortic ring under hypoxic conditions. The ghrelin-induced angiogenic process was accompanied by vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and endothelial-specific receptor tyrosine kinase (Tie2) expressions. In addition, this angiogenic effect was almost completely inhibited by Ang-2 RNAi and Tie2 RNAi. Pretreatment with the GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced VEGF, Ang-1, Ang-2 and Tie2 expressions and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates HCAECs in vitro angiogenesis through GHSR1a-mediated VEGF, Ang-1, Ang-2 and Tie2 pathways under hypoxic conditions. It indicated that ghrelin might play an important role in myocardial angiogenesis after ischemic injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Qingwei Chen
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jun Pang
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
6
|
Ghrelin proteolysis increases in plasma of men, but not women, with obesity. Life Sci 2023; 313:121305. [PMID: 36543283 DOI: 10.1016/j.lfs.2022.121305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
AIMS Since plasma ghrelin can undergo des-acylation and proteolysis, the aim of this study was to investigate the extent to which an enhancement of these reactions is associated to the decrease of ghrelin in plasma after food intake or in individuals with obesity. MAIN METHODS we performed an intervention cross-sectional study, in which levels of ghrelin, desacyl-ghrelin (DAG), glucose, insulin, ghrelin des-acylation and ghrelin proteolysis were assessed in plasma before and after a test meal in 40 people (n = 21 males) with normal weight (NW, n = 20) or overweight/obesity (OW/OB, n = 20). KEY FINDINGS Preprandial ghrelin and DAG levels were lower, whereas preprandial ghrelin proteolysis was ∼4.6-fold higher in plasma of males with OW/OB. In males, ghrelin proteolysis positively correlated with glycemia. Ghrelin and DAG levels were also lower in females with OW/OB, but preprandial ghrelin proteolysis was not different between females with NW or OW/OB. Ghrelin and DAG levels decreased postprandially in males and females, independently of BMI, and ghrelin proteolysis increased postprandially ∼2 folds only in individuals with NW. Ghrelin des-acylation remained unaffected by BMI or feeding status in both sexes. SIGNIFICANCE Current study shows that ghrelin proteolysis increases in males with obesity as well as after meal in lean individuals. Therefore, ghrelin proteolysis may be an important checkpoint and, consequently, a putative pharmacological target to control circulating ghrelin levels in humans.
Collapse
|
7
|
Przybysz JT, DiBrog AM, Kern KA, Mukherjee A, Japa JE, Waite MH, Mietlicki-Baase EG. Macronutrient intake: Hormonal controls, pathological states, and methodological considerations. Appetite 2023; 180:106365. [PMID: 36347305 PMCID: PMC10563642 DOI: 10.1016/j.appet.2022.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
A plethora of studies to date has examined the roles of feeding-related peptides in the control of food intake. However, the influence of these peptides on the intake of particular macronutrient constituents of food - carbohydrate, fat, and protein - has not been as extensively addressed in the literature. Here, the roles of several feeding-related peptides in controlling macronutrient intake are reviewed. Next, the relationship between macronutrient intake and diseases including diabetes mellitus, obesity, and eating disorders are examined. Finally, some key considerations in macronutrient intake research are discussed. We hope that this review will shed light onto this underappreciated topic in ingestive behavior research and will help to guide further scientific investigation in this area.
Collapse
Affiliation(s)
- Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Ashmita Mukherjee
- Psychology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jason E Japa
- Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Mariana H Waite
- Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
8
|
Transcriptomic Classification of Pituitary Neuroendocrine Tumors Causing Acromegaly. Cells 2022; 11:cells11233846. [PMID: 36497102 PMCID: PMC9738119 DOI: 10.3390/cells11233846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Acromegaly results from growth hormone hypersecretion, predominantly caused by a somatotroph pituitary neuroendocrine tumor (PitNET). Acromegaly-causing tumors are histologically diverse. Our aim was to determine transcriptomic profiles of various somatotroph PitNETs and to evaluate clinical implication of differential gene expression. A total of 48 tumors were subjected to RNA sequencing, while expression of selected genes was assessed in 134 tumors with qRT-PCR. Whole-transcriptome analysis revealed three transcriptomic groups of somatotroph PitNETs. They differ in expression of numerous genes including those involved in growth hormone secretion and known prognostic genes. Transcriptomic subgroups can be distinguished by determining the expression of marker genes. Analysis of the entire cohort of patients confirmed differences between molecular subtypes of tumors. Transcriptomic group 1 includes ~20% of acromegaly patients with GNAS mutations-negative, mainly densely granulated tumors that co-express GIPR and NR5A1 (SF-1). SF-1 expression was verified with immunohistochemistry. Transcriptomic group 2 tumors are the most common (46%) and include mainly GNAS-mutated, densely granulated somatotroph and mixed PitNETs. They have a smaller size and express favorable prognosis-related genes. Transcriptomic group 3 includes predominantly sparsely granulated somatotroph PitNETs with low GNAS mutations frequency causing ~35% of acromegaly. Ghrelin signaling is implicated in their pathogenesis. They have an unfavorable gene expression profile and higher invasive growth rate.
Collapse
|
9
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
10
|
Wang Y, Wu Q, Zhou Q, Chen Y, Lei X, Chen Y, Chen Q. Circulating acyl and des-acyl ghrelin levels in obese adults: a systematic review and meta-analysis. Sci Rep 2022; 12:2679. [PMID: 35177705 PMCID: PMC8854418 DOI: 10.1038/s41598-022-06636-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Ghrelin is the only known orexigenic gut hormone, and its synthesis, secretion and degradation are affected by different metabolic statuses. This meta-analysis aimed to investigate the potential differences in plasma acyl ghrelin (AG) and des-acyl ghrelin (DAG) concentrations between normal weight and obese adults. Systematic literature searches of PubMed, Embase and Web of Science through October 2021 were conducted for articles reporting AG or DAG levels in obesity and normal weight, and 34 studies with 1863 participants who met the eligibility criteria were identified. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to evaluate group differences in circulating AG and DAG levels. Pooled effect size showed significantly lower levels of baseline AG (SMD: - 0.85; 95% CI: - 1.13 to - 0.57; PSMD < 0.001) and DAG (SMD: - 1.06; 95% CI: - 1.43 to - 0.69; PSMD < 0.001) in obese groups compared with healthy controls, and similar results were observed when subgroup analyses were stratified by the assay technique or storage procedure. Postprandial AG levels in obese subjects were significantly lower than those in controls when stratified by different time points (SMD 30 min: - 0.85, 95% CI: - 1.18 to - 0.53, PSMD < 0.001; SMD 60 min: - 1.00, 95% CI: - 1.37 to - 0.63, PSMD < 0.001; SMD 120 min: - 1.21, 95% CI: - 1.59 to - 0.83, PSMD < 0.001). In healthy subjects, a postprandial decline in AG was observed at 120 min (SMD: - 0.42; 95% CI: - 0.77 to - 0.06; PSMD = 0.021) but not in obese subjects (SMD: - 0.28; 95% CI: - 0.60 to 0.03; PSMD = 0.074). The mean change in AG concentration was similar in both the obese and lean health groups at each time point (ΔSMD30min: 0.31, 95% CI: - 0.35 to 0.97, PSMD = 0.359; ΔSMD60min: 0.17, 95% CI: - 0.12 to 0.46, PSMD = 0.246; ΔSMD120min: 0.21, 95% CI: - 0.13 to 0.54, PSMD = 0.224). This meta-analysis strengthens the clinical evidence supporting the following: lower baseline levels of circulating AG and DAG in obese individuals; declines in postprandial circulating AG levels, both for the healthy and obese individuals; a shorter duration of AG suppression in obese subjects after meal intake. These conclusions have significance for follow-up studies to elucidate the role of various ghrelin forms in energy homeostasis.
Collapse
Affiliation(s)
- Yanmei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China.,Ya'an Polytechnic College, No. 130 Yucai Road, Yucheng District, Yaan, 625000, Sichuan, China
| | - Qianxian Wu
- Ya'an Polytechnic College, No. 130 Yucai Road, Yucheng District, Yaan, 625000, Sichuan, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Yuyu Chen
- Halifa Regional Centre for Education, No. 33 Spectacle Lake Dr, Dartmouth, NS, B3B1X7, Canada
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Yiding Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
11
|
Giorgioni G, Del Bello F, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Advances in the Development of Nonpeptide Small Molecules Targeting Ghrelin Receptor. J Med Chem 2022; 65:3098-3118. [PMID: 35157454 PMCID: PMC8883476 DOI: 10.1021/acs.jmedchem.1c02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ghrelin is an octanoylated peptide acting by the activation of the growth hormone secretagogue receptor, namely, GHS-R1a. The involvement of ghrelin in several physiological processes, including stimulation of food intake, gastric emptying, body energy balance, glucose homeostasis, reduction of insulin secretion, and lipogenesis validates the considerable interest in GHS-R1a as a promising target for the treatment of numerous disorders. Over the years, several GHS-R1a ligands have been identified and some of them have been extensively studied in clinical trials. The recently resolved structures of GHS-R1a bound to ghrelin or potent ligands have provided useful information for the design of new GHS-R1a drugs. This perspective is focused on the development of recent nonpeptide small molecules acting as GHS-R1a agonists, antagonists, and inverse agonists, bearing classical or new molecular scaffolds, as well as on radiolabeled GHS-R1a ligands developed for imaging. Moreover, the pharmacological effects of the most studied ligands have been discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - E Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - M V Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|