1
|
Hajjar R, Richard C, Santos MM. The gut barrier as a gatekeeper in colorectal cancer treatment. Oncotarget 2024; 15:562-572. [PMID: 39145528 PMCID: PMC11325587 DOI: 10.18632/oncotarget.28634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Colorectal cancer (CRC) is highly prevalent and is a major cause of cancer-related deaths worldwide. The incidence rate of CRC remains alarmingly high despite screening measures. The main curative treatment for CRC is a surgical resection of the diseased bowel segment. Postoperative complications usually involve a weakened gut barrier and a dissemination of bacterial proinflammatory lipopolysaccharides. Herein we discuss how gut microbiota and microbial metabolites regulate basal inflammation levels in the gut and the healing process of the bowel after surgery. We further elaborate on the restoration of the gut barrier function in patients with CRC and how this potentially impacts the dissemination and implantation of CRC cells in extracolonic tissues, contributing therefore to worse survival after surgery.
Collapse
Affiliation(s)
- Roy Hajjar
- Nutrition and Microbiome Laboratory, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Department of Surgery, Digestive Surgery Service, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
- Institut du cancer de Montréal, Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Carole Richard
- Department of Surgery, Digestive Surgery Service, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du cancer de Montréal, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Belà B, Crisi PE, Pignataro G, Fusaro I, Gramenzi A. Effects of a Nutraceutical Treatment on the Intestinal Microbiota of Sled Dogs. Animals (Basel) 2024; 14:2226. [PMID: 39123751 PMCID: PMC11310959 DOI: 10.3390/ani14152226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Dog sledding is the main discipline of working dogs on snow, consisting of a team of dogs pulling a sled under the guidance of the owner. To carry out this sport, dogs must have adequate nutrition and vitamin and antioxidant supplementation to ensure that the physical effort is optimal. The present study evaluated the effect that sporting activity and stress have on the canine intestinal microbiota by dividing the dogs into two groups: a control group that did not take any nutraceutical products and the treated group to which a nutraceutical product was administered. The nutraceutical administered in this study is used in all cases of canine intestinal dysbiosis in which it is essential to quickly restore a balanced intestinal microbiota. The results obtained show that in dogs not taking the nutraceutical, there is an increase in bacteria, such as Streptococcus spp. and E. coli, considered enteropathogenic to the detriment of beneficial bacterial species such as Faecalibacterium spp., Turicibacter spp., Blautia spp., Fusobacterium spp., and Clostridium hiranonis. Instead, the group of dogs treated with nutraceutical displays a lower amount of enteropathogenic bacteria and a great increase in the other bacterial species considered beneficial for the animal's health. The results obtained in the present study show that Microbiotal cane® can be used in dogs subject to intense sporting activity by preventing severe alterations at intestinal ecosystem levels by maintaining intestinal bacterial composition as balanced as possible.
Collapse
Affiliation(s)
- Benedetta Belà
- Department of Veterinary Medicine, University of Teramo, Piano d’Accio, 64100 Teramo, Italy; (P.E.C.); (G.P.); (I.F.); (A.G.)
| | | | | | | | | |
Collapse
|
3
|
El-Sayed A, Kapila D, Taha RSI, El-Sayed S, Mahen MRA, Taha R, Alrubaiy L. The Role of the Gut Microbiome in Inflammatory Bowel Disease: The Middle East Perspective. J Pers Med 2024; 14:652. [PMID: 38929872 PMCID: PMC11204866 DOI: 10.3390/jpm14060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbiome is of paramount importance in preserving internal balance in the gastrointestinal tract; therefore, disruptions in its regulation have been linked to the development of inflammatory bowel disease (IBD). This article explores the intricate details of the gastrointestinal microbiome as it pertains to inflammatory bowel disease (IBD), with an emphasis on the Middle East. The study reviews the typical gut microbiome, modifications in inflammatory bowel disease (IBD), determinants impacting the gut microbiome of the Middle East, and prospective therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Diya Kapila
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Rama Sami Issa Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | | | - Mohd Rafiw Ahmed Mahen
- Department of Medicine, King’s College Hospital London, Dubai P.O. Box 340901, United Arab Emirates;
| | - Roa’a Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | - Laith Alrubaiy
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
4
|
Yang YN, Han B, Zhang MQ, Chai NN, Yu FL, Qi WH, Tian MY, Sun DZ, Huang Y, Song QX, Li Y, Zhu MC, Zhang Y, Li X. Therapeutic effects and mechanisms of isoxanthohumol on DSS-induced colitis: regulating T cell development, restoring gut microbiota, and improving metabolic disorders. Inflammopharmacology 2024; 32:1983-1998. [PMID: 38642223 DOI: 10.1007/s10787-024-01472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Ulcerative colitis (UC) is a severe hazard to human health. Since pathogenesis of UC is still unclear, current therapy for UC treatment is far from optimal. Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, possesses anti-microbial, anti-oxidant, anti-inflammatory, and anti-angiogenic properties. However, the potential effects of IXN on the alleviation of colitis and the action of the mechanism is rarely studied. Here, we found that administration of IXN (60 mg/kg/day, gavage) significantly attenuated dextran sodium sulfate (DSS)-induced colitis, evidenced by reduced DAI scores and histological improvements, as well as suppressed the pro-inflammatory Th17/Th1 cells but promoted the anti-inflammatory Treg cells. Mechanically, oral IXN regulated T cell development, including inhibiting CD4+ T cell proliferation, promoting apoptosis, and regulating Treg/Th17 balance. Furthermore, IXN relieved colitis by restoring gut microbiota disorder and increasing gut microbiota diversity, which was manifested by maintaining the ratio of Firmicutes/Bacteroidetes balance, promoting abundance of Bacteroidetes and Ruminococcus, and suppressing abundance of proteobacteria. At the same time, the untargeted metabolic analysis of serum samples showed that IXN promoted the upregulation of D-( +)-mannose and L-threonine and regulated pyruvate metabolic pathway. Collectively, our findings revealed that IXN could be applied as a functional food component and served as a therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Na-Nan Chai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Wen-Hui Qi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Dong-Zhi Sun
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Ying Huang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qing-Xin Song
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yan Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mao-Cui Zhu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
5
|
Kaliyamoorthy V, Jacop JP, Thirugnanasambantham K, Ibrahim HIM, Kandhasamy S. The synergic impact of lignin and Lactobacillus plantarum on DSS-induced colitis model via regulating CD44 and miR 199a alliance. World J Microbiol Biotechnol 2022; 38:233. [PMID: 36222901 DOI: 10.1007/s11274-022-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Chronic or recurrent immune system activation and inflammation inside the gastrointestinal tract is characterized by inflammatory bowel disease (IBD). Due to the lack of safety and efficacy of traditional medications, the use of food supplements for IBD management is on the rise. Numerous studies reported that, certain food supplements have a variety of therapeutic benefits for IBD. In the present study, a mouse model of IBD was used to the anti-colitis effects of lignin supplementation with Lactobacillus plantarum (L. plantarum) on intestinal inflammation. The animal model was treated with dextran sodium sulphate (DSS), the illness index increased, and colon length and body weight declined, but these effects were reversed when lignin and L. plantarum treated groups. In addition, lignin and L. plantarum supplementation inhibited the DSS induced increase in levels of cytokines TNF-α (250 pg/mL), INF-γ (180 pg/mL), IL-1β (70 pg/mL) and TGF- β (72 pg/mL). Gene and protein expression study revealed that Lignin and L. plantarum supplementation restored the expression of E-cad and suppressed the expression of STAT3 in DSS induced colitis model. Lignin and L. plantarum supplementation also suppressed CD44 expression (1.2 fold) by up regulating the expression of miR199a (1 fold) over DSS induced colitis. Our study suggests that Lactobacillus, lignin, and their synergistic treatments have protective roles against inflammatory bowel disease through changes in inflammatory cytokines, and miR 199a expression in DSS-induced colitis.
Collapse
Affiliation(s)
- Venugopal Kaliyamoorthy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Padalam, Chengalpattu, Tamilnadu, 603308, India
| | - Justin Packia Jacop
- Department of Biotechnology, St. Josephs' College of Engineering, Sholinganallur, Chennai, Tamilnadu, 600119, India
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, 605004, India.,Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Hairul Islam Mohamed Ibrahim
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, 605004, India.,Biology Department, College of Science, King Faisal University, Hofouf, Al Ahsa, Saudi Arabia
| | - Sivakumar Kandhasamy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Padalam, Chengalpattu, Tamilnadu, 603308, India.
| |
Collapse
|
6
|
Tungsten enzymes play a role in detoxifying food and antimicrobial aldehydes in the human gut microbiome. Proc Natl Acad Sci U S A 2021; 118:2109008118. [PMID: 34686601 DOI: 10.1073/pnas.2109008118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Tungsten (W) is a metal that is generally thought to be seldom used in biology. We show here that a W-containing oxidoreductase (WOR) family is diverse and widespread in the microbial world. Surprisingly, WORs, along with the tungstate-specific transporter Tup, are abundant in the human gut microbiome, which contains 24 phylogenetically distinct WOR types. Two model gut microbes containing six types of WOR and Tup were shown to assimilate W. Two of the WORs were natively purified and found to contain W. The enzymes catalyzed the conversion of toxic aldehydes to the corresponding acid, with one WOR carrying out an electron bifurcation reaction coupling aldehyde oxidation to the simultaneous reduction of NAD+ and of the redox protein ferredoxin. Such aldehydes are present in cooked foods and are produced as antimicrobials by gut microbiome metabolism. This aldehyde detoxification strategy is dependent on the availability of W to the microbe. The functions of other WORs in the gut microbiome that do not oxidize aldehydes remain unknown. W is generally beyond detection (<6 parts per billion) in common foods and at picomolar concentrations in drinking water, suggesting that W availability could limit some gut microbial functions and might be an overlooked micronutrient.
Collapse
|
7
|
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int J Mol Sci 2021; 22:11365. [PMID: 34768795 PMCID: PMC8584103 DOI: 10.3390/ijms222111365] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn's disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.
Collapse
Affiliation(s)
- Jelena Popov
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Valentina Caputi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nandini Nandeesha
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | | | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
8
|
Li H, Liu X, Shang Z, Qiao J. Clostridium butyricum Helps to Alleviate Inflammation in Weaned Piglets Challenged With Enterotoxigenic Escherichia coli K88. Front Vet Sci 2021; 8:683863. [PMID: 34277756 PMCID: PMC8282889 DOI: 10.3389/fvets.2021.683863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Whether the probiotic Clostridium butyricum (CB) alleviates enterotoxigenic Escherichia coli (ETEC) K88-induced inflammation by regulating the activation of the toll-like receptor (TLR) signaling pathway is not clear, thus, we carried out this study. A total of 72 piglets (average body weight 7.09 ± 0.2 kg) were randomly divided into three groups of 24 piglets per group. Pigs were either fed a daily diet (NC, negative control), a diet tested every day by 1 × 109 CFU/mL ETEC K88 (PC, positive control), or a basal diet supplemented with 5 × 105 CFU/g CB and challenged with ETEC K88 (PC + CB group). Results: Our results showed that CB pretreatment attenuated the effect of ETEC K88 by decreasing C-reactive protein (CRP), which resulted in tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production. Histological examination revealed that CB pretreatment alleviated intestinal villi injury caused by ETEC K88 challenge. Furthermore, CB pretreatment promoted mRNA expression of the negative regulators of TLR signaling, including myeloid differentiation factor (MyD88), toll-interacting protein (Tollip), and B cell CLL/lymphoma 3 (Bcl-3), in the intestines of ETEC K88-challenged piglets. ETEC K88-induced activation of nuclear factor kappa B (NF-κB) and nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (IκBα) was attenuated by CB pretreatment. Conclusion: These findings indicate that CB helps to maintain and strengthen the shape of intestinal villi and limits detrimental inflammatory responses, partly by inhibiting toll-like receptor 2 (TLR-2), toll-like receptor 4 (TLR-4), and toll-like receptor 5 (TLR-5) expression and inhibiting NF-κB p65, and promoting IκBα activation and synergism among its negative regulators.
Collapse
Affiliation(s)
- Haihua Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xuejiao Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Zhiyuan Shang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiayun Qiao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
9
|
Oliver L, Ramió-Pujol S, Amoedo J, Malagón M, Serrano M, Bahí A, Lluansí A, Torrealba L, Busquets D, Pardo L, Serra-Pagès M, Aldeguer X, Garcia-Gil J. A Novel Grape-Derived Prebiotic Selectively Enhances Abundance and Metabolic Activity of Butyrate-Producing Bacteria in Faecal Samples. Front Microbiol 2021; 12:639948. [PMID: 33833742 PMCID: PMC8021714 DOI: 10.3389/fmicb.2021.639948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) patients have different faecal microbiota profiles compared to healthy controls. Prebiotics intake influences intestinal microbiota composition which in turn influence the growth of short-chain fatty acids (SCFA) producing bacteria. This study aimed to evaluate the capacity of Previpect, a new prebiotic obtained from grapes fibre, to balance the dysbiosis found in patients with intestinal disorders. This was achieved through the analysis of specific bacterial markers and SCFA production using an in vitro fermentation system and comparing the obtained results with those obtained with other commercial prebiotics. Fresh faecal samples from patients with IBD (N = 6), IBS (N = 3), and control subjects (N = 6) were used. Previpect showed high fermentative ability enabling the growth of butyrate producing bacteria and increasing SCFA concentration up to 2.5-fold. Previpect is a promising prebiotic which may be used as a therapeutic strategy towards promotion of intestinal microbiota restoration, microbial healing, and as a preventive supplement for healthy individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Bahí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | - Aleix Lluansí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | | | - David Busquets
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Laura Pardo
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | | - Xavier Aldeguer
- GoodGut SL, Girona, Spain.,Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain.,Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | |
Collapse
|
10
|
Combination of Enteral Nutrition and Probiotics Promote Recovery Following Ileal Pouch-Anal Anastomosis in Rats. Inflammation 2020; 44:725-736. [PMID: 33150540 DOI: 10.1007/s10753-020-01372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Many patients with ulcerative colitis suffer from malnutrition and intestinal flora disorders, which affect the postoperative intestinal barrier function of the ileal pouch. This study aimed to investigate the effects of enteral nutrition combined with probiotics after ileal pouch-anal anastomosis in rats. Male Sprague-Dawley rats underent ileal pouch-anal anastomosis and were randomly assigned to a control group (standard rat chow), enteral nutrition group (short-peptide enteral nutrition), or probiotic nutrition group (short-peptide enteral nutrition and Lactobacillus acidophilus). The primary outcomes were a histological score and occludin levels in the ileal pouch. The secondary outcomes were nutritional status and fecal flora distribution. The histological scores in the control group were significantly higher than in the enteral nutrition and probiotic nutrition groups (P < 0.05), while occludin levels were significantly lower in the controls compared with the other two groups (P < 0.05). Serum total protein, albumin, transthyretin, and transferrin levels were significantly higher in the probiotic nutrition group, followed by the enteral nutrition and control groups (all P < 0.05). Total fecal flora, and Gram-positive and Gram-negative rods differed significantly among the groups (all P < 0.05), but there were no significant differences in Gram-positive or Gram-negative cocci (all P > 0.05). Enteral nutrition combined with probiotics can effectively protect the intestinal barrier function of the ileal pouch in rats, possibly via the stable distribution of the intestinal flora and good nutritional status.
Collapse
|
11
|
Gastrointestinal surgery and the gut microbiome: a systematic literature review. Eur J Clin Nutr 2020; 75:12-25. [PMID: 32661352 DOI: 10.1038/s41430-020-0681-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES The impact of gastrointestinal surgery on the profile of the human gut microbiome is not fully understood. This review aimed to identify whether there is a change to the profile of the gut microbiome as a result of gastrointestinal surgery. SUBJECTS/METHODS In August 2018, a systematic literature search was conducted in Medline, PreMedline, Embase, CINAHL and The Cochrane Register of Clinical Trials, identifying and critically appraising studies which investigated changes to gut microbiome pre- and post-gastrointestinal surgery. RESULTS Of 2512 results, 14 studies were included for analysis. All studies reported post-surgical change to the microbiome. In 9 of the 14 studies, prevalence of specific bacteria had significantly changed after surgery. Improved outcome was associated with higher levels of beneficial bacteria and greater microbiome diversity post-surgery. CONCLUSION There were methodological limitations in the included studies leading to uncertainty regarding the impact of gastrointestinal surgery alone on the microbiome profile. An ideal future model for research should encompass case-controlled or cohort design with longer term follow-up in a homogeneous patient group. Future research should seek to clarify the gold standard testing method and standardised timing for post-surgical microbiome sample collection. It is imperative that controls for confounders be put in place to attempt to identify the true association between gastrointestinal surgery and changes to gut microbiome.
Collapse
|
12
|
Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. Int J Biol Macromol 2020; 153:708-722. [DOI: 10.1016/j.ijbiomac.2020.03.053] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
|
13
|
Sun J, Gou Y, Liu J, Chen H, Kan J, Qian C, Zhang N, Niu F, Jin C. Anti-inflammatory activity of a water-soluble polysaccharide from the roots of purple sweet potato. RSC Adv 2020; 10:39673-39686. [PMID: 35515390 PMCID: PMC9057464 DOI: 10.1039/d0ra07551e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, a water-soluble polysaccharide was isolated from purple sweet potato roots. The in vitro and in vivo anti-inflammatory effects of the polysaccharide were evaluated by lipopolysaccharide (LPS)-induced inflammatory RAW264.7 macrophages and mice, respectively. The in vitro anti-inflammatory assay showed that the polysaccharide could effectively inhibit the overproduction of nitric oxide and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) while increasing the secretion of anti-inflammatory cytokine (IL-10). The in vivo anti-inflammatory assay revealed that mice administered with the polysaccharide showed higher IL-10, SOD, and T-AOC levels but lower TNF-α, IL-1β, IL-6 and MDA levels as compared to the LPS-treated model. Meanwhile, mice administered with the polysaccharide showed increased abundance of Lachnospiraceae, Lactobacillales and Parabacteroides but decreased amounts of Psychrobacter and Staphylococcus as compared to the LPS model group. Moreover, mice administered with polysaccharide showed enhanced production of short chain fatty acids by gut microbiota in the lipopolysaccharide-induced inflammatory mice. Our results suggested that the water-soluble polysaccharide from purple sweet potato roots could be utilized as a novel anti-inflammatory agent. A water-soluble polysaccharide from purple sweet potato roots played anti-inflammatory roles by regulating inflammatory cytokines, gut microbiota and antioxidant defense system.![]()
Collapse
Affiliation(s)
- Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Yarun Gou
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Hong Chen
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Chunlu Qian
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Nianfeng Zhang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Fuxiang Niu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
- Xuzhou 221131
- China
| | - Changhai Jin
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- College of Food Science and Engineering
| |
Collapse
|
14
|
Wang B, Wang XL. Species diversity of fecal microbial flora in Canis lupus familiaris infected with canine parvovirus. Vet Microbiol 2019; 237:108390. [PMID: 31585652 DOI: 10.1016/j.vetmic.2019.108390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/02/2023]
Abstract
Parvovirosis is a highly contagious disease in dogs, often causing acute hemorrhagic enteritis and altering the intestinal microflora. In this study, real-time PCR was used to detect the viral copy numbers in dogs diagnosed with the disease. Hematological and hemobiochemical parameters were also determined. The species and abundances of the fecal microbial flora in both sick and healthy dogs were determined and compared via metagenomic sequencing. The viral copy numbers in the sick dogs were infected with little difference in the positive samples. The blood coagulation time was significantly shorter and the number of white blood cells was significantly greater in the sick dogs. The serum calcium content was slightly increased and the phosphorus content was reduced in the sick dogs. The LDH and CK activities were significantly elevated in the sick dogs. Metagenomic sequencing and analysis revealed relatively more Escherichia, Lachnoclostridium, gnavus group (Ruminococcus), and uncultured_bacterium_f_lachnospiraceae in the infected dogs, whereas the abundance of Collinsella was relatively reduced. Alloprevotella and Sutterella were absent among the fecal microorganisms of the infected dogs. The relative abundances of Romboutsia, Erysipelatoclostridium, Anaerotruncus, and Blautia were significantly increased in the infected dogs. Functional analysis of the metagenomes of the samples indicated a significant enrichment of the 'replication, recombination and repair', 'nucleotide transport and metabolism', 'transcription', and 'defense metabolism' functions in the fecal microbial flora of the infected dogs. In summary, this study provides a scientific theoretical basis for preventing and controlling diarrhea caused by the canine parvovirus.
Collapse
Affiliation(s)
- Bi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, PR China; Center of Conservation Medicine and Ecological Safety, Northeast Forestry University, PR China.
| | - Xiao-Long Wang
- College of Wildlife and Protected Area, Northeast Forestry University, PR China; Center of Conservation Medicine and Ecological Safety, Northeast Forestry University, PR China.
| |
Collapse
|
15
|
Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019; 8:pathogens8030126. [PMID: 31412603 PMCID: PMC6789542 DOI: 10.3390/pathogens8030126] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic complex inflammatory gut pathological condition, examples of which include Crohn’s disease (CD) and ulcerative colitis (UC), which is associated with significant morbidity. Although the etiology of IBD is unknown, gut microbiota alteration (dysbiosis) is considered a novel factor involved in the pathogenesis of IBD. The gut microbiota acts as a metabolic organ and contributes to human health by performing various physiological functions; deviation in the gut flora composition is involved in various disease pathologies, including IBD. This review aims to summarize the current knowledge of gut microbiota alteration in IBD and how this contributes to intestinal inflammation, as well as explore the potential role of gut microbiota-based treatment approaches for the prevention and treatment of IBD. The current literature has clearly demonstrated a perturbation of the gut microbiota in IBD patients and mice colitis models, but a clear causal link of cause and effect has not yet been presented. In addition, gut microbiota-based therapeutic approaches have also shown good evidence of their effects in the amelioration of colitis in animal models (mice) and IBD patients, which indicates that gut flora might be a new promising therapeutic target for the treatment of IBD. However, insufficient data and confusing results from previous studies have led to a failure to define a core microbiome associated with IBD and the hidden mechanism of pathogenesis, which suggests that well-designed randomized control trials and mouse models are required for further research. In addition, a better understanding of this ecosystem will also determine the role of prebiotics and probiotics as therapeutic agents in the management of IBD.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Ashiq Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China.
| |
Collapse
|
16
|
Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. J Nutr Biochem 2018; 57:67-76. [DOI: 10.1016/j.jnutbio.2018.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
|
17
|
Bacterial diversity in the feces of dogs with CPV infection. Microb Pathog 2018; 121:70-76. [PMID: 29709688 DOI: 10.1016/j.micpath.2018.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/14/2023]
Abstract
Canine parvovirus (CPV) is a contagious disease in dogs that has high morbidity and mortality. In cases of infection, the pups tend to have a higher mortality and more severe clinical symptoms than the adult dogs because the dehydration is difficult for pups to bear. Following the natural infection, there is a rapid antibody response neutralizing the extracellular virus. As a result, virus titers in tissue and feces become markedly reduced. Hence, it is important to have an effective symptomatic therapy of supporting animals to survive in the early stages of CPV infection. Furthermore, the co-infection with bacteria could increase the severity of lesions and clinical signs as well. In this paper, we obtained the bacterial diversity in feces of CPV infected dogs with the enrichment of five bacteria genera (Shigella, Peptoclostridium, Peptostreptococcus, Streptococcus, Fusobacterium). These microorganisms may partly result in the intestinal pathology of the infection. In summary, the discussion of the bacterial biodiversity in feces of CPV infected dogs provides further insights into the pathology of CPV disease and the targets of developing more effective treatment strategies.
Collapse
|
18
|
Jenkins EK, DeChant MT, Perry EB. When the Nose Doesn't Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota. Front Vet Sci 2018; 5:56. [PMID: 29651421 PMCID: PMC5884888 DOI: 10.3389/fvets.2018.00056] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines.
Collapse
Affiliation(s)
- Eileen K Jenkins
- First Year Graduate Veterinary Education Program, Public Health Activity - Fort Bragg, United States Army, Fort Bragg, NC, United States
| | - Mallory T DeChant
- Department of Animal Science, Food & Nutrition, College of Agricultural Science, Southern Illinois University, Carbondale, IL, United States
| | - Erin B Perry
- Department of Animal Science, Food & Nutrition, College of Agricultural Science, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
19
|
Zeineldin M, Aldridge B, Lowe J. Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea. Microb Pathog 2017; 115:123-130. [PMID: 29275129 DOI: 10.1016/j.micpath.2017.12.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
Abstract
The bovine gastrointestinal microbiota is a complex polymicrobial ecosystem that plays an important role in maintaining mucosal health. The role of mucosal microbial populations in the pathogenesis of gastrointestinal diseases has been well established in other species. However, limited information is available about changes in the fecal microbiota that occur under disease conditions, such as hemorrhagic diarrhea in feedlot cattle. The objectives of this study were to characterize the differences in fecal microbiota composition, diversity and functional gene profile between feedlot calves with, and without, hemorrhagic diarrhea. Deep fecal swabs were collected from calves with hemorrhagic diarrhea (n = 5) and from pen matched healthy calves (n = 5). Genomic DNA was extracted, and V1-V3 hypervariable region of 16S rRNA gene was amplified and sequenced using the Illumina MiSeq sequencing. When compared to healthy calves, feedlot cattle with hemorrhagic diarrhea showed significant increases in the relative abundance of Clostridium, Blautia and Escherichia, and significant decreases in the relative abundance of Flavobacterium, Oscillospira, Desulfonauticus, Ruminococcus, Thermodesulfovibrio and Butyricimonas. Linear discriminant analysis effect size (LEfSe) also revealed significant differences in bacterial taxa between healthy calves and hemorrhagic diarrhea calves. This apparent dysbiosis in fecal microbiota was associated with significant differences in the predictive functional metagenome profiles of these microbial communities. In summary, our results revealed a bacterial dysbiosis in fecal samples of calves with hemorrhagic diarrhea, with the diseased calves exhibiting less diversity and fewer observed species compared to healthy controls. Additional studies are warranted in a larger cohort of animals to help elucidate the trajectory of change in fecal microbial communities, and their predictive functional capacity, in calves with other gastrointestinal diseases.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA; Department of Animal Medicine, College of Veterinary Medicine, Benha University, Egypt.
| | - Brian Aldridge
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA.
| | - James Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
20
|
Jatzlauk G, Bartel S, Heine H, Schloter M, Krauss-Etschmann S. Influences of environmental bacteria and their metabolites on allergies, asthma, and host microbiota. Allergy 2017; 72:1859-1867. [PMID: 28600901 DOI: 10.1111/all.13220] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2017] [Indexed: 02/07/2023]
Abstract
The prevalence of allergic diseases and asthma has dramatically increased over the last decades, resulting in a high burden for patients and healthcare systems. Thus, there is an unmet need to develop preventative strategies for these diseases. Epidemiological studies show that reduced exposure to environmental bacteria in early life (eg, birth by cesarean section, being formula-fed, growing up in an urban environment or with less contact to various persons) is associated with an increased risk to develop allergies and asthma later in life. Conversely, a reduced risk for asthma is consistently found in children growing up on traditional farms, thereby being exposed to a wide spectrum of microbes. However, clinical studies with bacteria to prevent allergic diseases are still rare and to some extent contradicting. A detailed mechanistic understanding of how environmental microbes influence the development of the human microbiome and the immune system is important to enable the development of novel preventative approaches that are based on the early modulation of the host microbiota and immunity. In this mini-review, we summarize current knowledge and experimental evidence for the potential of bacteria and their metabolites to be used for the prevention of asthma and allergic diseases.
Collapse
Affiliation(s)
- G. Jatzlauk
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - S. Bartel
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - H. Heine
- Division of Innate Immunity; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - M. Schloter
- Research Unit Environmental Genomics; Helmholtz Zentrum München; Oberschleißheim Germany
| | - S. Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
- Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel Germany
| |
Collapse
|
21
|
Harkey MA, Villagran AM, Venkataraman GM, Leisenring WM, Hullar MAJ, Torok-Storb BJ. Associations between gastric dilatation-volvulus in Great Danes and specific alleles of the canine immune-system genes DLA88, DRB1, and TLR5. Am J Vet Res 2017; 78:934-945. [PMID: 28738011 DOI: 10.2460/ajvr.78.8.934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether specific alleles of candidate genes of the major histocompatibility complex (MHC) and innate immune system were associated with gastric dilatation-volvulus (GDV) in Great Danes. ANIMALS 42 healthy Great Danes (control group) and 39 Great Danes with ≥ 1 GDV episode. PROCEDURES Variable regions of the 2 most polymorphic MHC genes (DLA88 and DRB1) were amplified and sequenced from the dogs in each group. Similarly, regions of 3 genes associated with the innate immune system (TLR5, NOD2, and ATG16L1), which have been linked to inflammatory bowel disease, were amplified and sequenced. Alleles were evaluated for associations with GDV, controlling for age and dog family. RESULTS Specific alleles of genes DLA88, DRB1, and TLR5 were significantly associated with GDV. One allele of each gene had an OR > 2 in the unadjusted univariate analyses and retained a hazard ratio > 2 after controlling for temperament, age, and familial association in the multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE The 3 GDV-associated alleles identified in this study may serve as diagnostic markers for identification of Great Danes at risk for GDV. Additional research is needed to determine whether other dog breeds have the same genetic associations. These findings also provided a new target for research into the etiology of, and potential treatments for, GDV in dogs.
Collapse
|
22
|
Seidel DV, Azcárate-Peril MA, Chapkin RS, Turner ND. Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Semin Cancer Biol 2017; 46:191-204. [PMID: 28676459 DOI: 10.1016/j.semcancer.2017.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022]
Abstract
Colon cancer is a multifactorial disease associated with a variety of lifestyle factors. Alterations in the gut microbiota and the intestinal metabolome are noted during colon carcinogenesis, implicating them as critical contributors or results of the disease process. Diet is a known determinant of health, and as a modifier of the gut microbiota and its metabolism, a critical element in maintenance of intestinal health. This review summarizes recent evidence demonstrating the role and responses of the intestinal microbiota during colon tumorigenesis and the ability of dietary bioactive compounds and probiotics to impact colon health from the intestinal lumen to the epithelium and systemically. We first describe changes to the intestinal microbiome, metabolome, and epithelium associated with colon carcinogenesis. This is followed by a discussion of recent evidence indicating how specific classes of dietary bioactives, prebiotics, or probiotics affect colon carcinogenesis. Lastly, we briefly address the prospects of using multiple 'omics' techniques to integrate the effects of diet, host, and microbiota on colon tumorigenesis with the goal of more fully appreciating the interconnectedness of these systems and thus, how these approaches can be used to advance personalized nutrition strategies and nutrition research.
Collapse
Affiliation(s)
- Derek V Seidel
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| | - M Andrea Azcárate-Peril
- Department of Medicine GI Division, University of North Carolina, Chapel Hill, NC 27599-7555, USA.
| | - Robert S Chapkin
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| | - Nancy D Turner
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| |
Collapse
|
23
|
Impact of Novel Sorghum Bran Diets on DSS-Induced Colitis. Nutrients 2017; 9:nu9040330. [PMID: 28346392 PMCID: PMC5409669 DOI: 10.3390/nu9040330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
We have demonstrated that polyphenol-rich sorghum bran diets alter fecal microbiota; however, little is known regarding their effect on colon inflammation. Our aim was to characterize the effect of sorghum bran diets on intestinal homeostasis during dextran sodium sulfate (DSS)-induced colitis. Male Sprague-Dawley rats (N = 20/diet) were provided diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins) or Hi Tannin Black (both) sorghum bran. Colitis was induced (N = 10/diet) with three separate 48-h exposures to 3% DSS, and feces were collected. On Day 82, animals were euthanized and the colon resected. Only discrete mucosal lesions, with no diarrhea or bloody stools, were observed in DSS rats. Only bran diets upregulated proliferation and Tff3, Tgfβ and short chain fatty acids (SCFA) transporter expression after a DSS challenge. DSS did not significantly affect fecal SCFA concentrations. Bran diets alone upregulated repair mechanisms and SCFA transporter expression, which suggests these polyphenol-rich sorghum brans may suppress some consequences of colitis.
Collapse
|
24
|
Uchiyama K, Sakiyama T, Hasebe T, Musch MW, Miyoshi H, Nakagawa Y, He TC, Lichtenstein L, Naito Y, Itoh Y, Yoshikawa T, Jabri B, Stappenbeck T, Chang EB. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development. Sci Rep 2016; 6:32094. [PMID: 27561676 PMCID: PMC4999796 DOI: 10.1038/srep32094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022] Open
Abstract
Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA.,Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 6028566; Japan
| | - Toshio Sakiyama
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA.,Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 8908520; Japan
| | - Takumu Hasebe
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| | - Mark W Musch
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| | - Hiroyuki Miyoshi
- Department of Pathology, Washington University at St. Louis, St. Louis, MO, USA
| | - Yasushi Nakagawa
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| | - Tong-Chuan He
- Department of Surgery, University of Chicago; Chicago, IL 60637; USA
| | - Lev Lichtenstein
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA.,Department of Gastroenterology, Soroka University Medical Center, Beer-Sheva 84101; Israel
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 6028566; Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 6028566; Japan
| | - Toshikazu Yoshikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 6028566; Japan
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| | | | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| |
Collapse
|
25
|
Matijašić M, Meštrović T, Perić M, Čipčić Paljetak H, Panek M, Vranešić Bender D, Ljubas Kelečić D, Krznarić Ž, Verbanac D. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. Int J Mol Sci 2016; 17:ijms17040578. [PMID: 27104515 PMCID: PMC4849034 DOI: 10.3390/ijms17040578] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
The healthy intestine represents a remarkable interface where sterile host tissues come in contact with gut microbiota, in a balanced state of homeostasis. The imbalance of gut homeostasis is associated with the onset of many severe pathological conditions, such as inflammatory bowel disease (IBD), a chronic gastrointestinal disorder increasing in incidence and severely influencing affected individuals. Despite the recent development of next generation sequencing and bioinformatics, the current scientific knowledge of specific triggers and diagnostic markers to improve interventional approaches in IBD is still scarce. In this review we present and discuss currently available and emerging therapeutic options in modulating composition and metabolic activity of gut microbiota in patients affected by IBD. Therapeutic approaches at the microbiota level, such as dietary interventions alone or with probiotics, prebiotics and synbiotics, administration of antibiotics, performing fecal microbiota transplantation (FMT) and the use of nematodes, all represent a promising opportunities towards establishing and maintaining of well-being as well as improving underlying IBD symptoms.
Collapse
Affiliation(s)
- Mario Matijašić
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Tomislav Meštrović
- Clinical Microbiology and Parasitology Unit, Polyclinic "Dr. Zora Profozić", Bosutska 19, 10000 Zagreb, Croatia.
| | - Mihaela Perić
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Hana Čipčić Paljetak
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Marina Panek
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Darija Vranešić Bender
- Department of Internal Medicine, Division of Clinical Nutrition, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia.
| | - Dina Ljubas Kelečić
- Department of Internal Medicine, Division of Clinical Nutrition, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia.
| | - Željko Krznarić
- Department of Internal Medicine, Division of Clinical Nutrition, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia.
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia.
- Department of Internal Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Donatella Verbanac
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
26
|
Liu JH, Zhang ML, Zhang RY, Zhu WY, Mao SY. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb Biotechnol 2016; 9:257-68. [PMID: 26833450 PMCID: PMC4767291 DOI: 10.1111/1751-7915.12345] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/19/2023] Open
Abstract
The objective of this research was to compare the composition of bacterial microbiota associated with the ruminal content (RC), ruminal epithelium (RE) and faeces of Holstein dairy cows. The RC, RE and faecal samples were collected from six Holstein dairy cows when the animals were slaughtered. Community compositions of bacterial 16S rRNA genes from RC, RE and faeces were determined using a MiSeq sequencing platform with bacterial‐targeting universal primers 338F and 806R. UniFrac analysis revealed that the bacterial communities of RC, RE and faeces were clearly separated from each other. Statistically significant dissimilarities were observed between RC and faeces (P = 0.002), between RC and RE (P = 0.003), and between RE and faeces (P = 0.001). A assignment of sequences to taxa showed that the abundance of the predominant phyla Bacteroidetes was lower in RE than in RC, while a significant higher (P < 0.01) abundance of Proteobacteria was present in RE than in RC. When compared with the RC, the abundance of Firmicutes and Verrucomicrobia was higher in faeces, and RC contained a greater abundance of Bacteroidetes and Tenericutes. A higher proportions of Butyrivibrio and Campylobacter dominated RE as compared to RC. The faecal microbiota was less diverse than RC and dominated by genera Turicibacter and Clostridium. In general, these findings clearly demonstrated the striking compositional differences among RC, RE and faeces, indicating that bacterial communities are specific and adapted to the harbouring environment.
Collapse
Affiliation(s)
- Jun-hua Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Meng-ling Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Rui-yang Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wei-yun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Sheng-yong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
27
|
Miller-Cebert RL, Boateng J, Cebert E, Shackelford L, Verghese M. Chemopreventive Potential of Canola Leafy Greens and Other Cruciferous Vegetables on Azoxymethane (AOM)-Induced Colon Cancer in Fisher-344 Male Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/fns.2016.711095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Moré MI, Swidsinski A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis - a review. Clin Exp Gastroenterol 2015; 8:237-55. [PMID: 26316791 PMCID: PMC4542552 DOI: 10.2147/ceg.s85574] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The probiotic medicinal yeast Saccharomyces cerevisiae HANSEN CBS 5926 (Saccharomyces boulardii CNCM I-745) is used for the prevention and treatment of diarrhea. Its action is based on multiple mechanisms, including immunological effects, pathogen-binding and antitoxinic effects, as well as effects on digestive enzymes. Correlated with these effects, but also due to its inherent properties, S. boulardii is able to create a favorable growth environment for the beneficial intestinal microbiota, while constituting extra protection to the host mucus layer and mucosa. This review focuses on the positive influence of S. boulardii on the composition of the intestinal microbiota. In a dysbiosis, as during diarrhea, the main microbial population (especially Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Prevotellaceae) is known to collapse by at least one order of magnitude. This gap generally leads to transient increases in pioneer-type bacteria (Enterobacteriaceae, Bifidobacteriaceae, and Clostridiaceae). Several human studies as well as animal models demonstrate that treatment with S. boulardii in dysbiosis leads to the faster reestablishment of a healthy microbiome. The most relevant effects of S. boulardii on the fecal composition include an increase of short chain fatty acid-producing bacteria (along with a rise in short chain fatty acids), especially of Lachnospiraceae and Ruminococcaceae, as well as an increase in Bacteroidaceae and Prevotellaceae. At the same time, there is a suppression of pioneer bacteria. The previously observed preventive action of S. boulardii, eg, during antibiotic therapy or regarding traveler’s diarrhea, can be explained by several mechanisms, including a stabilizing effect on the healthy microbiota as well as possibly on the mucus layer. Several different dysbiotic situations could profit from the effects of S. boulardii CNCM I-745. Its additional potential lies in a general stabilization of the gut flora for at-risk populations. More studies are needed to explore the full potential of this versatile probiotic yeast.
Collapse
Affiliation(s)
| | - Alexander Swidsinski
- Laboratory for Molecular Genetics, Polymicrobial Infections and Bacterial Biofilms, Department of Medicine, Gastroenterology, Charité Hospital, CCM, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Yoshimatsu Y, Yamada A, Furukawa R, Sono K, Osamura A, Nakamura K, Aoki H, Tsuda Y, Hosoe N, Takada N, Suzuki Y. Effectiveness of probiotic therapy for the prevention of relapse in patients with inactive ulcerative colitis. World J Gastroenterol 2015; 21:5985-5994. [PMID: 26019464 PMCID: PMC4438034 DOI: 10.3748/wjg.v21.i19.5985] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/15/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effectiveness of probiotic therapy for suppressing relapse in patients with inactive ulcerative colitis (UC).
METHODS: Bio-Three tablets, each containing 2 mg of lactomin (Streptococcus faecalis T-110), 10 mg of Clostridium butyricum TO-A, and 10 mg of Bacillus mesentericus TO-A, were used as probiotic therapy. Sixty outpatients with UC in remission were randomly assigned to receive 9 Bio-Three tablets/day (Bio-Three group) or 9 placebo tablets/day (placebo group) for 12 mo in addition to their ongoing medications. Clinical symptoms were evaluated monthly or on the exacerbation of symptoms or need for additional medication. Fecal samples were collected to analyze bacterial DNA at baseline and 3-mo intervals. Terminal restriction fragment length polymorphism and cluster analyses were done to examine bacterial components of the fecal microflora.
RESULTS: Forty-six patients, 23 in each group, completed the study, and 14 were excluded. The relapse rates in the Bio-Three and placebo groups were respectively 0.0% vs 17.4% at 3 mo (P = 0.036), 8.7% vs 26.1% at 6 mo (P = 0.119), and 21.7% vs 34.8% (P = 0.326) at 9 mo. At 12 mo, the remission rate was 69.5% in the Bio-Three group and 56.6% in the placebo group (P = 0.248). On cluster analysis of fecal flora, 7 patients belonged to cluster I, 32 to cluster II, and 7 to cluster III.
CONCLUSION: Probiotics may be effective for maintaining clinical remission in patients with quiescent UC, especially those who belong to cluster I on fecal bacterial analysis.
Collapse
|
30
|
Effect of oral administration of metronidazole or prednisolone on fecal microbiota in dogs. PLoS One 2014; 9:e107909. [PMID: 25229475 PMCID: PMC4168260 DOI: 10.1371/journal.pone.0107909] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal microbiota have been implicated in the pathogenesis of various gastrointestinal disorders in dogs, including acute diarrhea and chronic enteropathy. Metronidazole and prednisolone are commonly prescribed for the treatment of these diseases; however, their effects on gastrointestinal microbiota have not been investigated. The objective of this study was to evaluate the effects of these drugs on the gastrointestinal microbiota of dogs. Metronidazole was administered twice daily at 12.5 mg/kg to a group of five healthy dogs, and prednisolone at 1.0 mg/kg daily to a second group of five healthy dogs for 14 days. Fecal samples were collected before and after administration (day 0 and 14), and 14 and 28 days after cessation (day 28 and 42). DNA was extracted, and the bacterial diversity and composition of each sample were determined based on 16S ribosomal RNA (rRNA) gene sequences using next-generation sequencing (Illumina MiSeq). In the group administered metronidazole, bacterial diversity indices significantly decreased at day 14, and recovered after the cessation. Principal coordinates analysis and hierarchical dendrogram construction based on unweighted and weighted UniFrac distance matrices revealed that bacterial composition was also significantly altered by metronidazole at day 14 compared with the other time points. The proportions of Bacteroidaceae, Clostridiaceae, Fusobacteriaceae, Lachnospiraceae, Ruminococcaceae, Turicibacteraceae, and Veillonellaceae decreased, while Bifidobacteriaceae, Enterobacteriaceae, Enterococcaceae, and Streptococcaceae increased at day 14 and returned to their initial proportions by day 42. Conversely, no effect of prednisolone was observed on either the bacterial diversity or composition. Reducing pathogenic bacteria such as Fusobacteria and increasing beneficial bacteria such as Bifidobacterium through the administration of metronidazole may be beneficial for promoting gastrointestinal health; however, further investigations into the effects on diseased dogs are needed.
Collapse
|
31
|
Orel R, Kamhi Trop T. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J Gastroenterol 2014; 20:11505-11524. [PMID: 25206258 PMCID: PMC4155344 DOI: 10.3748/wjg.v20.i33.11505] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/06/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
It has been presumed that aberrant immune response to intestinal microorganisms in genetically predisposed individuals may play a major role in the pathogenesis of the inflammatory bowel disease, and there is a good deal of evidence supporting this hypothesis. Commensal enteric bacteria probably play a central role in pathogenesis, providing continuous antigenic stimulation that causes chronic intestinal injury. A strong biologic rationale supports the use of probiotics and prebiotics for inflammatory bowel disease therapy. Many probiotic strains exhibit anti-inflammatory properties through their effects on different immune cells, pro-inflammatory cytokine secretion depression, and the induction of anti-inflammatory cytokines. There is very strong evidence supporting the use of multispecies probiotic VSL#3 for the prevention or recurrence of postoperative pouchitis in patients. For treatment of active ulcerative colitis, as well as for maintenance therapy, the clinical evidence of efficacy is strongest for VSL#3 and Escherichia coli Nissle 1917. Moreover, some prebiotics, such as germinated barley foodstuff, Psyllium or oligofructose-enriched inulin, might provide some benefit in patients with active ulcerative colitis or ulcerative colitis in remission. The results of clinical trials in the treatment of active Crohn’s disease or the maintenance of its remission with probiotics and prebiotics are disappointing and do not support their use in this disease. The only exception is weak evidence of advantageous use of Saccharomyces boulardii concomitantly with medical therapy in maintenance treatment.
Collapse
|
32
|
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38:996-1047. [PMID: 24861948 PMCID: PMC4262072 DOI: 10.1111/1574-6976.12075] [Citation(s) in RCA: 757] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/29/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023] Open
Abstract
The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact.
Collapse
Affiliation(s)
- Mirjana Rajilić-Stojanović
- Department for Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of BelgradeBelgrade, Serbia
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
- Departments of Bacteriology and Immunology, and Veterinary Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
33
|
Durber J, Otley A. Complementary and alternative medicine in inflammatory bowel disease: keeping an open mind. Expert Rev Clin Immunol 2014; 1:277-92. [DOI: 10.1586/1744666x.1.2.277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Andoh A, Fujimoto T, Takahashi K. [The cutting-edge of medicine; association between the gut microbiota and intestinal disorders]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2013; 102:2983-2989. [PMID: 24450137 DOI: 10.2169/naika.102.2983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Akira Andoh
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Japan
| | - Takehide Fujimoto
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Japan
| | - Kenichiro Takahashi
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Japan
| |
Collapse
|
35
|
Kanauchi O, Andoh A, Mitsuyama K. Effects of the modulation of microbiota on the gastrointestinal immune system and bowel function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9977-9983. [PMID: 24070265 DOI: 10.1021/jf402441f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The gastrointestinal tract harbors a tremendous number and variety of commensal microbiota. The intestinal mucosa simultaneously absorbs essential nutrients and protects against detrimental antigens or pathogenic microbiota as the first line of defense. Beneficial interactions between the host and microbiota are key requirements for host health. Although the gut microbiota has been previously studied in the context of inflammatory diseases, it has recently become clear that this microbial environment has a beneficial role during normal homeostasis, by modulating the immune system or bowel motor function. Recent studies revealed that microbiota, including their metabolites, modulate key signaling pathways involved in the inflammation of the mucosa or the neurotransmitter system in the gut-brain axis. The underlying molecular mechanisms of host-microbiota interactions are still unclear; however, manipulation of microbiota by probiotics or prebiotics is becoming increasingly recognized as an important therapeutic option, especially for the treatment of the dysfunction or inflammation of the intestinal tract.
Collapse
Affiliation(s)
- Osamu Kanauchi
- Group Internal Audit Department, Kirin Holdings Company, Ltd., 4-10-2 Nakano, Nakano-ku, Tokyo 164-0001, Japan
| | | | | |
Collapse
|
36
|
Gastrointestinal Microbiota. CANINE AND FELINE GASTROENTEROLOGY 2013. [PMCID: PMC7152181 DOI: 10.1016/b978-1-4160-3661-6.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
|
37
|
Abstract
Gastrointestinal (GI) microbes have important roles in the nutritional, immunological, and physiologic processes of the host. Traditional cultivation techniques have revealed bacterial density ranges from 10(4) to 10(5) colony forming units (CFU)/g in the stomach, from 10(5) to 10(7) CFU/g in the small intestine, and from 10(9) to 10(11) CFU/g in the colon of healthy dogs. As a small number of bacterial species can be grown and studied in culture, however, progress was limited until the recent emergence of DNA-based techniques. In recent years, DNA sequencing technology and bioinformatics have allowed for better phylogenetic and functional/metabolic characterization of the canine gut microbiome. Predominant phyla include Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria. Studies using 16S ribosomal RNA (rRNA) gene pyrosequencing have demonstrated spatial differences along the GI tract and among microbes adhered to the GI mucosa compared to those in intestinal contents or feces. Similar to humans, GI microbiome dysbiosis is common in canine GI diseases such as chronic diarrhea and inflammatory bowel diseases. DNA-based assays have also identified key pathogens contributing to such conditions, including various Clostridium, Campylobacter, Salmonella, and Escherichia spp. Moreover, nutritionists have applied DNA-based techniques to study the effects of dietary interventions such as dietary fiber, prebiotics, and probiotics on the canine GI microbiome and associated health indices. Despite recent advances in the field, the canine GI microbiome is far from being fully characterized and a deeper characterization of the phylogenetic and functional/metabolic capacity of the GI microbiome in health and disease is needed. This paper provides an overview of recent studies performed to characterize the canine GI microbiome.
Collapse
|
38
|
Use of enteral nutrition for the control of intestinal inflammation in pediatric Crohn disease. J Pediatr Gastroenterol Nutr 2012; 54:298-305. [PMID: 22002478 DOI: 10.1097/mpg.0b013e318235b397] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exclusive enteral nutrition is an effective yet often underused therapy for the induction of remission in pediatric Crohn disease. The North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition formed the Enteral Nutrition Working Group to review the use of enteral nutrition therapy in pediatric Crohn disease. The group was composed of 5 pediatric gastroenterologists and 1 pediatric nutritionist, all with an interest and/or expertise in exclusive enteral nutrition. Specific attention was placed upon review of the evidence for efficacy of therapy, assessment of the variations in care, identification of barriers to its widespread use, and compilation of the necessary components for a successful program. The present guideline is intended to aid physicians in developing an enteral nutrition therapy program and potentially promote its use.
Collapse
|
39
|
Suchodolski JS. Companion animals symposium: microbes and gastrointestinal health of dogs and cats. J Anim Sci 2011; 89:1520-30. [PMID: 21075970 PMCID: PMC7199667 DOI: 10.2527/jas.2010-3377] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022] Open
Abstract
Recent molecular studies have revealed complex bacterial, fungal, archaeal, and viral communities in the gastrointestinal tract of dogs and cats. More than 10 bacterial phyla have been identified, with Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria constituting more than 99% of all gut microbiota. Microbes act as a defending barrier against invading pathogens, aid in digestion, provide nutritional support for enterocytes, and play a crucial role in the development of the immune system. Of significance for gastrointestinal health is their ability to ferment dietary substrates into short-chain fatty acids, predominantly to acetate, propionate, and butyrate. However, microbes can have also a detrimental effect on host health. Specific pathogens (e.g., Salmonella, Campylobacter jejuni, and enterotoxigenic Clostridium perfringens) have been implicated in acute and chronic gastrointestinal disease. Compositional changes in the small intestinal microbiota, potentially leading to changes in intestinal permeability and digestive function, have been suggested in canine small intestinal dysbiosis or antibiotic-responsive diarrhea. There is mounting evidence that microbes play an important role in the pathogenesis of canine and feline inflammatory bowel disease (IBD). Current theories for the development of IBD favor a combination of environmental factors, the intestinal microbiota, and a genetic susceptibility of the host. Recent studies have revealed a genetic susceptibility for defective bacterial clearance in Boxer dogs with granulomatous colitis. Differential expression of pathogen recognition receptors (i.e., Toll-like receptors) were identified in dogs with chronic enteropathies. Similarly to humans, a microbial dysbiosis has been identified in feline and canine IBD. Commonly observed microbial changes are increased Proteobacteria (i.e., Escherichia coli) with concurrent decreases in Firmicutes, especially a reduced diversity in Clostridium clusters XIVa and IV (i.e., Lachnospiraceae, Ruminococcaceae, Faecalibacterium spp.). This would indicate that these bacterial groups, important short-chain fatty acid producers, may play an important role in promoting intestinal health.
Collapse
Affiliation(s)
- J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4474, USA.
| |
Collapse
|
40
|
Possemiers S, Bolca S, Verstraete W, Heyerick A. The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 2010; 82:53-66. [PMID: 20655994 DOI: 10.1016/j.fitote.2010.07.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/13/2010] [Accepted: 07/18/2010] [Indexed: 01/01/2023]
Abstract
For many years, it was believed that the main function of the large intestine was the resorption of water and salt and the facilitated disposal of waste materials. However, this task definition was far from complete, as it did not consider the activity of the microbial content of the large intestine. Nowadays it is clear that the complex microbial ecosystem in our intestines should be considered as a separate organ within the body, with a metabolic capacity which exceeds the liver with a factor 100. The intestinal microbiome is therefore closely involved in the first-pass metabolism of dietary compounds. This is especially true for botanical supplements, which are now marketed for various health applications. Being of natural origin, their structural building blocks, such as polyphenols, are often highly recognized by the human and especially the intestinal microbial metabolism machinery. Intensive metabolism results in often low circulating levels of the original products, with the consequence that final health effects of botanicals are often related to specific active metabolites which are produced in the body rather than being related to the product's original composition. Understanding how such metabolic processes contribute to the in situ exposure is therefore crucial for the proper interpretation of biological responses. A multidisciplinary approach, characterizing the food and phytochemical intake as well as the metabolic potency of the gut microbiota, while measuring biomarkers of both exposure and response in target tissues, is therefore of critical importance. With polyphenol metabolism as example, this review describes how the incorporation of microbial metabolism as an important variable in the evaluation of the final bioactivity of botanicals strongly increases the relevance and predictive value of the outcome. Moreover, knowledge about intestinal processes may offer innovative strategies for targeted product development.
Collapse
Affiliation(s)
- Sam Possemiers
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium.
| | | | | | | |
Collapse
|
41
|
Shen J, Ran HZ, Yin MH, Zhou TX, Xiao DS. Meta-analysis: the effect and adverse events of Lactobacilli versus placebo in maintenance therapy for Crohn disease. Intern Med J 2010; 39:103-9. [PMID: 19220543 DOI: 10.1111/j.1445-5994.2008.01791.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lactobacilli are used in an attempt to maintain remission for Crohn disease. The aim of this study was to evaluate the efficacy and adverse events of Lactobacilli compared with placebo in maintenance therapy for Crohn disease. METHODS We searched MEDLINE, EMBASE, the Cochrane Controlled Trials Register, OVID and BIOSIS. All randomized trials comparing Lactobacilli with placebo in maintenance therapy for Crohn disease were included. RESULTS Six randomized controlled trials with a total of 359 participants met the inclusion criteria. From the meta-analyses, the relative risk (RR) of clinical relapse rate was 1.15 (95% confidence interval (CI) 0.90-1.48) comparing Lactobacilli with placebo and RR of endoscopic relapse rate was 1.31 (95%CI 0.57-3.00). Subgroup analyses showed RR for clinical relapse rates of Lactobacilli versus placebo was 0.99 (95%CI 0.76-1.29) in adults, 1.85 (95%CI 1.00-3.41) in children, 1.68 (95%CI 1.07-2.64) in Lactobacillus rhamnosus strain GG and 0.91 (95%CI 0.68-1.23) in Lactobacillus johnsonii respectively. The pooled RR of adverse events was 0.83 (95%CI 0.61-1.12). CONCLUSION Our meta-analysis suggests that compared with placebo, administration of L. rhamnosus strain GG as maintenance therapy may increase the relapse rates of Crohn disease. L. johnsonii is inefficacious in reducing the incidence of relapse.
Collapse
Affiliation(s)
- J Shen
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai, China
| | | | | | | | | |
Collapse
|
42
|
Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nat Med 2009; 15:641-8. [PMID: 19465927 DOI: 10.1038/nm.1965] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 04/07/2009] [Indexed: 01/08/2023]
Abstract
Staphylococcal superantigens are pyrogenic exotoxins that cause massive T cell activation leading to toxic shock syndrome and death. Despite the strong adaptive immune response induced by these toxins, infections by superantigen-producing staphylococci are very common clinical events. We hypothesized that this may be partly a result of staphylococcal strains having developed strategies that downregulate the T cell response to these toxins. Here we show that the human interleukin-2 response to staphylococcal superantigens is inhibited by the simultaneous presence of bacteria. Such a downregulatory effect is the result of peptidoglycan-embedded molecules binding to Toll-like receptor 2 and inducing interleukin-10 production and apoptosis of antigen-presenting cells. We corroborated these findings in vivo by showing substantial prevention of mortality after simultaneous administration of staphylococcal enterotoxin B with either heat-killed staphylococci or Staphylococcus aureus peptidoglycan in mouse models of superantigen-induced toxic shock syndrome.
Collapse
|
43
|
Balamurugan R, Chittaranjan SP, Chandragunasekaran AM, Ramakrishna BS. Molecular detection of the ruminal bacterium,Butyrivibrio fibrisolvens, in feces from rural residents of southern India. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600802636265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ramadass Balamurugan
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sucharita Priya Chittaranjan
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Aarthi Merlin Chandragunasekaran
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Balakrishnan S. Ramakrishna
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
44
|
Possemiers S, Verstraete W. Oestrogenicity of prenylflavonoids from hops: activation of pro-oestrogens by intestinal bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:100-109. [PMID: 23765740 DOI: 10.1111/j.1758-2229.2009.00011.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For many centuries, hops (Humulus lupulus L.) have been used as essential ingredient in beers, providing the typical bitterness and hoppy flavour. However, the last few years the plant has gained increasing attention as a source of prenylflavonoids and in 1999, 8-prenylnaringenin (8-PN) was identified as the most potent phyto-oestrogen known so far. Hop extracts are therefore now marketed to reduce menopausal complaints. However, 8-PN concentrations in hops are very low, and variable efficiency of these extracts was observed. Yet, hops also contain isoxanthohumol (IX) in much higher amounts (IX/8-PN ratio in hop extracts is typically 10-20). This article reviews our recent findings on how the human intestinal microbiota may activate IX. Depending on inter-individual differences in the intestinal transformation potential, this conversion could easily increase the 8-PN exposure 10-fold. The variability in efficacy of hop extracts may therefore be explained by variable intestinal metabolism. Based on this scientific knowledge, an innovative strategy was developed to decrease this variability. First, Eubacterium limosum, capable of rapidly metabolizing all IX into 8-PN, was isolated from the complex intestinal ecosystem. This bacterium was then used to develop a new generation of hop products with increased reliability in effect. This strategy involves the use of the bacterium as probiotic, in which the bacterium is administered in combination with the original hop extract. This leads to efficient intestinal 8-PN production, also in individuals who originally did not harbour the appropriate bacteria. The findings presented in this review can therefore be considered as a typical example that good insight in the specific metabolic potential of complex microbial communities and individual bacterial species may offer important opportunities for the management and modulation of the microbial organization towards a certain metabolic function.
Collapse
Affiliation(s)
- Sam Possemiers
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | |
Collapse
|
45
|
Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. Bacterial Tag–Encoded FLX Amplicon Pyrosequencing (bTEFAP) for Microbiome Studies: Bacterial Diversity in the Ileum of Newly WeanedSalmonella-Infected Pigs. Foodborne Pathog Dis 2008; 5:459-72. [DOI: 10.1089/fpd.2008.0107] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Scot E. Dowd
- USDA-ARS Livestock Issues Research Unit, Lubbock, Texas
| | - Yan Sun
- Medical Biofilm Research Institute, Lubbock, Texas
| | | | | | | |
Collapse
|
46
|
Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 2008; 8:125. [PMID: 18652685 PMCID: PMC2515157 DOI: 10.1186/1471-2180-8-125] [Citation(s) in RCA: 764] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 07/24/2008] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The microbiota of an animal's intestinal tract plays important roles in the animal's overall health, productivity and well-being. There is still a scarcity of information on the microbial diversity in the gut of livestock species such as cattle. The primary reason for this lack of data relates to the expense of methods needed to generate such data. Here we have utilized a bacterial tag-encoded FLX 16s rDNA amplicon pyrosequencing (bTEFAP) approach that is able to perform diversity analyses of gastrointestinal populations. bTEFAP is relatively inexpensive in terms of both time and labor due to the implementation of a novel tag priming method and an efficient bioinformatics pipeline. We have evaluated the microbiome from the feces of 20 commercial, lactating dairy cows. RESULTS Ubiquitous bacteria detected from the cattle feces included Clostridium, Bacteroides, Porpyhyromonas, Ruminococcus, Alistipes, Lachnospiraceae, Prevotella, Lachnospira, Enterococcus, Oscillospira, Cytophage, Anaerotruncus, and Acidaminococcus spp. Foodborne pathogenic bacteria were detected in several of the cattle, a total of 4 cows were found to be positive for Salmonella spp (tentative enterica) and 6 cows were positive for Campylobacter spp. (tentative lanienae). CONCLUSION Using bTEFAP we have examined the microbiota in the feces of cattle. As these methods continue to mature we will better understand the ecology of the major populations of bacteria the lower intestinal tract. This in turn will allow for a better understanding of ways in which the intestinal microbiome contributes to animal health, productivity and wellbeing.
Collapse
Affiliation(s)
- Scot E Dowd
- USDA-ARS Livestock Issues Research Unit, Lubbock, TX 79403, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Possemiers S, Rabot S, Espín JC, Bruneau A, Philippe C, González-Sarrías A, Heyerick A, Tomás-Barberán FA, De Keukeleire D, Verstraete W. Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J Nutr 2008; 138:1310-6. [PMID: 18567753 DOI: 10.1093/jn/138.7.1310] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recently, it was shown that the exposure to the potent hop phytoestrogen 8-prenylnaringenin (8-PN) depends on intestinal bacterial activation of isoxanthohumol (IX), but this occurs in only one-third of tested individuals. As the butyrate-producing Eubacterium limosum can produce 8-PN from IX, a probiotic strategy was applied to investigate whether 8-PN production could be increased in low 8-PN producers, thus balancing phytoestrogen exposure. Using fecal samples from high (Hop +) and low (Hop -) 8-PN-producing individuals, a Hop + and Hop - dynamic intestinal model was developed. In parallel, Hop + and Hop - human microbiota-associated rats were developed, germ-free (GF) rats acting as negative controls. IX and then IX + E. limosum were administered in the intestinal model and to the rats, and changes in 8-PN production and exposure were assessed. After dosing IX, 80% was converted into 8-PN in the Hop + model and highest 8-PN production, plasma concentrations, and urinary and fecal excretion occurred in the Hop + rats. Administration of the bacterium triggered 8-PN production in the GF rats and increased 8-PN production in the Hop - model and Hop - rats. 8-PN excretion was similar in the feces (294.1 +/- 132.2 nmol/d) and urine (8.5 +/- 1.1 nmol/d ) of all rats (n = 18). In addition, butyrate production increased in all rats. In conclusion, intestinal microbiota determined 8-PN production and exposure after IX intake. Moreover, E. limosum administration increased 8-PN production in low producers, resulting in similar 8-PN production in all rats.
Collapse
Affiliation(s)
- Sam Possemiers
- Laboratory of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kataoka K, Ogasa S, Kuwahara T, Bando Y, Hagiwara M, Arimochi H, Nakanishi S, Iwasaki T, Ohnishi Y. Inhibitory effects of fermented brown rice on induction of acute colitis by dextran sulfate sodium in rats. Dig Dis Sci 2008; 53:1601-8. [PMID: 17957470 DOI: 10.1007/s10620-007-0063-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 10/04/2007] [Indexed: 02/06/2023]
Abstract
Although the pathogenic mechanisms of inflammatory bowel diseases are not fully understood, colonic microbiota may affect the induction of colonic inflammation, and some probiotics and prebiotics have been reported to suppress colitis. The inhibitory effects of brown rice fermented by Aspergillus oryzae (FBRA), a fiber-rich food, on the induction of acute colitis by dextran sulfate sodium (DSS) were examined. Feeding a 5% and 10% FBRA-containing diet significantly decreased the ulcer and erosion area in the rat colon stained with Alcian blue. In another experiment, 10% FBRA feeding decreased the ulcer index (percentage of the total length of ulcers in the full length of the colon) and colitis score, which were determined by macroscopic observation. It also decreased myeloperoxidase activity in the colonic mucosa. Viable cell numbers of Lactobacillus in the feces decreased after DSS administration and was reversely correlated with severity of colitis, while the cell number of Enterobacteriaceae increased after DSS treatment and was positively correlated with colitis severity. These results indicate that FBRA has a suppressive effect on the induction of colitis by DSS and suggest FBRA-mediated modification of colonic microbiota.
Collapse
Affiliation(s)
- Keiko Kataoka
- Department of Molecular Bacteriology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tsuda Y, Yoshimatsu Y, Aoki H, Nakamura K, Irie M, Fukuda K, Hosoe N, Takada N, Shirai K, Suzuki Y. Clinical effectiveness of probiotics therapy (BIO-THREE) in patients with ulcerative colitis refractory to conventional therapy. Scand J Gastroenterol 2007; 42:1306-11. [PMID: 17852859 DOI: 10.1080/00365520701396091] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Intestinal microflora has been implicated in the etiology of ulcerative colitis (UC). Over the past few years, the use of probiotics in UC has gained attention. The aim of this study was to evaluate the efficacy of probiotics therapy for mild to moderate distal UC refractory to conventional therapies. MATERIAL AND METHODS Twenty patients with mild to moderate distal UC took 9 BIO-THREE tablets per day for 4 weeks. Clinical symptoms and endoscopic findings were evaluated as ulcerative colitis disease activity index (UCDAI) scores before and after administration of BIO-THREE. Fecal samples were collected from all patients before and after probiotics administration, and fecal microflora was analyzed by the terminal restriction fragment length polymorphism (T-RFLP) method. RESULTS Remission (UCDAI score < or =2) was observed in 45% (9/20) of the patients; response (decrease in UCDAI > or = 3, but final score > or = 3) in 10% (2/20); no response in 40% (8/20); and worsening (UCDAI > 3) in 5% (1/20). T-RFLP analysis indicated that the principal alteration in microflora was an increase in bifidobacteria. CONCLUSIONS This study showed that administration of BIO-THREE improved the clinical symptoms and endoscopic findings in patients with UC, indicating that administration of BIO-THREE is safe and efficacious for the treatment of UC.
Collapse
Affiliation(s)
- Yukiko Tsuda
- Department of Internal Medicine, Sakura Medical Center, Toho University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schauber J, Weiler F, Gostner A, Melcher R, Kudlich T, Lührs H, Scheppach W. Human rectal mucosal gene expression after consumption of digestible and non-digestible carbohydrates. Mol Nutr Food Res 2007; 50:1006-12. [PMID: 17039460 DOI: 10.1002/mnfr.200600084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of regular consumption of the low-digestible and prebiotic isomalt versus the digestible sucrose on gene expression in rectal mucosa was examined in a randomized double-blind crossover trial. Nineteen healthy volunteers received 30 g isomalt per day or 30 g sucrose as part of a controlled diet over two 4-week test periods with a 4-week washout period in between. At the end of each test phase rectal biopsies were obtained. After RNA extraction mucosal gene expression was assayed using GeneChip microarrays. In addition, expression of cathelicidin hCap18/LL37, cellular detoxification enzymes GSTpi, UGT1A1 and CYP3A4, cyclooxygenase 2 and barrier factors MUC2 and ZO-1 were determined by real-time RT-PCR. Microbiological analyses of fecal samples revealed a shift of the gut flora towards an increase of bifidobacteria following consumption of the diet containing isomalt. Isomalt consumption did not affect rectal mucosal gene expression in microarray analyses as compared to sucrose. In addition, the expression of cathelicidin LL37, GSTpi, UGT1A1, CYP3A4, COX-2, MUC2 and ZO-1 was not changed in rectal biopsies. We conclude that gene expression of the human rectal mucosa can reliably be measured in biopsy material taken at endoscopy. Dietary intervention with the low digestible isomalt compared with the digestible sucrose did not affect gene expression in the lining rectal mucosa.
Collapse
Affiliation(s)
- Jürgen Schauber
- Department of Medicine II, Division of Gastroenterology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|