1
|
David V, Wermelinger LS, Frattani FS, Lima AGF, Santos YFS, Mourão PADS, Almeida FCL, Kurtenbach E, Zingali RB. rJararacin, a recombinant disintegrin from Bothrops jararaca venom: Exploring its effects on hemostasis and thrombosis. Arch Biochem Biophys 2023; 738:109557. [PMID: 36878339 DOI: 10.1016/j.abb.2023.109557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Integrins are a family of heterodimeric transmembrane receptors which link the extracellular matrix to the cell cytoskeleton. These receptors play a role in many cellular processes: adhesion, proliferation, migration, apoptosis, and platelet aggregation, thus modulating a wide range of scenarios in health and disease. Therefore, integrins have been the target of new antithrombotic drugs. Disintegrins from snake venoms are recognized by the ability to modulate the activity of integrins, such as integrin αIIbβ3, a fundamental platelet glycoprotein, and αvβ3 expressed on tumor cells. For this reason, disintegrins are unique and potential tools for examining integrin-matrix interaction and the development of novel antithrombotic agents. The present study aims to obtain the recombinant form of jararacin and evaluate the secondary structure and its effects on hemostasis and thrombosis. rJararacin was expressed in the Pichia pastoris (P. pastoris) expression system and purified the recombinant protein with a yield of 40 mg/L of culture. The molecular mass (7722 Da) and internal sequence were confirmed by mass spectrometry. Structure and folding analysis were obtained by Circular Dichroism and 1H Nuclear Magnetic Resonance spectra. Disintegrin structure reveals properly folded with the presence of β-sheet structure. rJararacin significantly demonstrated inhibition of the adhesion of B16F10 cells and platelets to the fibronectin matrix under static conditions. rJararacin inhibited platelet aggregation induced by ADP (IC50 95 nM), collagen (IC50 57 nM), and thrombin (IC50 22 nM) in a dose-dependent manner. This disintegrin also inhibited 81% and 94% of the adhesion of platelets to fibrinogen and collagen under continuous flow, respectively. In addition, rjararacin efficaciously prevents platelet aggregation in vitro and ex vivo with rat platelets and thrombus occlusion at an effective dose (5 mg/kg). The data here provides evidence that rjararacin possesses the potential as an αIIbβ3 antagonist, capable of preventing arterial thrombosis.
Collapse
Affiliation(s)
- Victor David
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Luciana Serrão Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Flávia Serra Frattani
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Antonio Gilclêr Ferreira Lima
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Yasmyn Fernandes Silva Santos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Paulo Antônio de Souza Mourão
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Fabio Ceneviva Lacerda Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| |
Collapse
|
2
|
Arzani H, Rafii-Tabar H, Ramezani F. The investigation into the effect of the length of RGD peptides and temperature on the interaction with the αIIbβ3 integrin: a molecular dynamic study. J Biomol Struct Dyn 2022; 40:9701-9712. [PMID: 34060983 DOI: 10.1080/07391102.2021.1932602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tripeptide Arg-Gly-Asp acid (RGD) is a protein sequence in the binding of proteins to cell surfaces, and is involved in various biological processes such as cell adhesion to the extracellular matrix, platelet activation, hemostasis, etc. The C2 domain of the Von Willebrand Factor (VWF), containing the RGD motif, plays an important role in the initial homeostasis process. It binds to the αIIbβ3 integrin and stimulates platelet aggregation. We have investigated, using the molecular Dynamic (MD) simulation method, the effect of the RGD-peptide length, and temperature variation, on the binding to the αIIbβ3 integrin receptor. We examined 10 different structural modes of the αIIbβ3 at three different temperatures; 237 K, 310 K and 318 K. Our findings show that the amino acids that form a binding pocket include Asp224, Tyr234, Ser226, Tyr190, Tyr189, Trp260, Trp262, Asp259, Lys253, Arg214, Asp217, Ser161 and Ala218 and that the ligand-receptor interaction was increased at higher temperatures. It was also found that the increase in the number of ligands' amino acids and their types (% glycine) plays an important role in the stability, conformation, and ligand-receptor interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Arzani
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lunasin peptide promotes lysosome-mitochondrial mediated apoptosis and mitotic termination in MDA-MB-231 cells. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Schönthal AH, Swenson SD, Chen TC, Markland FS. Preclinical studies of a novel snake venom-derived recombinant disintegrin with antitumor activity: A review. Biochem Pharmacol 2020; 181:114149. [PMID: 32663453 DOI: 10.1016/j.bcp.2020.114149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Snake venoms consist of a complex mixture of many bioactive molecules. Among them are disintegrins, which are peptides without enzymatic activity, but with high binding affinity for integrins, transmembrane receptors that function to connect cells with components of the extracellular matrix. Integrin-mediated cell attachment is critical for cell migration and dissemination, as well as for signal transduction pathways involved in cell growth. During tumor development, integrins play key roles by supporting cancer cell proliferation, angiogenesis, and metastasis. The recognition that snake venom disintegrins can block integrin functions has spawned a number of studies to explore their cancer therapeutic potential. While dozens of different disintegrins have been isolated, none of them as yet has undergone clinical evaluation in cancer patients. Among the best-characterized and preclinically most advanced disintegrins is vicrostatin (VCN), a recombinant disintegrin that was rationally designed by fusing 62 N-terminal amino acids derived from the disintegrin contortrostatin with 6 C-terminal amino acids from echistatin, the disintegrins from another snake species. Bacterially produced VCN was shown to target multiple tumor-associated integrins, achieving potent anti-tumor and anti-angiogenic effects in in vitro and in vivo models in the absence of noticeable toxicity. This review will introduce the field of snake venom disintegrins as potential anticancer agents and illustrate the translational development and cancer-therapeutic potential of VCN as an example.
Collapse
Affiliation(s)
- Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Stephen D Swenson
- Department of Neurological Surgery, KSOM, USC, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, KSOM, USC, Los Angeles, CA 90089, USA
| | - Thomas C Chen
- Department of Neurological Surgery, KSOM, USC, Los Angeles, CA 90089, USA
| | - Francis S Markland
- Department of Biochemistry and Molecular Medicine, KSOM, USC, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Nalian A, Umstead TM, Yang CH, Silveyra P, Thomas NJ, Floros J, McCormack FX, Chroneos ZC. Structural and Functional Determinants of Rodent and Human Surfactant Protein A: A Synthesis of Binding and Computational Data. Front Immunol 2019; 10:2613. [PMID: 31781112 PMCID: PMC6856657 DOI: 10.3389/fimmu.2019.02613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 11/23/2022] Open
Abstract
Surfactant protein A (SP-A) provides surfactant stability, first line host defense, and lung homeostasis by binding surfactant phospholipids, pathogens, alveolar macrophages (AMs), and epithelial cells. Non-primates express one SP-A protein whereas humans express two: SP-A1 and SP-A2 with core intra- and inter-species differences in the collagen-like domain. Here, we used macrophages and solid phase binding assays to discern structural correlates of rat (r) and human (h) SP-A function. Binding assays using recombinant rSP-A expressed in insect cells showed that lack of proline hydroxylation, truncations of amino-terminal oligomerization domains, and site-directed serine (S) or alanine (A) mutagenesis of cysteine 6 (C6S), glutamate 195 (E195A), and glutamate 171 (E171A) in the carbohydrate recognition domain (CRD) all impaired SP-A binding. Replacement of arginine 197 with alanine found in hSP-A (R197A), however, restored the binding of hydroxyproline-deficient rSP-A to the SP-A receptor SP-R210 similar to native rat and human SP-A. In silico calculation of Ca++ coordination bond length and solvent accessibility surface area revealed that the “humanized” R197A substitution alters topology and solvent accessibility of the Ca++ coordination residues of the CRD domain. Binding assays in mouse AMs that were exposed to either endogenous SP-A or hSP-A1 (6A2) and hSP-A2 (1A0) isoforms in vivo revealed that mouse SP-A is a functional hybrid of hSP-A1 and hSP-A2 in regulating SP-A receptor occupancy and binding affinity. Binding assays using neonatal and adult human AMs indicates that the interaction of SP-A1 and SP-A2 with AMs is developmentally regulated. Furthermore, our data indicate that the auxiliary ion coordination loop encompassing the conserved E171 residue may comprise a conserved site of interaction with macrophages, and SP-R210 specifically, that merits further investigation to discern conserved and divergent SP-A functions between species. In summary, our findings support the notion that complex structural adaptation of SP-A regulate conserved and species specific AM functions in vertebrates.
Collapse
Affiliation(s)
- Armen Nalian
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, United States.,The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Todd M Umstead
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Ching-Hui Yang
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Patricia Silveyra
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Neal J Thomas
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Public Health Sciences, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Center of Host Defense and Inflammatory Disease Research, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States.,Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| |
Collapse
|
6
|
Tobassum S, Tahir HM, Arshad M, Zahid MT, Ali S, Ahsan MM. Nature and applications of scorpion venom: an overview. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1530681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Saadia Tobassum
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Muhammad Arshad
- Department of Zoology, University of Education Lower Mall Campus, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
7
|
David V, Succar BB, de Moraes JA, Saldanha-Gama RFG, Barja-Fidalgo C, Zingali RB. Recombinant and Chimeric Disintegrins in Preclinical Research. Toxins (Basel) 2018; 10:E321. [PMID: 30087285 PMCID: PMC6116119 DOI: 10.3390/toxins10080321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023] Open
Abstract
Disintegrins are a family of small cysteine-rich peptides, found in a wide variety of snake venoms of different phylogenetic origin. These peptides selectively bind to integrins, which are heterodimeric adhesion receptors that play a fundamental role in the regulation of many physiological and pathological processes, such as hemostasis and tumor metastasis. Most disintegrins interact with integrins through the RGD (Arg-Gly-Asp) sequence loop, resulting in an active site that modulates the integrin activity. Some variations in the tripeptide sequence and the variability in its neighborhood result in a different specificity or affinity toward integrin receptors from platelets, tumor cells or neutrophils. Recombinant forms of these proteins are obtained mainly through Escherichia coli, which is the most common host used for heterologous expression. Advances in the study of the structure-activity relationship and importance of some regions of the molecule, especially the hairpin loop and the C-terminus, rely on approaches such as site-directed mutagenesis and the design and expression of chimeric peptides. This review provides highlights of the biological relevance and contribution of recombinant disintegrins to the understanding of their binding specificity, biological activities and therapeutic potential. The biological and pharmacological relevance on the newest discoveries about this family of integrin-binding proteins are discussed.
Collapse
Affiliation(s)
- Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - João Alfredo de Moraes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - Roberta Ferreira Gomes Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20.551-030, Brazil.
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20.551-030, Brazil.
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| |
Collapse
|
8
|
Casal JI, Bartolomé RA. RGD cadherins and α2β1 integrin in cancer metastasis: A dangerous liaison. Biochim Biophys Acta Rev Cancer 2018; 1869:321-332. [PMID: 29673969 DOI: 10.1016/j.bbcan.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022]
Abstract
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.
Collapse
Affiliation(s)
- J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain.
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain
| |
Collapse
|
9
|
Isolation and characterization of four medium-size disintegrins from the venoms of Central American viperid snakes of the genera Atropoides, Bothrops, Cerrophidion and Crotalus. Biochimie 2015; 107 Pt B:376-84. [PMID: 25457103 DOI: 10.1016/j.biochi.2014.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/12/2014] [Indexed: 01/06/2023]
Abstract
Four disintegrins were isolated from the venoms of the Central American viperid snakes Atropoides mexicanus (atropoimin), Bothrops asper (bothrasperin), Cerrophidion sasai (sasaimin), and Crotalus simus (simusmin). Purifications were performed by reverse-phase HPLC. The four disintegrins have biochemical characteristics, i.e. molecular mass and location of Cys, which allow their classification within the group of medium-size disintegrins. All of them present the canonical RGD sequence, which determines their interaction with integrins in cell membranes. The disintegrins inhibited ADP and collagen-induced human platelet aggregation, with similar IC50s in the nM range. In addition, disintegrins inhibited the adhesion of an endothelial cell line and a melanoma cell line to the extracellular matrix proteins type I collagen, laminin, fibronectin, and vitronectin, albeit showing variable ability to exert this activity. This study expands the inventory of this family of viperid venom proteins, and reports, for the first time, disintegrins from the venoms of species of the genera Atropoides and Cerrophidion.
Collapse
|
10
|
Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci 2015; 16:532-48. [PMID: 26031306 PMCID: PMC4997955 DOI: 10.2174/1389203716666150515125002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023]
Abstract
Integrins regulate diverse functions in cancer pathology and in tumor cell development and contribute to important processes such as cell shape, survival, proliferation, transcription, angiogenesis, migration, and invasion. A number of snake venom proteins have the ability to interact with integrins. Among these are the disintegrins, a family of small, non-enzymatic, and cysteine-rich proteins found in the venom of numerous snake families. The venom proteins may have a potential role in terms of novel therapeutic leads for cancer treatment. Disintegrin can target specific integrins and as such it is conceivable that they could interfere in important processes involved in carcinogenesis, tumor growth, invasion and migration. Herein we present a survey of studies involving the use of snake venom disintegrins for cancer detection and treatment. The aim of this review is to highlight the relationship of integrins with cancer and to present examples as to how certain disintegrins can detect and affect biological processes related to cancer. This in turn will illustrate the great potential of these molecules for cancer research. Furthermore, we also outline several new approaches being created to address problems commonly associated with the clinical application of peptide-based drugs such as instability, immunogenicity, and availability.
Collapse
Affiliation(s)
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, USA.
| | | |
Collapse
|
11
|
Jones G, Srivastava A. Understanding Lunasin’s biology and potential as a cancer therapeutic by utilizing Drosophila genetics. Exp Biol Med (Maywood) 2014; 239:519-28. [DOI: 10.1177/1535370214522180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soy contains many bioactive molecules known to elicit anticancer effects. One such peptide, Lunasin, has been shown to selectively act on newly transformed cells while having no cytotoxic effect on non-tumorigenic or established cancer cell lines. While this effect on in vitro systems is promising, Lunasin’s efficacy in an in vivo system is yet to be assessed. In this review, we discuss the state of knowledge with respect to Lunasin and then review some of the powerful genetic tools available in Drosophila. The availability of a sophisticated genetic tool box makes Drosophila an excellent genetic model well suited to studying the biology of Lunasin and its effect on tumor progression in an in vivo model organism.
Collapse
Affiliation(s)
- Gillian Jones
- Department of Biology and Biotechnology Center, Western Kentucky University, KY 42101, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, KY 42101, USA
| |
Collapse
|
12
|
Kwon I, Hong SY, Kim YD, Nam HS, Kang S, Yang SH, Heo JH. Thrombolytic effects of the snake venom disintegrin saxatilin determined by novel assessment methods: a FeCl3-induced thrombosis model in mice. PLoS One 2013; 8:e81165. [PMID: 24260554 PMCID: PMC3832438 DOI: 10.1371/journal.pone.0081165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 10/09/2013] [Indexed: 01/19/2023] Open
Abstract
Saxatilin, a novel disintegrin purified and cloned from the venom of the Korean snake Gloydius saxatilis, strongly inhibits activation and aggregation of platelets. Glycoprotein (GP) IIb/IIIa receptor antagonists can resolve thrombus, so saxatilin might also have thrombolytic effects. We investigated the thrombolytic effects of saxatilin in mice using a ferric chloride-induced carotid arterial thrombosis model. Thrombotic occlusion and thrombus resolution were evaluated quantitatively by measuring blood flow in the carotid artery with an ultrasonic flow meter and calculating the degree of flow restoration on a minute-by-minute basis; results were confirmed by histological examination. Saxatilin dissolved thrombi in a dose-dependent manner. Saxatilin at 5 mg/kg restored blood flow to baseline levels. As saxatilin dose increased, time to recanalization decreased. A bolus injection of 10% of a complete dose with continuous infusion of the remaining dose for 60 minutes resulted in effective recanalization without reocclusion. The thrombolytic effect of saxatilin was also demonstrated in vitro using platelet aggregometry by administering saxatilin in preformed thrombi. Bleeding complications were observed in 2 of 71 mice that received saxatilin. Fibrin/fibrinogen zymography and platelet aggregometry studies indicated that saxatilin does not have fibrinolytic activity, but exerted its action on platelets. Integrin-binding assays showed that saxatilin inhibited multiple integrins, specifically α2bβ3 (GP IIb/IIIa), α5β1, αvβ3, αvβ1, and αvβ5, which act on platelet adhesion/aggregation. Saxatilin inhibited multiple integrins by acting on platelets, and was safe and effective in resolving thrombi in mice.
Collapse
Affiliation(s)
- Il Kwon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Yu Hong
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul, Korea
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoo Kang
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Hee Yang
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
13
|
Li Q, Chow KL, Chau Y. Three-dimensional self-assembling peptide matrix enhances the formation of embryoid bodies and their neuronal differentiation. J Biomed Mater Res A 2013; 102:1991-2000. [DOI: 10.1002/jbm.a.34876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 04/10/2013] [Accepted: 07/09/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Qianqian Li
- Department of Chemical and Biomolecular Engineering; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong Republic of China
| | - King L. Chow
- Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong Republic of China
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong Republic of China
- State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong Republic of China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong Republic of China
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong Republic of China
| |
Collapse
|
14
|
Wang H, Chen X, Wang L, Chen W, Zhou M, Chen T, Shaw C. Cloning and characterisation of three novel disintegrin precursors from the venoms of three Atheris species: Atheris chlorechis, Atheris nitschei and Atheris squamigera. Toxicon 2013; 71:31-40. [PMID: 23732124 DOI: 10.1016/j.toxicon.2013.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
Snake venom constitutes one of the most complex mixtures of naturally-occurring toxic proteins/polypeptides and a large number of these possess very profound biological activities. Disintegrins, that are commonly found in viper venoms, are low molecular weight proteins that usually contain an -Arg-Gly-Asp- (-RGD-) motif that is known to be involved in cell adhesion ligand recognition, binding specifically to cell surface integrin receptors and also exhibiting platelet anti-aggregation activity. Here, we report for the first time, the successful cloning of three cDNAs encoding disintegrin precursors from lyophilised venom-derived libraries of Atheris chlorechis, Atheris nitschei and Atheris squamigera, respectively. All of these disintegrins belong to the short-coding class and all exhibit high degrees of structural identity, both in their amino acid sequences and in the arrangement of their functional domains. Mass spectrometric analyses of the HPLC-separated/in-gel digested venom proteins was performed to characterise the mature disintegrins as expressed in the venom proteome. Studies on both the structures and conserved sites within these disintegrins are of considerable theoretical interest in the field of biological evolution and in the development of new research tools or novel templates for drug design.
Collapse
Affiliation(s)
- He Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Antitumoral potential of Tunisian snake venoms secreted phospholipases A2. BIOMED RESEARCH INTERNATIONAL 2013; 2013:391389. [PMID: 23509718 PMCID: PMC3581298 DOI: 10.1155/2013/391389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022]
Abstract
Phospholipases type A2 (PLA2s) are the most abundant proteins found in Viperidae snake venom. They are quite fascinating from both a biological and structural point of view. Despite similarity in their structures and common catalytic properties, they exhibit a wide spectrum of pharmacological activities. Besides being hydrolases, secreted phospholipases A2 (sPLA2) are an important group of toxins, whose action at the molecular level is still a matter of debate. These proteins can display toxic effects by different mechanisms. In addition to neurotoxicity, myotoxicity, hemolytic activity, antibacterial, anticoagulant, and antiplatelet effects, some venom PLA2s show antitumor and antiangiogenic activities by mechanisms independent of their enzymatic activity. This paper aims to discuss original finding against anti-tumor and anti-angiogenic activities of sPLA2 isolated from Tunisian vipers: Cerastes cerastes and Macrovipera lebetina, representing new tools to target specific integrins, mainly, α5β1 and αv integrins.
Collapse
|
16
|
Dekan Z, Wang CIA, Andrews RK, Lewis RJ, Alewood PF. Conotoxin engineering: dual pharmacophoric noradrenaline transport inhibitor/integrin binding peptide with improved stability. Org Biomol Chem 2012; 10:5791-4. [PMID: 22581211 DOI: 10.1039/c2ob25133g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A dual-pharmacophoric peptide was engineered by grafting the integrin binding RGD motif between the C- and N-termini of a disulfide-rich noradrenaline transporter inhibiting χ-conotoxin resulting in a stable backbone cyclized peptide. The construct maintained two independent biological activities and showed increased plasma stability with no adverse effects observed following administration to rats, highlighting the potential value of pharmacophore grafting into constrained peptide scaffolds.
Collapse
Affiliation(s)
- Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Queensland, Australia
| | | | | | | | | |
Collapse
|
17
|
Youngs WJ, Knapp AR, Wagers PO, Tessier CA. Nanoparticle encapsulated silvercarbene complexes and their antimicrobial and anticancer properties: A perspective. Dalton Trans 2012; 41:327-36. [DOI: 10.1039/c1dt11100k] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Dia VP, Gonzalez de Mejia E. Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Mol Nutr Food Res 2011; 55:623-34. [PMID: 21462330 DOI: 10.1002/mnfr.201000419] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/19/2010] [Accepted: 10/28/2010] [Indexed: 01/21/2023]
Abstract
SCOPE Lunasin is an arginine-glycine-aspartic acid (RGD) cancer preventive peptide. The objective was to evaluate the potential of lunasin to induce apoptosis in human colon cancer cells and their oxaliplatin-resistant (OxR) variants, and its effect on the expression of human extracellular matrix and adhesion genes. METHODS AND RESULTS Various human colon cancer cell lines which underwent metastasis were evaluated in vitro using cell flow cytometry and fluorescence microscopy. Lunasin cytotoxicity to different colon cancer cells correlated with the expression of α(5) b(1) integrin, being most potent to KM12L4 cells (IC(50) = 13 μM). Lunasin arrested cell cycle at G2/M phase with concomitant increase in the expression of cyclin-dependent kinase inhibitors p21 and p27. Lunasin (5-25 μM) activated the apoptotic mitochondrial pathway as evidenced by changes in the expressions of Bcl-2, Bax, nuclear clusterin, cytochrome c and caspase-3 in KM12L4 and KM12L4-OxR. Lunasin increased the activity of initiator caspase-9 leading to the activation of caspase-3 and also modified the expression of human extracellular matrix and adhesion genes, downregulating integrin α(5), SELE, MMP10, integrin β(2) and COL6A1 by 5.01-, 6.53-, 7.71-, 8.19- and 10.10-fold, respectively, while upregulating COL12A1 by 11.61-fold. CONCLUSION Lunasin can be used in cases where resistance to chemotherapy developed.
Collapse
Affiliation(s)
- Vermont P Dia
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | |
Collapse
|
19
|
Rask TS, Hansen DA, Theander TG, Gorm Pedersen A, Lavstsen T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer. PLoS Comput Biol 2010; 6. [PMID: 20862303 PMCID: PMC2940729 DOI: 10.1371/journal.pcbi.1000933] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development of a PfEMP1 based vaccine mimicking natural acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven genomes. Analysis of domains in 399 different PfEMP1 sequences allowed identification of several novel domain classes, and a high degree of PfEMP1 domain compositional order, including conserved domain cassettes not always associated with the established group A–E division of PfEMP1. A novel iterative homology block (HB) detection method was applied, allowing identification of 628 conserved minimal PfEMP1 building blocks, describing on average 83% of a PfEMP1 sequence. Using the HBs, similarities between domain classes were determined, and Duffy binding-like (DBL) domain subclasses were found in many cases to be hybrids of major domain classes. Related to this, a recombination hotspot was uncovered between DBL subdomains S2 and S3. The VarDom server is introduced, from which information on domain classes and homology blocks can be retrieved, and new sequences can be classified. Several conserved sequence elements were found, including: (1) residues conserved in all DBL domains predicted to interact and hold together the three DBL subdomains, (2) potential integrin binding sites in DBLα domains, (3) an acylation motif conserved in group A var genes suggesting N-terminal N-myristoylation, (4) PfEMP1 inter-domain regions proposed to be elastic disordered structures, and (5) several conserved predicted phosphorylation sites. Ideally, this comprehensive categorization of PfEMP1 will provide a platform for future studies on var/PfEMP1 expression and function. About one million African children die from malaria every year. The severity of malaria infections in part depends on which type of the parasitic protein PfEMP1 is expressed on the surface of the infected red blood cells. Natural immunity to malaria is mediated through antibodies to PfEMP1. Therefore hopes for a malaria vaccine based on PfEMP1 proteins have been raised. However, the large sequence variation among PfEMP1 molecules has caused great difficulties in executing and interpreting studies on PfEMP1. Here, we present an extensive sequence analysis of all currently available PfEMP1 sequences and show that PfEMP1 variation is ordered and can be categorized at different levels. In this way, PfEMP1 belong to group A–E and are composed of up to four components, each component containing specific DBL or CIDR domain subclasses, which in some cases form entire conserved domain combinations. Finally, each PfEMP1 can be described in high detail as a combination of 628 homology blocks. This dissection of PfEMP1 diversity also enables predictions of several functional sequence motifs relevant to the fold of PfEMP1 proteins and their ability to bind human receptors. We therefore believe that this description of PfEMP1 diversity is necessary and helpful for the design and interpretation of future PfEMP1 studies.
Collapse
Affiliation(s)
- Thomas S. Rask
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
- * E-mail: (TSR); (TL)
| | - Daniel A. Hansen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
| | - Anders Gorm Pedersen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
- * E-mail: (TSR); (TL)
| |
Collapse
|
20
|
Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Lett 2010; 295:44-53. [DOI: 10.1016/j.canlet.2010.02.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 11/21/2022]
|
21
|
Wang J, Han X, Yang H, Lu L, Wu Y, Liu X, Guo R, Zhang Y, Zhang Y, Li Q. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie 2010; 92:1387-96. [PMID: 20650303 DOI: 10.1016/j.biochi.2010.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/01/2010] [Indexed: 11/19/2022]
Abstract
RGD (Arg-Gly-Asp) motif toxin proteins from snake venoms, saliva glands secretion of leech or tick have typical characteristics of inhibiting platelet aggregation, angiogenesis, and tumor growth. Here we report cloning and characterization of a novel RGD-toxin protein from the buccal gland of Lampetra japonica. In an attempt to study the activities of anticoagulant in the buccal gland secretion of L. japonica, we established buccal gland cDNA library and identified a gene encoding a predicted protein of 118 amino acids with 3 RGD motifs. The predicted protein was named Lj-RGD3. We generated the cDNA of Lj-RGD3 and obtained the recombinant protein rLj-RGD3. The polyclonal antibodies against rLj-RGD3 recognized the native Lj-RGD3 protein in buccal gland secretion in Western blot analyses. The biological function studies reveal that rLj-RGD3 inhibited human platelet aggregation in a dose-dependent manner with IC(50) value at 5.277 μM. In addition, rLj-RGD3 repressed bFGF-induced angiogenesis in the chick chorioallantoic membrane model. rLj-RGD3 also inhibited the adhesion of ECV304 cells to vitronectin. Furthermore, rLj-RGD3 induced apoptosis and significantly inhibited proliferation, migration, and invasion evoked by bFGF in ECV304 cells. Taken together, these results suggested that rLj-RGD3 is a novel RGD-toxin protein possessing typical functions of the RGD-toxin protein.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Biological Sciences, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
IMPORTANCE OF THE FIELD Recently, there has been substantial progress in the development of integrin targeted pharmaceuticals and drug delivery systems. Integrin is an important member in the cell adhesion molecule family, which is involved in regulation of complex biological conditions, from keeping normal physiological activities to causing cellular dysfunction in diseased cells. Hence, it is timely to summarize the recent developments in integrin targeted drug and gene delivery systems to understand better their advantages and limitations. AREAS COVERED IN THIS REVIEW In this review, advances in the discovery and clinical trials of these integrin antagonists against different integrin subunits are summarized and discussed. Besides using integrin inhibitor as a single therapeutic agent, integrin antagonists that were conjugated to cytotoxic drugs by synthetic chemistry or coupled to biomacromolecules by either DNA recombination technology or fusion protein technology for integrin targeted therapy have been explored. Furthermore, nanoparticles with integrin targeting ligands for both drug and gene delivery, typically for antiangiogenesis and anticancer therapy, are highlighted and evaluated. WHAT THE READER WILL GAIN This review sheds light on the future development of integrin targeted drug and/or gene delivery systems. TAKE HOME MESSAGE Although thus far there are still limitations, integrin targeted delivery systems have already shown their potential as important pharmaceuticals in the near future.
Collapse
Affiliation(s)
- Zhe Wang
- National University of Singapore, Department of Pharmacy, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | |
Collapse
|
23
|
Hnasko R, Bruederle CE. Inoculation of scrapie with the self-assembling RADA-peptide disrupts prion accumulation and extends hamster survival. PLoS One 2009; 4:e4440. [PMID: 19212437 PMCID: PMC2636877 DOI: 10.1371/journal.pone.0004440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/28/2008] [Indexed: 11/19/2022] Open
Abstract
Intracerebral inoculation of 263K Scrapie brain homogenate (PrPsc) with a self-assembling RADA-peptide (RADA) significantly delayed disease onset and increased hamster survival. Time of survival was dependent on the dose of RADA and pre-incubation with PrPsc prior to inoculation. RADA treatment resulted in the absence of detectable PrPsc at 40 d followed by an increased rate of PrPsc accumulation at 75 d up to sacrifice. In all PrPsc inoculated animals, clinical symptoms were observed approximately 10 d prior to sacrifice and brains showed spongiform degeneration with Congo red positive plaques. A time-dependent increase in reactive gliosis was observed in both groups with more GFAP detected in RADA treated animals at all time points. The PrP protein showed dose-dependent binding to RADA and this binding was competitively inhibited by Congo Red. We conclude that RADA disrupts the efficacy of prion transmission by altering the rate of PrPsc accumulation. This is the first demonstration that a self-assembling biomolecular peptide can interact with PrPsc, disrupt the course of Scrapie disease process, and extend survival.
Collapse
Affiliation(s)
- Robert Hnasko
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Pacific West Area (PWA), Western Regional Research Center, Foodborne Contaminants Research Unit (WRRC-FCR), Albany, CA, USA.
| | | |
Collapse
|
24
|
Luo J, Zhang H, Xiao W, Kumaresan PR, Shi C, Pan CX, Aina OH, Lam KS. Rainbow beads: a color coding method to facilitate high-throughput screening and optimization of one-bead one-compound combinatorial libraries. ACTA ACUST UNITED AC 2008; 10:599-604. [PMID: 18558750 DOI: 10.1021/cc8000663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a new color-encoding method that facilitates high-throughput screening of one-bead one-compound (OBOC) combinatorial libraries. Polymer beads displaying chemical compounds or families of compounds are stained with oil-based organic dyes that are used as coding tags. The color dyes do not affect cell binding to the compounds displayed on the surface of the beads. We have applied such rainbow beads in a multiplex manner to discover and profile ligands against cell surface receptors. In the first application, a series of OBOC libraries with different scaffolds or motifs are each color-coded; small samples of each library are then combined and screened concurrently against live cells for cell attachment. Preferred libraries can be rapidly identified and selected for subsequent large-scale screenings for cell surface binding ligands. In a second application, beads with a series of peptide analogues (e.g., alanine scan) are color-coded, combined, and tested for binding against a specific cell line in a single-tissue culture well; the critical residues required for binding can be easily determined. In a third application, ligands reacting against a series of integrins are color-coded and used as a readily applied research tool to determine the integrin profile of any cell type. One major advantage of this straightforward and yet powerful method is that only an ordinary inverted microscope is needed for the analysis, instead of sophisticated (and expensive) fluorescent microscopes or flow cytometers.
Collapse
Affiliation(s)
- Juntao Luo
- Division of Hematology & Oncology, Department of Internal Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kadaveru K, Vyas J, Schiller MR. Viral infection and human disease--insights from minimotifs. FRONT BIOSCI-LANDMRK 2008; 13:6455-71. [PMID: 18508672 DOI: 10.2741/3166] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Short functional peptide motifs cooperate in many molecular functions including protein interactions, protein trafficking, and posttranslational modifications. Viruses exploit these motifs as a principal mechanism for hijacking cells and many motifs are necessary for the viral life-cycle. A virus can accommodate many short motifs in its small genome size providing a plethora of ways for the virus to acquire host molecular machinery. Host enzymes that act on motifs such as kinases, proteases, and lipidation enzymes, as well as protein interaction domains, are commonly mutated in human disease, suggesting that the short peptide motif targets of these enzymes may also be mutated in disease; however, this is not observed. How can we explain why viruses have evolved to be so dependent on motifs, yet these motifs, in general do not seem to be as necessary for human viability? We propose that short motifs are used at the system level. This system architecture allows viruses to exploit a motif, whereas the viability of the host is not affected by mutation of a single motif.
Collapse
Affiliation(s)
- Krishna Kadaveru
- University of Connecticut Health Center, Department of Molecular, Microbial, and Structural Biology, Biological Systems Modeling Group, 263 Farmington Ave., Farmington, CT, 06030-3305, USA
| | | | | |
Collapse
|
26
|
Kratz F, Müller I, Ryppa C, Warnecke A. Prodrug Strategies in Anticancer Chemotherapy. ChemMedChem 2008; 3:20-53. [DOI: 10.1002/cmdc.200700159] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 2007; 15:500-7. [DOI: 10.1016/j.tim.2007.10.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/13/2007] [Accepted: 10/19/2007] [Indexed: 01/23/2023]
|