1
|
Li W, Yang Y, Wang J, Ge T, Wan S, Gui L, Tao Y, Song P, Yang L, Ge F, Zhang W. Establishment of bone-targeted nano-platform and the study of its combination with 2-deoxy-d-glucose enhanced photodynamic therapy to inhibit bone metastasis. J Mech Behav Biomed Mater 2024; 150:106306. [PMID: 38091923 DOI: 10.1016/j.jmbbm.2023.106306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024]
Abstract
At present, simple anti-tumor drugs are ineffective at targeting bone tissue and are not purposed to treat patients with bone metastasis. In this study, zoledronic acid (ZOL) demonstrated excellent bone-targeting properties as a bone-targeting ligand. The metal-organic framework (MOF) known as ZIF-90 was modified with ZOL to construct a bone-targeting-based drug delivery system. Chlorin e6 (Ce6) was loaded in the bone-targeted drug delivery system and combined with 2-deoxy-D-glucose (2-DG), which successfully treated bone tumors when enhanced photodynamic therapy was applied. The Ce6@ZIF-PEG-ZOL (Ce6@ZPZ) nanoparticles were observed to have uniform morphology, a particle size of approximately 210 nm, and a potential of approximately -30.4 mV. The results of the bone-targeting experiments showed that Ce6@ZPZ exhibited a superior bone-targeted effect when compared to Ce6@ZIF-90-PEG. The Ce6@ZPZ solution was subjected to 660 nm irradiation and the resulting production of reactive oxygen species increased over time, which could be further increased when Ce6@ZPZ was used in combination with 2-DG. Their combination had a stronger inhibitory capacity against tumor cells than either 2-DG or Ce6@ZPZ alone, increasing the rate of tumor cell apoptosis. The apoptosis rate caused by HGC-27 was 61.56% when 2-DG was combined with Ce6@ZPZ. In vivo results also showed that Ce6@ZPZ combined with 2-DG maximally inhibited tumor growth and prolonged mice survival compared to the other experimental groups. Therefore, the combination of PDT and glycolytic inhibitors serves as a potential option for the treatment of cancer.
Collapse
Affiliation(s)
- Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Yongqi Yang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ting Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Shuixia Wan
- Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, 241002, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Liangjun Yang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
2
|
Wan D, Liu Y, Guo X, Zhang J, Pan J. Intelligent Drug Delivery by Peptide-Based Dual-Function Micelles. Int J Mol Sci 2022; 23:ijms23179698. [PMID: 36077102 PMCID: PMC9456463 DOI: 10.3390/ijms23179698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
To endow the polymeric prodrug with smart properties through a safe and simple method, matrix metalloproteinase (MMPs) responsive peptide GPLGVRGDG was introduced into the block copolymer to prepare TPGS3350-GPLGVRGDG-DOX&DOX micelles, where TPGS3350 is D-α-tocopheryl polyethylene glycol 3350 succinate. During the doxorubicin delivery, the cleavage of the peptide chain triggers de-PEGylation, and the remaining VRGDG sequence was retained on the surface of the micelles, which can act as a ligand to facilitate cell uptake. Moreover, the cytotoxicity of TPGS3350-GPLGVRGDG-DOX&DOX micelles against 4T1 cells was significantly improved, compared with TPGS3350-GPLGVRG-DOX&DOX micelles and TPGS3350-DOX&DOX micelles. During in vivo studies, TPGS3350-GPLGVRGDG-DOX&DOX micelles exhibited good anticancer efficacy with long circulation in the body and more efficient accumulation at the tumor site. Therefore, TPGS3350-GPLGVRGDG-DOX&DOX micelles have improved antitumor activity and reduced toxic side effects. This work opens new potential for exploring the strategy of drug delivery in clinical applications.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yujun Liu
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xinhao Guo
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jianxin Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China
- Correspondence: (J.Z.); (J.P.)
| | - Jie Pan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- Correspondence: (J.Z.); (J.P.)
| |
Collapse
|
3
|
Misra C, Raza K, Goyal AK. The Scope and Challenges of Vesicular Carrier-Mediated Delivery of Docetaxel for the Management of Cancer. Curr Drug Deliv 2020; 17:874-884. [DOI: 10.2174/1567201817666200623121633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 01/20/2023]
Abstract
Since the discovery of liposomes, these vesicular carriers have attracted the researchers from
all the vistas of the biomedical domain to explore and harness the potential benefits. Many novel drug
delivery-based products have been approved by the United States Food and Drug Administration (USFDA)
and other federal agencies of the globe, out of which the major share is of the liposomes and
related carriers. Taking cognizance of it, the US-FDA has recently come up with ‘<i>Guidance for Industry</i>
on <i>Liposome Drug Products</i>’. In cancer management, chemotherapy is the most frequently employed
approach which is still not devoid of untoward challenges and side effects. In chemotherapy,
the taxanes, esp. Docetaxel shares a huge percentage in the prescription pattern. Also, the first marketed
liposomal product was encasing one drug of this category. Henceforth, the present review will
highlight the advances in the delivery of taxanes, in particular docetaxel, with an emphasis on the need,
success and pharmacoeconomic aspects of such vesicular-carrier mediated docetaxel delivery.
Collapse
Affiliation(s)
- Charu Misra
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Dist. Ajmer, Rajasthan-305 817, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Dist. Ajmer, Rajasthan-305 817, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Dist. Ajmer, Rajasthan-305 817, India
| |
Collapse
|
4
|
Varshosaz J, Hassanzadeh F, Hashemi-Beni B, Minaiyan M, Enteshari S. Tissue Distribution and Systemic Toxicity Evaluation of Raloxifene Targeted Polymeric Micelles of Poly (Styrene-Maleic Acid)-Poly (Amide- Ether-Ester-Imide)-Poly (Ethylene Glycol) Loaded With Docetaxel in Breast Cancer Bearing Mice. Recent Pat Anticancer Drug Discov 2019; 14:280-291. [PMID: 31538904 DOI: 10.2174/1574892814666190919163731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Due to the low water solubility of Docetaxel (DTX), it is formulated with ethanol and Tween 80 with lots of side effects. For this reason, special attention has been paid to formulate it in new drug nano-carriers. OBJECTIVE The goal of this study was to evaluate the safety, antitumor activity and tissue distribution of the novel synthesized Raloxifene (RA) targeted polymeric micelles. METHODS DTX-loaded RA-targeted polymeric micelles composed of poly(styrene-maleic acid)- poly(amide-ether-ester-imide)-poly(ethylene glycol) (SMA-PAEE-PEG) were prepared and their antitumor activity was studied in MC4-L2 tumor-bearing mice compared with non-targeted micelles and free DTX. Safety of the micelles was studied by Hematoxylin and Eosin (H&E) staining of tumors and major organs of the mice. The drug accumulation in the tumor and major organs was measured by HPLC method. RESULTS The results showed better tumor growth inhibition and increased survival of mice treated with DTX-loaded in targeted micelles compared to the non-targeted micelles and free DTX. Histopathological studies, H&E staining of tumors and immunohistochemical examination showed the potential of DTX-loaded RA-targeted micelles to inhibit tumor cells proliferation. The higher accumulation of the DTX in the tumor tissue after injection of the micelles compared to the free DTX may indicate the higher uptake of the targeted micelles by the G-Protein-Coupled Estrogen Receptors (GPER). CONCLUSION The results indicate that RA-conjugated polymeric micelles may be a strong and effective drug delivery system for DTX therapy and uptake of the drug into tumor cells, and overcome the disadvantages and side effects of conventional DTX.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Pharmaceutical Chemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemi-Beni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeedeh Enteshari
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Ruiz-Gatón L, Espuelas S, Huarte J, Larrañeta E, Martin-Arbella N, Irache JM. Nanoparticles from Gantrez® AN-poly(ethylene glycol) conjugates as carriers for oral delivery of docetaxel. Int J Pharm 2019; 571:118699. [PMID: 31536764 DOI: 10.1016/j.ijpharm.2019.118699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
The oral delivery of docetaxel (DTX) is challenging due to a low bioavailability, related to an important pre-systemic metabolism. With the aim of improving the bioavailability of this cytotoxic agent, nanoparticles from conjugates based on the copolymer of methyl vinyl ether and maleic anhydride (poly(anhydride)) and two different types of PEG, PEG2000 (PEG2) or methoxyPEG2000 (mPEG2), were evaluated. Nanoparticles, with a DTX loading close to 10%, were prepared by desolvation and stabilized with calcium, before purification and lyophilization. For the pharmacokinetic study, nanoparticles were orally administered to mice at a single dose of 30 mg/kg. The plasma levels of DTX were high, prolonged in time and, importantly, quantified within the therapeutic window. The relative oral bioavailability was calculated to be up to 56% when DTX was loaded in nanoparticles from poly(anhydride)-mPEG2000 conjugate (DTX-NP-mPEG2). Finally, a comparative toxicity study between equitoxic doses of free iv DTX and oral DTX-NP-mPEG2 was conducted in mice. Animals orally treated with DTX-loaded nanoparticles displayed less severe signs of hypersensitivity reactions, peripheral neurotoxicity, myelosuppression and hepatotoxicity than free iv docetaxel. In summary, poly(anhydride)-PEG conjugate nanoparticles appears to be adequate carries for the oral delivery of docetaxel.
Collapse
Affiliation(s)
- Luisa Ruiz-Gatón
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Socorro Espuelas
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Judit Huarte
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Eneko Larrañeta
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Nekane Martin-Arbella
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain.
| |
Collapse
|
6
|
Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, Memari F, Miri SR, Rad MR, Marmari V. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine 2019; 14:3111-3128. [PMID: 31118626 PMCID: PMC6504672 DOI: 10.2147/ijn.s200253] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the most complex diseases that has resulted in multiple genetic disorders and cellular abnormalities. Globally, cancer is the most common health concern disease that is affecting human beings. Great efforts have been made over the past decades in biology with the aim of searching novel and more efficient tools in therapy. Thus, small interfering RNAs (siRNAs) have been considered one of the most noteworthy developments which are able to regulate gene expression following a process known as RNA interference (RNAi). RNAi is a post-transcriptional mechanism that involves the inhibition of gene expression through promoting cleavage on a specific area of a target messenger RNA (mRNA). This technology has shown promising therapeutic results for a good number of diseases, especially in cancer. However, siRNA therapeutics have to face important drawbacks in therapy including stability and successful siRNA delivery in vivo. In this regard, the development of effective siRNA delivery systems has helped addressing these issues by opening novel therapeutic windows which have allowed to build up important advances in Nanomedicine. In this review, we discuss the progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment.
Collapse
Affiliation(s)
| | - Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of GI Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Fereidoon Memari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | | | - Vahid Marmari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
7
|
Cheng K, Sun S, Gong X. Preparation, characterization, and antiproliferative activities of biotin-decorated docetaxel-loaded bovine serum albumin nanoparticles. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000217295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Bayrami S, Esmaili Z, SeyedAlinaghi S, Jamali Moghadam SR, Bayrami S, Akbari Javar H, Rafiee Tehrani M, Dorkoosh FA. Fabrication of long-acting insulin formulation based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles: preparation, optimization, characterization, and in vitro evaluation. Pharm Dev Technol 2018; 24:176-188. [PMID: 29557733 DOI: 10.1080/10837450.2018.1452936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaili
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepide Bayrami
- Faculty of Bioscience, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wei Y, Ma L, Zhang L, Xu X. Noncovalent interaction-assisted drug delivery system with highly efficient uptake and release of paclitaxel for anticancer therapy. Int J Nanomedicine 2017; 12:7039-7051. [PMID: 29026300 PMCID: PMC5626417 DOI: 10.2147/ijn.s144322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
An effective drug delivery system requires efficient drug uptake and release inside cancer cells. Here, we report a novel drug delivery system, in which paclitaxel (PTX) interacts with a novel cell penetrating peptide (CPP) through noncovalent interaction designed based on molecular simulations. This CPP/PTX complex confers high efficiency in delivering PTX into cancer cells not by endocytosis but by an energy-independent pathway. Once inside cells, the noncovalent interaction between PTX and the CPP may allow fast release of PTX within cells due to the direct translocation of CPP/PTX. This drug delivery system exhibits strong capacity for inhibition of tumor growth and offers a new avenue for the development of advanced drug delivery systems for anticancer therapy.
Collapse
Affiliation(s)
- Yuping Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing
| | - Liang Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| | - Xia Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| |
Collapse
|
10
|
Wang H, Chen L, Sun X, Fu A. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery. J Drug Target 2017; 25:724-733. [PMID: 28447892 DOI: 10.1080/1061186x.2017.1323908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.
Collapse
Affiliation(s)
- Huabin Wang
- a School of Pharmaceutical Sciences , Southwest University , Chongqing , China.,b Chongqing Key Laboratory of Multi-Scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing , China
| | - Ligang Chen
- a School of Pharmaceutical Sciences , Southwest University , Chongqing , China.,b Chongqing Key Laboratory of Multi-Scale Manufacturing Technology , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing , China
| | - Xianchao Sun
- a School of Pharmaceutical Sciences , Southwest University , Chongqing , China
| | - Ailing Fu
- a School of Pharmaceutical Sciences , Southwest University , Chongqing , China
| |
Collapse
|
11
|
Fan Y, Chen C, Huang Y, Zhang F, Lin G. Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids Surf B Biointerfaces 2017; 151:19-25. [DOI: 10.1016/j.colsurfb.2016.11.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 01/03/2023]
|
12
|
Gao J, Li W, Guo Y, Feng SS. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells. Nanomedicine (Lond) 2016; 11:3261-3282. [PMID: 27854161 DOI: 10.2217/nnm-2016-0261] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical Sciences, School of Pharmacy, the Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Si-Shen Feng
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China.,Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-11, 4 Engineering Drive 4, Singapore 117576, Singapore.,Suzhou NanoStar Biopharm Inc. Ltd, BioBay, Bld B2, Unit 604, 218 Xing-Hu Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
13
|
Sonali, Singh RP, Singh N, Sharma G, Vijayakumar MR, Koch B, Singh S, Singh U, Dash D, Pandey BL, Muthu MS. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv 2016; 23:1261-71. [PMID: 26961144 DOI: 10.3109/10717544.2016.1162878] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer. The theranostic liposomes with and without transferrin decoration were prepared and characterized for their particle size, polydispersity, morphology, drug encapsulation efficiency, in-vitro release study and brain theranostics. The particle sizes of the non-targeted and targeted theranostic liposomes were found below 200 nm. Nearly, 71% of drug encapsulation efficiency was achieved with liposomes. The drug release from transferrin conjugated theranostic liposomes was sustained for more than 72 h with 70% of drug release. The in-vivo results indicated that transferrin receptor-targeted theranostic liposomes could be a promising carrier for brain theranostics due to nano-sized delivery and its permeability which provided an improved and prolonged brain targeting of docetaxel and QDs in comparison to the non-targeted preparations.
Collapse
Affiliation(s)
- Sonali
- a Department of Pharmacology
| | | | - Nitesh Singh
- b Department of Biochemistry , Institute of Medical Sciences, Banaras Hindu University , Varanasi, Uttar Pradesh , India
| | - Gunjan Sharma
- c Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh , India
| | - Mahalingam R Vijayakumar
- d Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi, Uttar Pradesh , India , and
| | - Biplob Koch
- c Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh , India
| | - Sanjay Singh
- d Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi, Uttar Pradesh , India , and
| | - Usha Singh
- e Department of Pathology , Institute of Medical Sciences, Banaras Hindu University , Varanasi, Uttar Pradesh , India
| | - Debabrata Dash
- b Department of Biochemistry , Institute of Medical Sciences, Banaras Hindu University , Varanasi, Uttar Pradesh , India
| | | | - Madaswamy S Muthu
- a Department of Pharmacology .,d Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi, Uttar Pradesh , India , and
| |
Collapse
|
14
|
Alibolandi M, Ramezani M, Abnous K, Hadizadeh F. AS1411 Aptamer-Decorated Biodegradable Polyethylene Glycol-Poly(lactic-co-glycolic acid) Nanopolymersomes for the Targeted Delivery of Gemcitabine to Non-Small Cell Lung Cancer In Vitro. J Pharm Sci 2016; 105:1741-1750. [PMID: 27039356 DOI: 10.1016/j.xphs.2016.02.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/24/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Molecularly targeted drug delivery systems represent a novel therapeutic strategy in the treatment of different cancers. In the present study, we have developed gemcitabine (GEM)-loaded AS1411 aptamer surface-decorated polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersome (Apt-GEM-NP) to target nucleolin-overexpressing non-small cell lung cancer (NSCLC; A549). The prepared Apt-GEM-NP showed average particle size of 128 ± 5.23 nm and spherical morphology with encapsulation efficiency and loading content of 95.32 ± 2.37% and 8.61 ± 0.27%, respectively. Apt-GEM-NP exhibited a controlled release pattern. A sustained release of drug in physiological conditions will greatly improve the chemotherapeutic efficiency of a system. Enhanced cellular uptake and the cytotoxicity of aptamer-conjugated nanoparticles (NPs) in A549 cancer cells obviously verified nucleolin-mediated receptor-based active targeting. Nucleolin-mediated internalization of the targeted polymeric NP was further confirmed by flow cytometry and fluorescence microscopy. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay clearly showed the enhanced cell proliferation inhibitory effect of AS1411-conjugated NP on account of the selective delivery of GEM to the nucleolin-overexpressing cancer cells. Our results showed that AS1411 aptamer conjugation on the surface of NP could be a potential treatment strategy for A549 as a nucleolin-overexpressing cell line. This suggests that AS1411-GEM-NPs could be potentially used for the treatment of NSCLC.
Collapse
Affiliation(s)
- Mona Alibolandi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Sonali, Agrawal P, Singh RP, Rajesh CV, Singh S, Vijayakumar MR, Pandey BL, Muthu MS. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Deliv 2015; 23:1788-98. [PMID: 26431064 DOI: 10.3109/10717544.2015.1094681] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effective treatment of brain cancer is hindered by the poor transport across the blood-brain barrier (BBB) and the low penetration across the blood-tumor barrier (BTB). The objective of this work was to formulate transferrin-conjugated docetaxel (DTX)-loaded d-alpha-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) micelles for targeted brain cancer therapy. The micelles with and without transferrin conjugation were prepared by the solvent casting method and characterized for their particle size, polydispersity, drug encapsulation efficiency, drug loading, in vitro release study and brain distribution study. Particle sizes of prepared micelles were determined at 25 °C by dynamic light scattering technique. The external surface morphology was determined by transmission electron microscopy analysis and atomic force microscopy. The encapsulation efficiency was determined by spectrophotometery. In vitro release studies of micelles and control formulations were carried out by dialysis bag diffusion method. The particle sizes of the non-targeted and targeted micelles were <20 nm. About 85% of drug encapsulation efficiency was achieved with micelles. The drug release from transferrin-conjugated micelles was sustained for >24 h with 50% of drug release. The in vivo results indicated that transferrin-targeted TPGS micelles could be a promising carrier for brain targeting due to nano-sized drug delivery, solubility enhancement and permeability which provided an improved and prolonged brain targeting of DTX in comparison to the non-targeted micelles and marketed formulation.
Collapse
Affiliation(s)
- Sonali
- a Department of Pharmacology , Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh , India
| | - Poornima Agrawal
- a Department of Pharmacology , Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh , India
| | - Rahul Pratap Singh
- a Department of Pharmacology , Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh , India
| | - Chellappa V Rajesh
- b Department of Pharmaceutics , PSG College of Pharmacy , Coimbatore , Tamil Nadu , India , and
| | - Sanjay Singh
- c Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi , Uttar Pradesh , India
| | - Mahalingam R Vijayakumar
- c Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi , Uttar Pradesh , India
| | - Bajrangprasad L Pandey
- a Department of Pharmacology , Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh , India
| | - Madaswamy Sona Muthu
- a Department of Pharmacology , Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh , India
| |
Collapse
|
16
|
Alibolandi M, Sadeghi F, Abnous K, Atyabi F, Ramezani M, Hadizadeh F. The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model. Eur J Pharm Biopharm 2015; 94:521-31. [PMID: 26170161 DOI: 10.1016/j.ejpb.2015.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
Vesicles of mPEG-PLGA block copolymer were developed to deliver a therapeutic quantity of doxorubicin (DOX) for breast cancer treatment. The DOX-loaded nanoparticles (NPs) were prepared by the pH-gradient method and then evaluated in terms of morphology, size, DOX encapsulation efficiency and in vitro drug release mechanism. The PEG-PLGA nanopolymersomes were 134±1.2nm spherical NPs with a narrow size distribution (PDI=0.121). DOX was entrapped in mPEG-PLGA nanopolymersomes with an encapsulation efficiency and a loading content of 91.25±4.27% and 7.3±0.34%, respectively. The DOX-loaded nanopolymersomes were found to be stable, demonstrating no significant change in particle size and encapsulation efficiency (EE%) during the 6-month storage period of the lyophilized powder at 4°C. The nanopolymersomes sustained the release of DOX. In cytotoxicity studies of 4T1 cell line samples, free DOX showed a higher cytotoxicity (IC50=1.76μg/mL) than did DOX-loaded nanopolymersomes (15.82μg/mL) in vitro. In order to evaluate the antitumor efficacy and biodistribution of DOX-loaded nanopolymersomes, murine breast tumors were established on the BALB/c mice, and in vivo studies were performed. The obtained results demonstrated that the prepared drug delivery system was highly effective against a murine breast cancer tumor model and successfully accumulated in the tumor site through an enhanced permeation and retention mechanism. In vivo studies also proved that DOX-loaded nanopolymersomes are stable in blood circulation and could be considered a promising and effective DOX delivery system for breast cancer treatment.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/therapeutic use
- Antibiotics, Antineoplastic/toxicity
- Cell Line, Tumor
- Cell Survival/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacokinetics
- Doxorubicin/therapeutic use
- Doxorubicin/toxicity
- Drug Carriers/chemical synthesis
- Drug Carriers/chemistry
- Drug Compounding
- Drug Stability
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Nanoparticles/chemistry
- Particle Size
- Polyesters/chemical synthesis
- Polyesters/chemistry
- Polyethylene Glycols/chemical synthesis
- Polyethylene Glycols/chemistry
- Surface Properties
Collapse
Affiliation(s)
- Mona Alibolandi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Atyabi
- Nanothechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanothechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Muthu MS, Mei L, Feng SS. Nanotheranostics: advanced nanomedicine for the integration of diagnosis and therapy. Nanomedicine (Lond) 2015; 9:1277-80. [PMID: 25204816 DOI: 10.2217/nnm.14.83] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Madaswamy S Muthu
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
18
|
In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J Control Release 2015; 209:88-100. [PMID: 25912964 DOI: 10.1016/j.jconrel.2015.04.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Abstract
Targeted, disease-specific delivery of therapeutic nanoparticles shows wonderful promise for transmitting highly cytotoxic anti-cancer agents. Using the reaction of non-small cell lung cancer (SK-MES-1 and A549 cell lines) as representative of other cancer types', the present study examines the effects of EpCAM-fluoropyrimidine RNA aptamer-decorated, DOX-loaded, PLGA-b-PEG nanopolymersomes that bond specifically to the extracellular domain of epithelial-cell adhesion molecules. Results demonstrate that EpCAM aptamer-conjugated DOX-NPs (Apt-DOX-NP) significantly enhance cellular nanoparticle uptake in SK-MES-1 and A549 cell lines and increase the cytotoxicity of the DOX payload as compared with non-targeted DOX-NP (P<0.05). Additionally, Apt-DOX-NP exhibits greater tumor inhibition in nude mice bearing SK-MES-1 non-small cell lung-cancer xenografts and reduces toxicity, as determined by loss of body weight, cardiac histopathology and animal survival rate in vivo. After a single intravenous injection of Apt-DOX-NP and DOX-NPs, tumor volume decreased 60.9% and 31.4%, respectively, in SK-MES-1-xenograft nude mice compared with members of a saline-injected control group. This study proves the potential utility of Apt-DOX-NP for therapeutic application in non-small cell lung cancer. In the future, EpCAM-targeted therapies might play a key role in treating non-small cell lung cancer, the most common type of lung cancer.
Collapse
|
19
|
Li Z, Qiu L, Chen Q, Hao T, Qiao M, Zhao H, Zhang J, Hu H, Zhao X, Chen D, Mei L. pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater 2015; 11:137-50. [PMID: 25242647 DOI: 10.1016/j.actbio.2014.09.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 08/29/2014] [Accepted: 09/11/2014] [Indexed: 11/26/2022]
Abstract
A novel pH-sensitive polymer, poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate (PLH-PLGA-TPGS), was synthesized to design a biocompatible drug delivery system for cancer chemotherapy. The structure of the PLH-PLGA-TPGS copolymer was confirmed by (1)H-NMR, FTIR and GPC. The apparent pKa of the PLH-PLGA-TPGS copolymer was calculated to be 6.33 according to the acid-base titration curve. The doxorubicin (DOX)-loaded nanoparticles (PLH-PLGA-TPGS nanoparticles and PLGA-TPGS nanoparticles) and corresponding blank nanoparticles were prepared by a co-solvent evaporation method. The blank PLH-PLGA-TPGS nanoparticles showed an acidic pH-induced increase in particle size. The DOX-loaded nanoparticles based on PLH-PLGA-TPGS showed a pH-triggered drug-release behavior under acidic conditions. The results of in vitro cytotoxicity experiment on MCF-7 and MCF-7/ADR cells showed that the DOX-loaded PLH-PLGA-TPGS nanoparticles resulted in lower cell viability versus the PLGA-TPGS nanoparticles and free DOX solution. Confocal laser scanning microscopy images showed that DOX-loaded PLH-PLGA-TPGS nanoparticles were internalized by MCF-7/ADR cells after 1 and 4h incubation and most of them accumulated in lysosomes to accelerate DOX release under acidic conditions. In summary, the PLH-PLGA-TPGS nanoparticles have great potential to be used as carriers for anti-tumor drug delivery.
Collapse
|
20
|
Alibolandi M, Ramezani M, Sadeghi F, Abnous K, Hadizadeh F. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm 2014; 479:241-51. [PMID: 25529433 DOI: 10.1016/j.ijpharm.2014.12.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/11/2023]
Abstract
Targeted delivery of anti-cancer agents exclusively to tumor cells introduces an attractive strategy because it increases the therapeutic index compared with untargeted drugs. Aptamer conjugated nanoparticles that can specifically bind to the proteins on a tumor cell surface are capable nanoscale delivery systems for enhancing cellular uptake of chemotherapeutic agents. The epithelial cell adhesion molecule (EpCAM) as a cancer stem cell marker emerges as a versatile target for aptamer-based cancer therapy due to its high expression level in various adenocarcinoma cell lines and its very low expression level in normal cells. We developed EpCAM-targeted PEG-PLGA nanopolymersomes by covalently coupling the EpCAM aptamer to the surface of nanopolymersomes loaded with the anticancer agent doxorubicin via pH gradient method. The results indicated that doxorubicin was entrapped in PEG-PLGA nanopolymersomes with encapsulation efficiency and loading content of 91.25±4.27% and 7.3±0.34%, respectively. Over a period of 5 days, up to 8% of the DOX was released through this system. The doxorubicin-loaded aptamer conjugated nanopolymersomes exhibited efficient cell uptake and internalization, and were significantly more cytotoxic (P<0.01) toward EpCAM-positive tumor cells (MCF-7) than non-targeted nanopolymersomes. Our data suggest that EpCAM-targeted nanopolymersomes will lead to an improved therapeutic index of doxorubicin to EpCAM positive cancer cells.
Collapse
Affiliation(s)
- Mona Alibolandi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanothechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Dong CL, Webb WR, Peng Q, Tang JZ, Forsyth NR, Chen GQ, El Haj AJ. Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model. J Biomed Mater Res A 2014; 103:282-8. [PMID: 24610890 DOI: 10.1002/jbm.a.35149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/26/2013] [Accepted: 02/18/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Cui-Ling Dong
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University; Stoke-on-Trent ST4 7QB United Kingdom
| | - William R. Webb
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University; Stoke-on-Trent ST4 7QB United Kingdom
| | - Qiang Peng
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu 610041 China
| | - James Z. Tang
- Department of Pharmacy; School of Applied Sciences, University of Wolverhampton; Wolverhampton WV1 1SB United Kingdom
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University; Stoke-on-Trent ST4 7QB United Kingdom
| | - Guo-Qiang Chen
- MOE Key Lab of Bio-Informatics; Tsinghua-Peking University Joint Center for Life Sciences, School of Life Science, Tsinghua University; Beijing 100084 China
| | - Alicia J. El Haj
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University; Stoke-on-Trent ST4 7QB United Kingdom
| |
Collapse
|
22
|
Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Am J Cancer Res 2014; 4:660-77. [PMID: 24723986 PMCID: PMC3982135 DOI: 10.7150/thno.8698] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022] Open
Abstract
Nanotheranostics is to apply and further develop nanomedicine strategies for advanced theranostics. This review summarizes the various nanocarriers developed so far in the literature for nanotheranostics, which include polymer conjugations, dendrimers, micelles, liposomes, metal and inorganic nanoparticles, carbon nanotubes, and nanoparticles of biodegradable polymers for sustained, controlled and targeted co-delivery of diagnostic and therapeutic agents for better theranostic effects with fewer side effects. The theranostic nanomedicine can achieve systemic circulation, evade host defenses and deliver the drug and diagnostic agents at the targeted site to diagnose and treat the disease at cellular and molecular level. The therapeutic and diagnostic agents are formulated in nanomedicine as a single theranostic platform, which can then be further conjugated to biological ligand for targeting. Nanotheranostics can also promote stimuli-responsive release, synergetic and combinatory therapy, siRNA co-delivery, multimodality therapies, oral delivery, delivery across the blood-brain barrier as well as escape from intracellular autophagy. The fruition of nanotheranostics will be able to provide personalized therapy with bright prognosis, which makes even the fatal diseases curable or at least treatable at the earliest stage.
Collapse
|
23
|
Jiang S, Gong X, Zhao X, Zu Y. Preparation, characterization, and antitumor activities of folate-decorated docetaxel-loaded human serum albumin nanoparticles. Drug Deliv 2014; 22:206-13. [PMID: 24471890 DOI: 10.3109/10717544.2013.879964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CONTEXT Docetaxel is now a major antitumor drug in clinical use for the treatment of a variety of tumors. The ethanol/Tween 80 solvent required in the formulation to increase the docetaxel solubility is at least partly responsible for the hypersensitivity reaction, decreased uptake by tumor tissue, and increased exposure to other body compartments. OBJECTIVE The present study was aimed at developing hydrosoluble DTX-FA-HSANPs targeting tumor cells and to investigate antitumor activities of the nanoparticles. MATERIALS AND METHODS The DTX-HSANPs were prepared using a desolvation technique and the carboxylic groups of NHS-folate were conjugated with the amino groups of the human serum albumin nanoparticles, and studied their size and zeta potential, drug loading efficiency, surface morphology, release properties in vitro, and antitumor activities. RESULTS The spherical nanoparticles obtained were negatively charged with a zeta potential of about -30 mV and characterized around 150 nm with a narrow size distribution. Drug loading efficiency was approximately 17.2%. The folate-decorated nanoparticles targeted a human hepatoma cell line effectively. The in vitro drug release of DTX-FA-HSANPs in the first 96 h corresponded with the following equation: Q = 18.87851 - 0.13866t + 0.21276t² - 0.00704t³ + 0.0000847854t⁴ - 0.00000034991t⁵ (R² = 0.98155). Moreover, the in vitro antitumor activities of DTX-FA-HSANPs were close to the activities of the positive control (docetaxel). The in vivo inhibition ratios of DTX-FA-HSANPs and docetaxel were 66.2% and 59.5%, respectively, at a dose of 5 mg/kg. DISCUSSION AND CONCLUSION In light of the observed antitumor activities, it would be of considerable interest to collect sufficient data for the clinical application of docetaxel-loaded nanoparticles.
Collapse
Affiliation(s)
- Shougang Jiang
- State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University , Harbin , PR China
| | | | | | | |
Collapse
|
24
|
Win KY, Ye E, Teng CP, Jiang S, Han MY. Engineering polymeric microparticles as theranostic carriers for selective delivery and cancer therapy. Adv Healthc Mater 2013; 2:1571-5. [PMID: 23712912 DOI: 10.1002/adhm.201300077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 11/09/2022]
Abstract
Multifunctional polymeric nano- and microparticles are engineered as theranostic carriers and their selective size-dependent cellular uptake is demonstrated. It is found that effective uptake and accumulation of nanoparticles occurs in both normal and cancer cells, whereas, that of microparticles occurs in cancer cells but not in normal cells, allowing cancer cells to be specifically targeted for local drug delivery.
Collapse
Affiliation(s)
- Khin Yin Win
- Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602
| | | | | | | | | |
Collapse
|
25
|
Yu Y, Tan S, Zhao S, Zhuang X, Song Q, Wang Y, Zhou Q, Zhang Z. Antitumor activity of docetaxel-loaded polymeric nanoparticles fabricated by Shirasu porous glass membrane-emulsification technique. Int J Nanomedicine 2013; 8:2641-52. [PMID: 23935362 PMCID: PMC3735276 DOI: 10.2147/ijn.s48214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Docetaxel (DTX) has excellent efficiency against a wide spectrum of cancers. However, the current clinical formulation has limited its usage, as it causes some severe side effects. Various polymeric nanoparticles have thus been developed as alternative formulations of DTX, but they have been mostly fabricated on a laboratory scale. Previously, we synthesized a novel copolymer, poly(lactide)-D-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS), and found that it exhibited great potential in drug delivery with improved properties. In this study, we applied the Shirasu porous glass (SPG) membrane-emulsification technique to prepare the DTX-loaded PLA-TPGS nanoparticles on a pilot scale. The effect of several formulation variables on the DTX-loaded nanoparticle properties, including particle size, zeta potential, and drug-encapsulation efficiency, were investigated based on surfactant type and concentration in the aqueous phase, organic/aqueous phase volumetric ratio, membrane-pore size, transmembrane cycles, and operation pressure. The DTX-loaded nanoparticles were obtained with sizes of 306.8 ± 5.5 nm and 334.1 ± 2.7 nm (mean value ± standard deviation), and drug-encapsulation efficiency of 81.8% ± 4.5% and 64.5% ± 2.7% for PLA-TPGS and poly(lactic-co-glycolic acid) (PLGA) nanoparticles, respectively. In vivo pharmacokinetic study exhibited a significant advantage of PLA-TPGS nanoparticles over PLGA nanoparticles and Taxotere. Drug-loaded PLA-TPGS nanoparticles exhibited 1.78-, 6.34- and 3.35-fold higher values for area under the curve, half-life, and mean residence time, respectively, compared with those of PLGA nanoparticles, and 2.23-, 13.2-, 8.51-fold higher than those of Taxotere, respectively. In vivo real-time distribution of nanoparticles was measured on tumor-bearing mice by near-infrared fluorescence imaging, which demonstrated that the PLA-TPGS nanoparticles achieved much higher concentration and longer retention in tumors than PLGA nanoparticles after intravenous injection. This is consistent with the pharmacokinetic behavior of the nanoparticles. The tumor-inhibitory effect of DTX-loaded nanoparticles was observed in vivo in an H22 tumor-bearing mice model via intravenous administration. This indicated that PLA-TPGS nanoparticles are a feasible drug-delivery formulation with a pilot fabrication technique and have superior pharmacokinetic and anticancer effects compared to the commercially available Taxotere.
Collapse
Affiliation(s)
- Yunni Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013; 65:880-90. [PMID: 23220325 DOI: 10.1016/j.addr.2012.11.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/28/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Oral chemotherapy is an important topic in the 21st century medicine, which may radically change the current regimen of chemotherapy and greatly improve the quality of life of the patients. Unfortunately, most anticancer drugs, especially those of high therapeutic efficacy such as paclitaxel and docetaxel, are not orally bioavailable due to the gastrointestinal (GI) drug barrier. The molecular basis of the GI barrier has been found mainly due to the multidrug efflux proteins, i.e. P-type glycoproteins (P-gp), which are rich in the epithelial cell membranes in the GI tract. Medical solution for oral chemotherapy is to apply P-gp inhibitors such as cyclosporine A, which, however, suppress the body's immune system either, thus causing medical complication. Pharmaceutical nanotechnology, which is to apply and further develop nanotechnology to solve the problems in drug delivery, may provide a better solution and thus change the way we make drug and the way we take drug. This review is focused on the problems encountered in oral chemotherapy and the pharmaceutical nanotechnology solutions such as prodrugs, nanoemulsions, dendrimers, micelles, liposomes, solid lipid nanoparticles and nanoparticles of biodegradable polymers. Proof-of-concept in vitro and in vivo results for oral delivery of anticancer drugs by the various nanocarriers, which can be found so far from the literature, are provided.
Collapse
|
27
|
|
28
|
Zhang Z, Mei L, Feng SS. Vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicine. Nanomedicine (Lond) 2012; 7:1645-7. [DOI: 10.2217/nnm.12.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Zhiping Zhang
- Tongji School of Pharmacy & National Engineering Research Center of Nanomedicine, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Lin Mei
- Shenzhen Key Lab of Gene & Antibody Therapy, Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Si-Shen Feng
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02–11, 4 Engineering Drive 4, Singapore 117576, Singapore and Department of Bioengineering, National University of Singapore, Block EA, 03–12, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
29
|
Ding GB, Liu HY, Lv YY, Liu XF, Guo Y, Sun CK, Xu L. Enhanced In Vitro Antitumor Efficacy and Strong Anti-Cell-Migration Activity of a Hydroxycamptothecin-Encapsulated Magnetic Nanovehicle. Chemistry 2012; 18:14037-46. [DOI: 10.1002/chem.201200765] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/07/2012] [Indexed: 12/13/2022]
|
30
|
Mi Y, Liu X, Zhao J, Ding J, Feng SS. Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials 2012; 33:7519-29. [PMID: 22809649 DOI: 10.1016/j.biomaterials.2012.06.100] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/30/2012] [Indexed: 12/25/2022]
Abstract
We developed a system of nanoparticles of poly(lactide)-d-α-tocopheryl polyethylene glycol succinate (PLA-TPGS) and carboxyl group-terminated TPGS (TPGS-COOH) copolymer blend for multimodality treatment of cancer, which formulated docetaxel for chemotherapy, herceptin for biotherapy and targeting, and iron oxides (IOs) for hyperthermia therapy, which are denoted as MMNPs. It is demonstrated that the MMNPs achieved a significantly higher therapeutic effects than the various combination of the corresponding individual modality treatment NPs and the dual modality treatment NPs due to the synergistic effects among the chemo, bio, and thermo therapies. We further developed a method by employing the concept of NPs IC50, the concentration of the agent-, or agents-loaded nanoparticles that is needed to kill 50% of the cancer cells, to quantitatively access the synergistic effects of the multimodality treatment. It is shown by employing the SK-BR-3 cell line as an in vitro model of the HER2-positive breast cancer that the NPs IC50 is 0.42 mg/mL DCL-NPs plus 1.33 mg/mL Her-NPs plus 0.59 mg/mL IOs-NPs, a total NPs concentration of 2.34 mg/mL for the treatment of a physical mixture of the DCL-NPs, Her-NPs and IOs-NPs at the 1:2:7 weight ratio, while it is only 0.0011 mg/mL for the MMNPs for 24 h, which is 2130 fold more efficient than the physical mixture of the corresponding single modality treatments.
Collapse
Affiliation(s)
- Yu Mi
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | | | | | | | | |
Collapse
|
31
|
Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012; 33:4889-906. [DOI: 10.1016/j.biomaterials.2012.03.046] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022]
|
32
|
Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 2012; 23:671-82. [PMID: 22242601 PMCID: PMC3329595 DOI: 10.1021/bc200264c] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decade, positron emitter labeled nanoparticles have been widely used in and substantially improved for a range of diagnostic biomedical research. However, given growing interest in personalized medicine and translational research, a major challenge in the field will be to develop disease-specific nanoprobes with facile and robust radiolabeling strategies and that provide imaging stability, enhanced sensitivity for disease early stage detection, optimized in vivo pharmacokinetics for reduced nonspecific organ uptake, and improved targeting for elevated efficacy. This review briefly summarizes the major applications of nanoparticles labeled with positron emitters for cardiovascular imaging, lung diagnosis, and tumor theranostics.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of Radiology, Washington University in St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
33
|
Muthu MS, Avinash Kulkarni S, Liu Y, Feng SS. Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine (Lond) 2012; 7:353-64. [DOI: 10.2217/nnm.11.111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This work aimed to develop docetaxel-loaded D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) micelles for brain cancer chemotherapy by taking advantage of polyethylene glycol for its long half-life in circulation and vitamin E for its high cellular uptake. Material & methods: TPGS micelles containing docetaxel or coumarin-6 were prepared by the solvent casting method and the direct dissolution method at high, moderate and low drug-loading levels. Results & discussion: The particle size of the docetaxel-loaded TPGS micelles ranged between 12 and 14 nm. Docetaxel formulated in the TPGS micelles of high, moderate and low drug-loading levels achieved lower IC50 values compared with Taxotere® after 24-h incubation with C6 glioma brain cancer cells. The TPGS has much lower critical micelle concentration than most phospholipids in micellar formulation, which can be an efficient drug carrier across the blood brain–barrier with high drug encapsulation efficiency, cell uptake, cytotoxicity and desired biodistribution of the formulated drug. Original submitted: 21 March 2011; Revised submitted: 14th June 2011
Collapse
Affiliation(s)
- Madaswamy S Muthu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi – 221005, India
| | - Sneha Avinash Kulkarni
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Yutao Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Si-Shen Feng
- Department of Bioengineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117576, Singapore
- Nanoscience & Nanoengineering Initiative (NUSNNI) and NanoCore, National University of Singapore, 2 Engineering Drive 3, Singapore 117587, Singapore
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| |
Collapse
|
34
|
Surfactant chain length effects on nanoparticles of biodegradable polymers for targeted drug delivery. AIChE J 2012. [DOI: 10.1002/aic.13728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Zou J, Yu Y, Yu L, Li Y, Chen CK, Cheng C. Well-defined drug-conjugated biodegradable nanoparticles by azide-alkyne click crosslinking in miniemulsion. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.25016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Chemotherapeutic Engineering: Concept, Feasibility, Safety and Prospect—A Tribute to Shu Chien’s 80th Birthday. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0198-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Zhang Z, Yang X, Feng SS. Copolymer technology for advanced nanomedicine. Nanomedicine (Lond) 2011; 6:583-7. [DOI: 10.2217/nnm.11.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan 430030, China and National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Xiangliang Yang
- College of Life Science & Technology and National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Si-Shen Feng
- Department of Chemical & Biomolecular Engineering and Department of Bioengineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
38
|
Bibliography. Neonatology and perinatology. Current world literature. Curr Opin Pediatr 2011; 23:253-7. [PMID: 21412083 DOI: 10.1097/mop.0b013e3283454167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Affiliation(s)
- Si-Shen Feng
- Department of Chemical & Biomolecular Engineering & NUS Nanoscience and Nanotechnology Initiative (NUSNNI), National University of Singapore Block E3, 05–29, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Lingyun Zhao
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Jintian Tang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| |
Collapse
|