1
|
Wijetunga NA, Yahalom J, Imber BS. The art of war: using genetic insights to understand and harness radiation sensitivity in hematologic malignancies. Front Oncol 2025; 14:1478078. [PMID: 40191738 PMCID: PMC11968681 DOI: 10.3389/fonc.2024.1478078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025] Open
Abstract
It is well established that hematologic malignancies are often considerably radiosensitive, which enables usage of far lower doses of therapeutic radiotherapy. This review summarizes the currently known genomic landscape of hematologic malignancies, particularly as it relates to radiosensitivity and the field of radiation oncology. By tracing the historical development of the modern understanding of radiosensitivity, we focus on the discovery and implications of pivotal mutated genes in hematologic malignancies such as TP53, ATM, and other genes critical to DNA repair pathways. These genetic insights have contributed significantly to the advancement of personalized medicine, aiming to enhance treatment precision and outcomes, and there is an opportunity to extend these insights to personalized radiotherapy. We explore the transition from early discoveries to the current efforts in integrating comprehensive genomic data into clinical practice. Specific examples from Hodgkin lymphoma, non-Hodgkin lymphoma, and plasma cell neoplasms illustrate how genetic mutations could influence radiosensitivity and impact subsequent radiotherapeutic response. Despite the advancements, challenges remain in translating these genetic insights into routine clinical practice, particularly due to the heterogeneity of alterations and the complex interactions within cancer signaling pathways. We emphasize the potential of radiogenomics to address these challenges by identifying genetic markers that predict radiotherapy response and toxicity, thereby refining treatment strategies. The need for robust decision support systems, standardized protocols, and ongoing education for healthcare providers is critical to the successful integration of genomic data into radiation therapy. As research continues to validate genetic markers and explore novel therapeutic combinations, the promise of personalized radiotherapy becomes increasingly attainable, offering the potential to significantly improve outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- N. Ari Wijetunga
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, United States
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Brandon S. Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
2
|
Darvish L, Bahreyni-Toossi MT, Aghaee-Bakhtiari SH, Akbari-Naserkiadeh A, Vaziri-Nezamdoust F, Azimian H. Increasing prostate cancer radiosensitivity by miR-7-5p knockdown of anti-apoptotic genes. Gene 2025; 933:148951. [PMID: 39303820 DOI: 10.1016/j.gene.2024.148951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Despite the success of radiotherapy for prostate cancer treatment, the recent discovery of radiation resistance prevents it from reaching its full potential. This study aims to use hsa-miR-7-5p for the expression of anti-apoptotic genes. The search for anti-apoptotic genes was carried out through databases. The selected genes included XIAP, MCL1, REL, and BIRC3. Our selection was based on the best miRNA because it has a greater impact on genes. The second step involved transfecting the miRNA into a prostate cancer cell line. Subsequently, radiosensitivity was tested using real-time PCR, clonogenic assay, and annexin V flow cytometry. The highest apoptosis rate in the transfected cells was at 0 Gy in hsa-miR-7-5p (28.88 ± 0.80), plenti III (18.81 ± 0.59), and the control group (4.10 ± 1.52) (P<0.001). Also, its rate was at 4 Gy in hsa-miR-7-5p (36.11 ± 1.93), plenti III (26.42 ± 0.42), and the control group (8.79 ± 2.29) (P<0.001). This study showed a decreasing trend in survival with increasing doses. Suppression of anti-apoptotic genes, including XIAP, MCL1, Birc3, and REL, enhanced radiosensitivity by increasing the expression of hsa-miR-7-5p in the PC3 and LNCaP cell lines. Hsa-miR-7-5p is a miRNA that can suppress the expression of anti-apoptotic genes and thus plays an essential role in the process of cell apoptosis. Targeting genes that are associated with apoptosis could potentially enhance the efficacy of treatments for patients with prostate cancer.
Collapse
Affiliation(s)
- Leili Darvish
- Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Akbari-Naserkiadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Vaziri-Nezamdoust
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tay JY, Ho JX, Cheo FF, Iqbal J. The Tumour Microenvironment and Epigenetic Regulation in BRCA1 Pathogenic Variant-Associated Breast Cancers. Cancers (Basel) 2024; 16:3910. [PMID: 39682099 DOI: 10.3390/cancers16233910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: BRCA1 pathogenic variant (PV)-associated breast cancers are most commonly seen in hereditary genetic conditions such as the autosomal-dominant Hereditary Breast and Ovarian Cancer (HBOC) syndrome, and rarely in sporadic breast cancer. Such breast cancers tend to exhibit greater aggressiveness and poorer prognoses due to the influence of BRCA1 pathogenic variants (PVs) on the tumour microenvironment. Additionally, while the genetic basis of BRCA1 PV breast cancer is well-studied, the role of epigenetic mediators in the tumourigenesis of these hereditary breast cancers is also worth exploring. Results: PVs in the BRCA1 gene interact with stromal cells and immune cells, promoting epithelial-mesenchymal transition, angiogenesis, and affecting oestrogen levels. Additionally, BRCA1 PVs contribute to breast cancer development through epigenetic effects on cells, including DNA methylation and histone acetylation, leading to the suppression of proto-oncogenes and dysregulation of cytokines. In terms of epigenetics, lysine-specific demethylase 1 (LSD-1) is considered a master epigenetic regulator, governing both transcriptional repression and activation. It exerts epigenetic control over BRCA1 and, to a lesser extent, BRCA2 genes. The upregulation of LSD-1 is generally associated with a poorer prognosis in cancer patients. In the context of breast cancer in BRCA1/2 PV carriers, LSD-1 contributes to tumour development through various mechanisms. These include the maintenance of a hypoxic environment and direct suppression of BRCA1 gene expression. Conclusions: While LSD-1 itself does not directly cause mutations in BRCA1 or BRCA2 genes, its epigenetic influence sheds light on the potential role of LSD-1 inhibitors as a therapeutic approach in managing breast cancer, particularly in individuals with BRCA1/2 PVs. Targeting LSD-1 may help counteract its detrimental effects and provide a promising avenue for therapy in this specific subgroup of breast cancer.
Collapse
Affiliation(s)
- Jun Yu Tay
- Lee Kong Chian School of Medicine, Imperial College London-Nanyang Technological University, Singapore 308232, Singapore
| | - Josh Xingchong Ho
- Lee Kong Chian School of Medicine, Imperial College London-Nanyang Technological University, Singapore 308232, Singapore
| | - Fan Foon Cheo
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Jabed Iqbal
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
4
|
Saber S, Abdelhady R, Elhemely MA, Elmorsy EA, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, AlSheri AS, Youssef ME. PU-H71 (NSC 750424): a molecular masterpiece that targets HSP90 in cancer and beyond. Front Pharmacol 2024; 15:1475998. [PMID: 39564119 PMCID: PMC11573589 DOI: 10.3389/fphar.2024.1475998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Heat shock protein 90 (HSP90) is a pivotal molecular chaperone with multifaceted roles in cellular health and disease. Herein, we explore how HSP90 orchestrates cellular stress responses, particularly through its partnership with heat shock factor 1 (HSF-1). PU-H71, a selective inhibitor of HSP90, demonstrates significant potential in cancer therapy by targeting a wide array of oncogenic pathways. By inducing the degradation of multiple client proteins, PU-H71 disrupts critical signaling pathways such as MAPK, PI3K/Akt, JAK/STAT, EGFR, and mTOR, which are essential for cancer cell survival, proliferation, and metastasis. We examined its impact on combating triple-negative breast cancer and enhancing the effectiveness of carbon-ion beam therapy, offering new avenues for cancer treatment. Furthermore, the dual inhibition of HSP90A and HSP90B1 by PU-H71 proves highly effective in the context of myeloma, providing fresh hope for patients with this challenging malignancy. We delve into its potential to induce apoptosis in B-cell lymphomas that rely on Bcl6 for survival, highlighting its relevance in the realm of hematologic cancers. Shifting our focus to hepatocellular carcinoma, we explore innovative approaches to chemotherapy. Moreover, the current review elucidates the potential capacity of PU-H71 to suppress glial cell activation paving the way for developing novel therapeutic strategies for neuroinflammatory disorders. Additionally, the present report also suggests the promising role of PU-H71 in JAK2-dependent myeloproliferative neoplasms. Eventually, our report sheds more light on the multiple functions of HSP90 protein as well as the potential therapeutic benefit of its selective inhibitor PU-H71 in the context of an array of diseases, laying the foundations for the development of novel therapeutic approaches that could achieve better treatment outcomes.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Mai A Elhemely
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
Bagheri-Hosseinabadi Z, Eshkevari SMS, Khalighfard S, Alizadeh AM, Khori V, Amiriani T, Poorkhani A, Sadani S, Esmati E, Lashgari M, Mahmoodi M, Hajizadeh MR. A systematic approach introduced some immune system targets in rectal cancer by considering cell-free DNA methylation in response to radiochemotherapy. Cytokine 2024; 181:156666. [PMID: 38906038 DOI: 10.1016/j.cyto.2024.156666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND This study aims to investigate cell-free DNA (cfDNA) methylation of genes involved in some immune system targets as biomarkers of radioresistance in patients with non-metastatic rectal cancer. METHODS Gene expression (GSE68204, GPL6480, and GSE15781) and DNA methylation profiles (GSE75548 and GSE139404) of rectal cancer patients were obtained from the Gene Expression Omnibus (GEO) database. GEO2R and FunRich software were first used to identify genes with significant expression differences. Enricher softwer was then used to analyze Gene Ontology and detect pathway enrichment of hub genes. Blood samples were then taken from 43 rectal cancer patients. After cfDNA extraction from samples, it was treated with bisulfite and analyzed by methylation-specific PCR. RESULTS 1088 genes with high and 629 with low expression were identified by GEO2R and FunRich software. A total of five high-expression hub genes, including CDH24, FGF18, CCND1, IFITM1, UBE2V1, and three low-expression hub genes, including CBLN2, VIPR2, and IRF4, were identified from UALCAN and DNMIVD databases. Methylation-specific PCR indicated a significant difference in hub gene methylation between cancerous and non-cancerous individuals. Radiochemotherapy significantly affected hub gene methylation. There was a considerable difference in the methylation rate of hub genes between patients who responded to radiochemotherapy and those who did not. CONCLUSIONS Evaluating gene methylation patterns might be an appropriate diagnostic tool to predict radiochemotherapy response and develop targeted therapeutic agents.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Ali Mohammad Alizadeh
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Esmati
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzih Lashgari
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahmoodi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
6
|
Zhang J, Chen Y, Wang S, Liu Y, Li L, Gao M. Role of histone H3K4 methyltransferase in regulating Monascus pigments production by red light-coupled magnetic field. Photochem Photobiol 2024; 100:75-86. [PMID: 37032633 DOI: 10.1111/php.13809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023]
Abstract
Light, magnetic field, and methylation affected the growth and secondary metabolism of fungi. The regulation effect of the three factors on the growth and Monascus pigments (MPs) synthesis of Monascus purpureus was investigated in this study. 5-azacytidine (5-AzaC), DNA methylation inhibitor, was used to treat M. purpureus (wild-type, WT). Twenty micromolar 5-AzaC significantly promoted the growth, development, and MPs yield. Moreover, 250 lux red light and red light coupled magnetic field (RLCMF) significantly promoted the biomass. For WT, red light, and RLCMF significantly promoted MPs yield. But compared with red light treatment, only 0.2 mT RLCMF promoted the alcohol-soluble MPs yield. For histone H3K4 methyltransferase complex subunit Ash2 gene knockout strain (ΔAsh2), only 0.2 mT RLCMF significantly promoted water-soluble MPs yield. Yet red light, 1.0 and 0.2 mT RLCMF significantly promoted alcohol-soluble MPs yield. This indicated that methylation affected the MPs biosynthesis. Red light and weaker MF had a synergistic effect on the growth and MPs synthesis of ΔAsh2. This result was further confirmed by the expression of related genes. Therefore, histone H3K4 methyltransferase was involved in the regulation of the growth, development, and MPs synthesis of M. purpureus by the RLCMF.
Collapse
Affiliation(s)
- Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yufeng Chen
- College of Life Science, Yangtze University, Jingzhou, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, China
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Szczepanek J, Skorupa M, Jarkiewicz-Tretyn J, Cybulski C, Tretyn A. Harnessing Epigenetics for Breast Cancer Therapy: The Role of DNA Methylation, Histone Modifications, and MicroRNA. Int J Mol Sci 2023; 24:ijms24087235. [PMID: 37108398 PMCID: PMC10138995 DOI: 10.3390/ijms24087235] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer development and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors, histone-modifying enzymes, and mRNA regulators (such as miRNA mimics and antagomiRs) can reverse these alterations. Therefore, these epigenetic-targeting drugs are promising candidates for cancer treatment. However, there is currently no effective epi-drug monotherapy for breast cancer. Combining epigenetic drugs with conventional therapies has yielded positive outcomes and may be a promising strategy for breast cancer therapy. DNA methyltransferase inhibitors, such as azacitidine, and histone deacetylase inhibitors, such as vorinostat, have been used in combination with chemotherapy to treat breast cancer. miRNA regulators, such as miRNA mimics and antagomiRs, can alter the expression of specific genes involved in cancer development. miRNA mimics, such as miR-34, have been used to inhibit tumor growth, while antagomiRs, such as anti-miR-10b, have been used to inhibit metastasis. The development of epi-drugs that target specific epigenetic changes may lead to more effective monotherapy options in the future.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | | | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
8
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q, Xie C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1122352. [PMID: 36875059 PMCID: PMC9981667 DOI: 10.3389/fimmu.2023.1122352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The morbidity and mortality of lung cancer are increasing, seriously threatening human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset and is not easy to be diagnosed in its early stage. Distant metastasis often occurs and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy, especially with immune checkpoint inhibitors (ICIs), has become the focus of research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but further optimization is necessary. DNA methylation has been involved in immune escape and radioresistance, and becomes a game changer in iRT. In this review, we focused on the regulation of DNA methylation on ICIs treatment resistance and radioresistance in NSCLC and elucidated the potential synergistic effects of DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we outlined evidence suggesting that a combination of DNMTis, RT, and immunotherapy could be a promising treatment strategy to improve NSCLC outcomes.
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Reda M, Bagley AF, Zaidan HY, Yantasee W. Augmenting the therapeutic window of radiotherapy: A perspective on molecularly targeted therapies and nanomaterials. Radiother Oncol 2020; 150:225-235. [PMID: 32598976 DOI: 10.1016/j.radonc.2020.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Radiation therapy is a cornerstone of modern cancer therapy alongside surgery, chemotherapy, and immunotherapy, with over half of all cancer patients receiving radiation therapy as part of their treatment regimen. Development of novel radiation sensitizers that can improve the therapeutic window of radiation therapy are sought after, particularly for tumors at an elevated risk of local and regional recurrence such as locally-advanced lung, head and neck, and gastrointestinal tumors. This review discusses clinical strategies to enhance radiotherapy efficacy and decrease toxicity, hence, increasing the overall therapeutic window. A focus is given to the molecular targets that have been identified and their associated mechanisms of action in enhancing radiotherapy. Examples include cell survival and proliferation signaling such as the EGFR and PI3K/AKT/mTOR pathways, DNA repair genes including PARP and ATM/ATR, angiogenic growth factors, epigenetic regulators, and immune checkpoint proteins. By manipulating various mechanisms of tumor resistance to ionizing radiation (IR), targeted therapies hold significant value to increase the therapeutic window of radiotherapy. Further, the use of novel nanoparticles to enhance radiotherapy is also reviewed, including nanoparticle delivery of chemotherapies, metallic (high-Z) nanoparticles, and nanoparticle delivery of targeted therapies - all of which may improve the therapeutic window of radiotherapy by enhancing the tumor response to IR or reducing normal tissue toxicity.
Collapse
Affiliation(s)
- Moataz Reda
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, United States; PDX Pharmaceuticals, Portland, OR 97239, United States
| | - Alexander F Bagley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, United States; PDX Pharmaceuticals, Portland, OR 97239, United States.
| |
Collapse
|
10
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer. Front Oncol 2020; 10:992. [PMID: 32670880 PMCID: PMC7326773 DOI: 10.3389/fonc.2020.00992] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
The development of resistance to anti-cancer therapeutics remains one of the core issues preventing the improvement of survival rates in cancer. Therapy resistance can arise in a multitude of ways, including the accumulation of epigenetic alterations in cancer cells. By remodeling DNA methylation patterns or modifying histone proteins during oncogenesis, cancer cells reorient their epigenomic landscapes in order to aggressively resist anti-cancer therapy. To combat these chemoresistant effects, epigenetic modifiers such as DNA hypomethylating agents, histone deacetylase inhibitors, histone demethylase inhibitors, along with others have been used. While these modifiers have achieved moderate success when used either alone or in combination with one another, the most positive outcomes were achieved when they were used in conjunction with conventional anti-cancer therapies. Epigenome modifying drugs have succeeded in sensitizing cancer cells to anti-cancer therapy via a variety of mechanisms: disrupting pro-survival/anti-apoptotic signaling, restoring cell cycle control and preventing DNA damage repair, suppressing immune system evasion, regulating altered metabolism, disengaging pro-survival microenvironmental interactions and increasing protein expression for targeted therapies. In this review, we explore different mechanisms by which epigenetic modifiers induce sensitivity to anti-cancer therapies and encourage the further identification of the specific genes involved with sensitization to facilitate development of clinical trials.
Collapse
Affiliation(s)
- Anthony Quagliano
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Anilkumar Gopalakrishnapillai
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Sonali P. Barwe
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
11
|
Zhang SR, Zhang XC, Liang JF, Fang HM, Huang HX, Zhao YY, Chen XQ, Ma SL. Chalcomoracin inhibits cell proliferation and increases sensitivity to radiotherapy in human non-small cell lung cancer cells via inducing endoplasmic reticulum stress-mediated paraptosis. Acta Pharmacol Sin 2020; 41:825-834. [PMID: 32066885 PMCID: PMC7470873 DOI: 10.1038/s41401-019-0351-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022]
Abstract
Chalcomoracin (CMR) is a kind of Diels–Alder adduct extracted from the mulberry leaves. Recent studies showed that CMR has a broad spectrum of anticancer activities and induces paraptosis in breast cancer and prostate cancer cells. In this study, we investigated the effects of CMR against human non-small cell lung cancer cells and the underlying mechanisms. We found that CMR dose-dependently inhibited the proliferation of human lung cancer H460, A549 and PC-9 cells. Furthermore, exposure to low and median doses of CMR induced paraptosis but not apoptosis, which was presented as the formation of extensive cytoplasmic vacuolation with increased expression of endoplasmic reticulum stress markers, Bip and Chop, as well as activation of MAPK pathway in the lung cancer cells. Knockdown of Bip with siRNA not only reduced the cell-killing effect of CMR, but also decreased the percentage of cytoplasmic vacuoles in H460 cells. Moreover, CMR also increased the sensitivity of lung cancer cells to radiotherapy through enhanced endoplasmic reticulum stress. In lung cancer H460 cell xenograft nude mice, combined treatment of CMR and radiation caused greatly enhanced tumor growth inhibition with upregulation of endoplasmic reticulum stress proteins and activation of pErk in xenograft tumor tissue. These data demonstrate that the anticancer activity and radiosensitization effect of CMR result from inducing paraptosis, suggesting that CMR could be considered as a potential anticancer agent and radiation sensitizer in the future cancer therapeutics.
Collapse
|
12
|
Yan X, Wu T, Tang M, Chen D, Huang M, Zhou S, Zhang H, Yang X, Li G. Methylation of the ataxia telangiectasia mutated gene (ATM) promoter as a radiotherapy outcome biomarker in patients with hepatocellular carcinoma. Medicine (Baltimore) 2020; 99:e18823. [PMID: 31977876 PMCID: PMC7004781 DOI: 10.1097/md.0000000000018823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to evaluate the contribution of ataxia telangiectasia mutated (ATM) gene promoter methylation to hepatocellular carcinoma (HCC) and the predictive value of radiotherapy outcome. ATM promoter methylation status was detected using methylation-specific PCR in 118 HCC, 50 adjacent liver, and 20 normal liver samples. PCR products were verified by bisulfite sequencing PCR. ATM expression was detected by quantitative PCR (qPCR) and immunohistochemistry (IHC) in 50 paired HCC and adjacent normal tissues and 68 locally advanced HCC biopsy tissues. Furthermore, radiotherapy outcomes in 68 locally advanced HCC patients were determined using European Association for the Study of Liver criteria and survival analysis. The results revealed that the methylation frequency of the ATM promoter was significantly higher in HCC tissues than in normal liver tissues (χ = 16.830, P < .001). Quantitative PCR (qPCR) and IHC results showed a significant association between ATM promoter methylation and ATM expression in HCC (χ = 10.510, P < .001), and methylated ATM was correlated with lower ATM expression compared with unmethylated ATM (r = 0.356, P < .001). Furthermore, methylation of the ATM promoter was significantly associated with superior outcomes in patients with locally advanced HCC who initially received radiotherapy. Together, these results indicate that ATM promoter methylation might increase the risk of HCC by regulating ATM expression, and thus may function as a potential biomarker for predicting radiotherapy outcomes in HCC patients.
Collapse
Affiliation(s)
- Xinjian Yan
- Department of Medical Oncology Department of Pathology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan
| | - Tianyu Wu
- Department of Medical Oncology Department of Pathology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan
| | - Mei Tang
- Department of Medical Oncology Department of Pathology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan
| | - Dongliang Chen
- Department of Medical Oncology Department of Pathology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan
| | - Meiyuan Huang
- Department of Medical Oncology Department of Pathology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Gaofeng Li
- Department of Medical Oncology Department of Pathology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan
| |
Collapse
|
13
|
Brezgin S, Kostyusheva A, Bayurova E, Gordeychuk I, Isaguliants M, Goptar I, Nikiforova A, Smirnov V, Volchkova E, Glebe D, Kostyushev D, Chulanov V. Replenishment of Hepatitis B Virus cccDNA Pool Is Restricted by Baseline Expression of Host Restriction Factors In Vitro. Microorganisms 2019; 7:E533. [PMID: 31698767 PMCID: PMC6920784 DOI: 10.3390/microorganisms7110533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major cause of viral persistence in patients with chronic HBV infection. Understanding the mechanisms underlying stability and persistence of HBV cccDNA in hepatocytes is critical for developing novel therapeutics and managing chronic hepatitis B. In this study, we observed an unexpected increase in HBV cccDNA levels upon suppression of transcription by de novo DNA methyltransferase DNMT3A and uncovered additional mechanisms potentially involved in HBV cccDNA maintenance. METHODS HBV-expressing cell lines were transfected with a DNMT3A-expressing plasmid. Real-time PCR and HBsAg assays were used to assess the HBV replication rate. Cell cycling was analyzed by fluorescent cell sorting. CRISPR/Cas9 was utilized to abrogate expression of APOBEC3A and APOBEC3B. Alterations in the expression of target genes were measured by real-time PCR. RESULTS Similar to previous studies, HBV replication induced DNMT3A expression, which in turn, led to reduced HBV transcription but elevated HBV cccDNA levels (4- to 6-fold increase). Increased levels of HBV cccDNA were not related to cell cycling, as DNMT3A accelerated proliferation of infected cells and could not contribute to HBV cccDNA expansion by arresting cells in a quiescent state. At the same time, DNMT3A suppressed transcription of innate immunity factors including cytidine deaminases APOBEC3A and APOBEC3B. CRISPR/Cas9-mediated silencing of APOBEC3A and APOBEC3B transcription had minor effects on HBV transcription, but significantly increased HBV cccDNA levels, similar to DNMT3A. In an attempt to further analyze the detrimental effects of HBV and DNMT3A on infected cells, we visualized γ-H2AX foci and demonstrated that HBV inflicts and DNMT3A aggravates DNA damage, possibly by downregulating DNA damage response factors. Additionally, suppression of HBV replication by DNMT3A may be related to reduced ATM/ATR expression. CONCLUSION Formation and maintenance of HBV cccDNA pools may be partially suppressed by the baseline expression of host inhibitory factors including APOBEC3A and APOBEC3B. HBV inflicts DNA damage both directly and by inducing DNMT3A expression.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Anastasiia Kostyusheva
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
| | - Ekaterina Bayurova
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Ilya Gordeychuk
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Maria Isaguliants
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Riga Stradins University, LV-1007 Riga, Latvia
- Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia; (I.G.); (A.N.)
| | - Anastasiia Nikiforova
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia; (I.G.); (A.N.)
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Dieter Glebe
- Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
| | - Vladimir Chulanov
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| |
Collapse
|
14
|
Yuan GQ, Wei NL, Mu LY, Wang XQ, Zhang YN, Zhou WN, Pan YW. A 4-miRNAs signature predicts survival in glioblastoma multiforme patients. Cancer Biomark 2018; 20:443-452. [PMID: 28869437 DOI: 10.3233/cbm-170205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation status is an important marker for glioblastoma multiforme (GBM), there is considerable variability in the clinical outcome of patients with similar methylation profles. OBJECTIVE We examined whether a MicroRNA (miRNA) signature can be identified for predicting clinical outcomes and helping in treatment decisions. METHODS The differentially expressed miRNAs were evaluated in 6 pairs of short- (⩽ 450 days) and long-term survivors (> 450 days) by using microarray. Real time quantitative PCR (qRT-PCR) was applied to further verify screened miRNAs with a greater number of samples (n= 48). Meanwhile, functional interpretation of miRNA profile was carried out based on miRNA-target databases. In addition, MGMT promoter methylation status was tested by means of pyrosequencing (PSQ) testing. RESULTS Six miRNAs were upregulated in the long-term survival group (fold change ⩾ 2.0, P< 0.05). The further verification by qRT-PCR indicated that the increase in let-7g-5p, miR-139-5p, miR-17-5p and miR-9-3p level in long-term survivors was statistically significant. Kaplan-Meier survival analysis showed that high expression of a prognostic 4-miRNA signature was significantly associated with good patient survival (p= 0.0012). The signature regulated signaling pathways including Calcium, MAPK, ErbB, mTOR and cell cycle involved in carcinogenesis from glial progenitor cell to primary GBM. CONCLUSIONS The 4-miRNA signature was identified as an independent prognostic biomarker that identified patients who have a favorable outcome.
Collapse
Affiliation(s)
- G Q Yuan
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - N L Wei
- Department of Neurosurgery, Fudan University Huashan Hospital, Fudan University, Shanghai 20040, China
| | - L Y Mu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - X Q Wang
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Y N Zhang
- Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - W N Zhou
- Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Y W Pan
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China.,Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| |
Collapse
|
15
|
Zhu X, Wang Y, Tan L, Fu X. The pivotal role of DNA methylation in the radio-sensitivity of tumor radiotherapy. Cancer Med 2018; 7:3812-3819. [PMID: 29952116 PMCID: PMC6089158 DOI: 10.1002/cam4.1614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022] Open
Abstract
Radiotherapy is an important modality for treatment of carcinomas; however, radio‐resistance is still a difficult problem. Aberrant epigenetic alterations play an important role in cancer development. Among epigenetic parameters, DNA methylation has arguably attracted the most attention in the radio‐resistance process. To determine the role of DNA methylation in radiation resistance, several studies were conducted. We summarized previous studies on the role of DNA methylation in radiotherapy. We observed this significant role of DNA methylation in genes related to DNA repair, cell proliferation, cell cycle process, and re‐oxygenation. Furtherly, we also conclude the predictive effect of DNA methylation on tumor radio‐sensitivity and the using of DNA methyltransferase inhibitors in clinical practice. DNA methylation plays a pivotal role in the radio‐sensitivity of tumor radio‐therapy. While hyper‐methylation or hypo‐methylation of genes is related to gene functions.
Collapse
Affiliation(s)
- Xueru Zhu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| | - Yiting Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| | - Li Tan
- Department of Cellular and Genetic Medicine, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| |
Collapse
|
16
|
Bai J, Zhang X, Liu B, Wang H, Du Z, Song J. Silencing DNA methyltransferase 1 leads to the activation of the esophageal suppressor gene p16 in vitro and in vivo. Oncol Lett 2017; 14:3077-3081. [PMID: 28927055 DOI: 10.3892/ol.2017.6535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 11/25/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that DNA methyltransferase 1 (DNMT1) is required for the maintenance of DNA methylation and epigenetic changes that may lead to the development of esophageal squamous cell carcinoma (ESCC). In order to investigate whether the silencing of DNMT1 protects tumor suppressor genes, including p16, and is able to be used as a potential therapy for human ESCC, short hairpin RNA targeting DNMT1 (shRNA-DNMT1) was synthesized and transfected into the human ESCC lines KYSE150 and KYSE410, which were then injected into the backs of nude mice prior to harvesting. Results from the reverse transcription-quantitative polymerase chain reaction (PCR) and western blotting demonstrated that p16 mRNA expression was increased in the shRNA-DNMT1-transfected ESCC cell lines in vitro and in vivo. Consistent with the immunohistochemistry results, p16 was expressed in tumor tissue from nude mice that had been transplanted with the modified human ESCC lines. It was also observed that p16 methylation was inhibited following transfection with shRNA-DNMT1 as detected using methylation-specific PCR analysis. The results of the present study suggest that silencing DNMT1 serves a protective role through the demethylation and subsequent activation of p16 in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Bai
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Xue Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Bangqing Liu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang 541100, P.R. China
| | - Haiyong Wang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang 541001, P.R. China
| | - Zhenzong Du
- Department of Thoracic Surgery, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang 541002, P.R. China
| | - Jianfei Song
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang 541100, P.R. China
| |
Collapse
|
17
|
娄 诚, Gong F, 杜 智. Progress in research of tumor epigenetic therapy. Shijie Huaren Xiaohua Zazhi 2017; 25:1071. [DOI: 10.11569/wcjd.v25.i12.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
He M, Zhou W, Li C, Guo M. MicroRNAs, DNA Damage Response, and Cancer Treatment. Int J Mol Sci 2016; 17:ijms17122087. [PMID: 27973455 PMCID: PMC5187887 DOI: 10.3390/ijms17122087] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
As a result of various stresses, lesions caused by DNA-damaging agents occur constantly in each cell of the human body. Generally, DNA damage is recognized and repaired by the DNA damage response (DDR) machinery, and the cells survive. When repair fails, the genomic integrity of the cell is disrupted—a hallmark of cancer. In addition, the DDR plays a dual role in cancer development and therapy. Cancer radiotherapy and chemotherapy are designed to eliminate cancer cells by inducing DNA damage, which in turn can promote tumorigenesis. Over the past two decades, an increasing number of microRNAs (miRNAs), small noncoding RNAs, have been identified as participating in the processes regulating tumorigenesis and responses to cancer treatment with radiation therapy or genotoxic chemotherapies, by modulating the DDR. The purpose of this review is to summarize the recent findings on how miRNAs regulate the DDR and discuss the therapeutic functions of miRNAs in cancer in the context of DDR regulation.
Collapse
Affiliation(s)
- Mingyang He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weiwei Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chuang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
19
|
Li HK, Matsumoto Y, Furusawa Y, Kamada T. PU-H71, a novel Hsp90 inhibitor, as a potential cancer-specific sensitizer to carbon-ion beam therapy. JOURNAL OF RADIATION RESEARCH 2016; 57:572-575. [PMID: 27242340 PMCID: PMC5045081 DOI: 10.1093/jrr/rrw054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/16/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
PU-H71, a heat shock protein 90 (Hsp90) inhibitor, has yielded therapeutic efficacy in many preclinical models and is currently in clinical trials. Carbon-ion radiotherapy (CIRT) has provided successful tumor control; however, there is still room for improvement, particularly in terms of tumor-specific radiosensitization. The Hsp90 inhibitor PU-H71 has been shown to sensitize tumor cells to X-ray radiation. A murine osteosarcoma cell line (LM8) and a normal human fibroblast cell line (AG01522) were treated with PU-H71 before X-ray, 14- or 50-keV/µm carbon-ion beam (C-ion) irradiation. Cell survival and protein expression were evaluated with colony formation and western blot, respectively. Treatment with PU-H71 alone was shown to be non-toxic to both cell lines; however, PU-H71 was shown to significantly sensitize LM8 cells to not only X-ray, but also to C-ion irradiation, while only a minimal sensitizing effect was observed in AG01522 cells. PU-H71 treatment was found to suppress the protein expression levels of Rad51 and Ku70, which are associated with the homologous recombination pathway and the non-homologous end-joining pathway of double-strand break repair. The findings reported here suggest that PU-H71 could be a promising radiosensitizer for CIRT.
Collapse
Affiliation(s)
- Huizi Keiko Li
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo, Chiba 263-8522, Japan
| | - Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Tadashi Kamada
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo, Chiba 263-8522, Japan
| |
Collapse
|
20
|
Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int J Mol Sci 2016; 17:ijms17010102. [PMID: 26784176 PMCID: PMC4730344 DOI: 10.3390/ijms17010102] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/22/2015] [Accepted: 12/25/2015] [Indexed: 12/20/2022] Open
Abstract
During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.
Collapse
|
21
|
Mao B, Wang G. MicroRNAs involved with hepatocellular carcinoma (Review). Oncol Rep 2015; 34:2811-20. [PMID: 26398882 DOI: 10.3892/or.2015.4275] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/13/2015] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies, which accounts for 90% of primary liver cancer. HCC usually presents with poor outcomes due to the high rates of tumor recurrence and widespread metastasis. However, the underlying mechanism of HCC initiation and progression, which significantly hindered the development of valid approaches for early detection and treatment remain to be elucidated. As a group of small non-coding RNAs, microRNAs (miRNAs) have been demonstrated to be involved in many types of diseases especially human malignancies. Numerous miRNAs are deregulated in HCC, which may shed some light on current investigations. Since miRNAs are stable and detected easily, their ectopic expression has been reported in HCC tissues, serum/plasma and cell lines. As previously described, miRNAs serve as tumor suppressors or oncogenes, indicating that miRNAs may be useful as diagnostic, therapeutic and prognostic markers of HCC. In the present review, we assessed the latest data regarding dysregulated miRNAs in HCC and reviewed the reported functions of these miRNAs as they apply to the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Bijing Mao
- Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Ge Wang
- Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
22
|
Juo YY, Gong XJ, Mishra A, Cui X, Baylin SB, Azad NS, Ahuja N. Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics 2015; 7:215-35. [PMID: 25942532 DOI: 10.2217/epi.14.73] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cancer epigenome is characterized by global DNA methylation and chromatin changes, such as the hypermethylation of specific CpG island promoters. Epigenetic agents like DNA methyltransferase or histone deacetylase inhibitors induce phenotype changes by reactivation of epigenetically silenced tumor suppressor genes. Despite initial promise in hematologic malignancies, epigenetic agents have not shown significant efficacy as monotherapy against solid tumors. Recent trials showed that epigenetic agents exert favorable modifier effects when combined with chemotherapy, hormonal therapy, or other epigenetic agents. Due to the novel nature of their mechanism, it is important to reconsider the optimal patient selection, drug regimen, study design, and outcome measures when pursuing future trials in order to discover the full potential of this new therapeutic modality.
Collapse
Affiliation(s)
- Yen-Yi Juo
- Department of Surgery, George Washington University Medical Center, 2150 Pennsylvania Ave. NW, Suite 6B, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang T, Wang G, Hao D, Liu X, Wang D, Ning N, Li X. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer. Mol Cancer 2015; 14:125. [PMID: 26123544 PMCID: PMC4512107 DOI: 10.1186/s12943-015-0402-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
RNA binding proteins (RBPs) and microRNAs (miRNAs) are two of the most important post-transcriptional regulators of gene expression, and their aberrant expression contributes to the development of human malignancies. Let-7, one of the most well-known tumor suppressors, is frequently down-regulated in a variety of human cancers. The RBP LIN28A/LIN28B, a direct target of the let-7 family of miRNAs, is an inhibitor of let-7 biogenesis and is frequently up-regulated in cancers. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors is reportedly involved in cancer development, contributing to cellular proliferation, cell death resistance, angiogenesis, metastasis, metabolism reprogramming, tumor-associated inflammation, genome instability, acquiring immortality and evading immune destruction. In this review, we summarized the mechanisms of LIN28A/LIN28B and let-7 loop aberrant regulation in human cancer and discussed the roles and potential mechanisms of the LIN28A/LIN28B and let-7 loop in regulating the hallmarks of cancer. The crosstalk between LIN28A/LIN28B and let-7 loop and certain oncogenes (such as MYC, RAS, PI3K/AKT, NF-κB and β-catenin) in regulating hallmarks of cancer has also been discussed.
Collapse
Affiliation(s)
- Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| | - Dapeng Hao
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Xi Liu
- Center of Cardiovascular, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China.
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Ning Ning
- Department of Gastrointestinal Surgery, International Hospital of Pecking University, Beijing, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
24
|
Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015; 12:527-40. [PMID: 26122185 DOI: 10.1038/nrclinonc.2015.120] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The past 20 years have seen dramatic changes in the delivery of radiation therapy, but the impact of radiobiology on the clinic has been far less substantial. A major consideration in the use of radiotherapy has been on how best to exploit differences between the tumour and host tissue characteristics, which in the past has been achieved empirically by radiation-dose fractionation. New advances are uncovering some of the mechanistic processes that underlie this success story. In this Review, we focus on how these processes might be targeted to improve the outcome of radiotherapy at the individual patient level. This approach would seem a more productive avenue of treatment than simply trying to increase the radiation dose delivered to the tumour.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| | - William H McBride
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| |
Collapse
|
25
|
Downs B, Wang SM. Epigenetic changes in BRCA1-mutated familial breast cancer. Cancer Genet 2015; 208:237-40. [PMID: 25800897 DOI: 10.1016/j.cancergen.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/08/2015] [Accepted: 02/04/2015] [Indexed: 12/13/2022]
Abstract
Familial breast cancer occurs in about 10% of breast cancer cases. Germline mutation in BRCA1 is the most penetrant predisposition for the disease. Mutated BRCA1 leads to disease by causing genome instability via multiple mechanisms including epigenetic changes. This review summarizes recent progress in studying the correlation between BRCA1 predisposition and epigenetic alterations in BRCA1-type familial breast cancer.
Collapse
Affiliation(s)
- Bradley Downs
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - San Ming Wang
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|