1
|
Bhale NA, Shah S, Jahnavi AS, Vishwakarma A, Thakur TS, Thomas SP, Srivastava S, Dikundwar AG. Three Strikingly Different Crystal Habits of Tadalafil: Design, Characterization, Pharmaceutical Performance, and Computational Studies. Mol Pharm 2024. [PMID: 39556092 DOI: 10.1021/acs.molpharmaceut.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The present study aims at improving the physicochemical properties of a widely used drug Tadalafil through crystal habit modification, without changing the polymorphic form. Three distinct types of crystal habits, namely, needle, plate, and block, were obtained under controlled crystallization protocols with optimized solvent compositions. Complete characterization of these three crystal habits was carried out using powder X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Morphological features were studied by optical and scanning electron microscopy. Evaluation of the pharmaceutical performance of different crystal habits reveals significant improvement in compressibility and flow properties for the block-shaped crystals in comparison to the needle- and plate-shaped crystals. Also, a more linear tablet compression behavior was noted for the plate and block morphologies of the API compared to their needle counterpart. In vitro dissolution studies showed distinct release profiles for the same API form with different crystal habits, i.e., needle > plate > block. Insights into crystal growth mechanism and the role of solvents in affording the observed crystal habits are presented based on molecular dynamics simulations of intermolecular interactions with crystal facets, in conjunction with the experimental crystal face indexing of the single crystals of different habits. These observations were further supported by interaction topology analysis and the electrostatic features on different crystal facets.
Collapse
Affiliation(s)
- Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, Balanagar 500 037, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, Balanagar 500 037, India
| | - Avvaru Subha Jahnavi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, Balanagar 500 037, India
| | - Arti Vishwakarma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110 016, India
| | - Tejender S Thakur
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110 016, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, Balanagar 500 037, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, Balanagar 500 037, India
| |
Collapse
|
2
|
Moldovan AA, Maloney AGP. Surface Analysis-From Crystal Structures to Particle Properties. CRYSTAL GROWTH & DESIGN 2024; 24:4160-4169. [PMID: 38766640 PMCID: PMC11099916 DOI: 10.1021/acs.cgd.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Understanding the surface properties of particles is crucial for optimizing the performance of formulated products in various industries. However, acquiring this understanding often requires expensive trial-and-error studies. Here, we present advanced surface analysis tools that enable the visualization and quantification of chemical and topological information derived from crystallographic data. By employing functional group analysis, roughness calculations, and statistical interaction data, we facilitate direct comparisons of surfaces. We further demonstrate the practicality of our approach by correlating the sticking propensity of distinct ibuprofen morphologies with surface and particle descriptors calculated from a single crystal structure. Our findings support and expand upon previous work, demonstrating that the presence of a carboxylic acid group on the {011} facet leads to significant differences in particle properties and explains the higher electrostatic potential observed in the block-like morphology. While our surface analysis tools are not intended to replace the importance of chemical intuition and expertise, they provide valuable insights for formulators and particle engineers, facilitating informed, data-driven decisions to mitigate formulation risks. This research represents a significant step toward a comprehensive understanding of particle surfaces and their impact on products.
Collapse
Affiliation(s)
| | - Andrew G. P. Maloney
- The Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.
| |
Collapse
|
3
|
Zhang Q, Wang Z, Shi K, Zhou H, Wei X, Hall P. Improving Inhalation Performance with Particle Agglomeration via Combining Mechanical Dry Coating and Ultrasonic Vibration. Pharmaceutics 2023; 16:68. [PMID: 38258079 PMCID: PMC10821125 DOI: 10.3390/pharmaceutics16010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Agglomerate formulations for dry powder inhalation (DPI) formed with fine particles are versatile means for the highly efficient delivery of budesonide. However, uncontrolled agglomeration induces high deposition in the upper airway, causing local side effects due to high mechanical strength, worse deagglomeration, and poor fine-particle delivery. In the present study, fine lactose was mechanically dry-coated prior to particle agglomeration, and the agglomerates were then spheroidized via ultrasonic vibration to improve their aerosol performance. The results showed that the agglomerate produced with the surface-enriched hydrophobic magnesium stearate and ultrasonic vibration demonstrated improved aerosolization properties, benefiting from their lower mechanical strength, less interactive cohesive force, and improved fine powder dispersion behavior. After dispersion utilizing a Turbuhaler® with a pharmaceutical cascade impactor test, a fine particle fraction (FPF) of 71.1 ± 1.3% and an artificial throat deposition of 19.3 ± 0.4% were achieved, suggesting the potential to improve the therapeutic outcomes of budesonide with less localized infections of the mouth and pharynx.
Collapse
Affiliation(s)
- Qingzhen Zhang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
| | - Zheng Wang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd., Suzhou 215000, China;
| | - Hang Zhou
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Xiaoyang Wei
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China;
| | - Philip Hall
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China;
| |
Collapse
|
4
|
Newman A, Zografi G. Perspectives on the Wetting of Solids in Pharmaceutical Systems. Pharm Res 2023; 40:3099-3118. [PMID: 36964300 DOI: 10.1007/s11095-023-03491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023]
Abstract
PURPOSE The ability of water and aqueous solutions to wet relatively nonpolar pharmaceutical solids during the processing and administration of solid dosage forms is an important part of development. RESULTS Various factors, both fundamental and technological, which are important to wettability are reviewed and analyzed. Initially, the ideal thermodynamic importance of liquid surface tension and solid surface energetics, determined by the contact angle and the polarity of the solid surface, are established. Then, emphasis is placed on various factors that change the surface energetics due to crystal defects, polymorphism, varying Miller Indices, crystal habit, amorphous structure, variable surface concentration of components in a formulation mixture, surface roughness, and complex pore structure. Case studies cover single component systems (APIs and excipients), binary mixtures (amorphous solid dispersions and physical mixtures), multicomponent systems (granules and tablets), as well as disintegration and dissolution of solid oral dosage forms. CONCLUSIONS This perspective and analysis indicates the primary importance of understanding and modifying solid surface energetics, surface chemical and physical heterogeneities, and pore structure to promote wettability in pharmaceutical systems.
Collapse
Affiliation(s)
- Ann Newman
- Seventh Street Development Group, PO Box 251, Kure Beach, NC, 24889, 765-650-4462, USA.
| | - George Zografi
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
| |
Collapse
|
5
|
Iyer J, Brunsteiner M, Modhave D, Paudel A. Role of Crystal Disorder and Mechanoactivation in Solid-State Stability of Pharmaceuticals. J Pharm Sci 2023; 112:1539-1565. [PMID: 36842482 DOI: 10.1016/j.xphs.2023.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
Common energy-intensive processes applied in oral solid dosage development, such as milling, sieving, blending, compaction, etc. generate particles with surface and bulk crystal disorder. An intriguing aspect of the generated crystal disorder is its evolution and repercussion on the physical- and chemical stabilities of drugs. In this review, we firstly examine the existing literature on crystal disorder and its implications on solid-state stability of pharmaceuticals. Secondly, we discuss the key aspects related to the generation and evolution of crystal disorder, dynamics of the disordered/amorphous phase, analytical techniques to measure/quantify them, and approaches to model the disordering propensity from first principles. The main objective of this compilation is to provide special impetus to predict or model the chemical degradation(s) resulting from processing-induced manifestation in bulk solid manufacturing. Finally, a generic workflow is proposed that can be useful to investigate the relevance of crystal disorder on the degradation of pharmaceuticals during stability studies. The present review will cater to the requirements for developing physically- and chemically stable drugs, thereby enabling early and rational decision-making during candidate screening and in assessing degradation risks associated with formulations and processing.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | | | - Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Graz Austria.
| |
Collapse
|
6
|
Meyer R, Mueller K, Naumov S, Bauer F, Enke D. Characterization of polar surface groups on siliceous materials by inverse gas chromatography and the enthalpy-entropy compensation effect. Front Chem 2023; 11:1084046. [PMID: 37065825 PMCID: PMC10098098 DOI: 10.3389/fchem.2023.1084046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Surface-modified porous silica is a well-established composite material. To improve its embedding and application behavior, adsorption studies of various probe molecules have been performed using the technique of inverse gas chromatography (IGC). For this purpose, IGC experiments were carried out in the infinite dilution mode on macro-porous micro glass spheres before and after surface modification with (3-mercaptopropyl)trimethoxysilane. To provide information about the polar interactions between probe molecules and the silica surface, in particular, eleven polar molecules have been injected. In summary, the free surface energy for pristine silica ( γ S t o t a l = 229 mJ/m2) and for (3-mercaptopropyl)trimethoxysilane-modified silica ( γ S t o t a l = 135 mJ/m2) indicates a reduced wettability after surface modification. This is due to the reduction of the polar component of the free surface energy ( γ S S P ) from 191 mJ/m2 to 105 mJ/m2. Simultaneously, with the reduction of surface silanol groups caused by surface modification of silica and, therefore, the decrease in polar interactions, a substantial loss of Lewis acidity was observed by various IGC approaches. Experiments with all silica materials have been conducted at temperatures in the range from 90°C to 120°C to determine the thermodynamic parameters, such as adsorption enthalpy ( Δ H a d s ) and adsorption entropy ( Δ S a d s ), using the Arrhenius regression procedure evaluating the IGC data. With the help of the enthalpy-entropy compensation, two types of adsorption complexes are assumed between polar probe molecules and the silica surface because of different isokinetic temperatures. Identical adsorption complexes with an isokinetic temperature of 370°C have been assigned to alkanes and weakly interacting polar probes such as benzene, toluene, dichloromethane, and chloroform. Polar probe molecules with typical functional groups such as OH, CO, and CN, having the ability to form hydrogen bonds to the silica surface, exhibit a lower isokinetic temperature of 60°C. Quantum chemical calculations of the probe molecules on a non-hydroxylated and hydroxylated silica cluster supported the formation of hydrogen bonds in the case of a strong polar adsorption complex with a bonding distance of 1.7 nm-1.9 nm to the silica surface.
Collapse
Affiliation(s)
- Ralf Meyer
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
- *Correspondence: Ralf Meyer, ; Dirk Enke,
| | - Kai Mueller
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
| | - Sergej Naumov
- Leibniz Institute of Surface Engineering, Leipzig, Germany
| | - Frank Bauer
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
| | - Dirk Enke
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
- *Correspondence: Ralf Meyer, ; Dirk Enke,
| |
Collapse
|
7
|
Evaluation of Time Consolidation Effect of Pharmaceutical Powders. Pharm Res 2022; 39:3345-3357. [PMID: 36180609 DOI: 10.1007/s11095-022-03402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE We aim to perform a systematic study of the time consolidation effect, i.e. the reduction of powder flowability resulting from at-rest storage, on a diverse array of pharmaceutical powders under different stress, humidity, and length of time. METHODS A ring shear cell-based methodology was employed. An instantaneous flow function was obtained, followed immediately by at-rest consolidation at precisely controlled humidity, stress, and duration. The consolidated powder was then subjected to shear-cell measurement. The difference in flowability between the immediate and consolidated specimens were attributed to the time consolidation effect. RESULTS Among the six excipients tested, three exhibited time consolidation at varying extents. Citric acid and starch underwent time consolidation only at high relative humidity (RH = 75%), promoted by vapor condensation and liquid bridge formation. For both materials, the flowability decreased with time, and the extent of time consolidation was not sensitive to the stress applied (0.4-2 kPa). Importantly, mannitol was found to time consolidate under both 50% and 75% RH. Given time, mannitol formed cake, giving rise to flow function below unity. Inverse gas chromatography analysis indicated that mannitol possesses high total surface energy among known pharmaceutical powders. CONCLUSION While time consolidation is prevalent among pharmaceutical powders, most can be mitigated by controlling the RH to below 75%. Notably, for materials possessing high surface energy, such as mannitol, time consolidation could occur at ambient humidity. Therefore, it is desirable to consider in-depth time consolidation evaluation for high surface energy powders, e.g. those subjected to milling or of amorphous nature.
Collapse
|
8
|
Abiona O, Wyatt D, Koner J, Mohammed A. The Optimisation of Carrier Selection in Dry Powder Inhaler Formulation and the Role of Surface Energetics. Biomedicines 2022; 10:2707. [PMID: 36359226 PMCID: PMC9687551 DOI: 10.3390/biomedicines10112707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2023] Open
Abstract
This review examines the effects of particle properties on drug-carrier interactions in the preparation of a dry powder inhaler (DPI) formulation, including appropriate mixing technology. The interactive effects of carrier properties on DPI formulation performance make it difficult to establish a direct cause-and-effect relationship between any one carrier property and its effect on the performance of a DPI formulation. Alpha lactose monohydrate remains the most widely used carrier for DPI formulations. The physicochemical properties of α-lactose monohydrate particles, such as particle size, shape and solid form, are profoundly influenced by the method of production. Therefore, wide variations in these properties are inevitable. In this review, the role of surface energetics in the optimisation of dry powder inhaler formulations is considered in lactose carrier selection. Several useful lactose particle modification methods are discussed as well as the use of fine lactose and force control agents in formulation development. It is concluded that where these have been investigated, the empirical nature of the studies does not permit early formulation prediction of product performance, rather they only allow the evaluation of final formulation quality. The potential to leverage particle interaction dynamics through the use of an experimental design utilising quantifiable lactose particle properties and critical quality attributes, e.g., surface energetics, is explored, particularly with respect to when a Quality-by-Design approach has been used in optimisation.
Collapse
Affiliation(s)
- Olaitan Abiona
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK
| | - David Wyatt
- Aston Particle Technologies Ltd., Aston Triangle, Birmingham B4 7ET, UK
| | - Jasdip Koner
- Aston Particle Technologies Ltd., Aston Triangle, Birmingham B4 7ET, UK
| | - Afzal Mohammed
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
9
|
Nano-Dry-Melting: A Novel Technology for Manufacturing of Pharmaceutical Amorphous Solid Dispersions. Pharmaceutics 2022; 14:pharmaceutics14102145. [PMID: 36297580 PMCID: PMC9608596 DOI: 10.3390/pharmaceutics14102145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Amorphous solid dispersions (ASD) are one of the most prominent formulation approaches to overcome bioavailability issues that are often presented by new poorly soluble drug candidates. State-of-the art manufacturing techniques include hot melt extrusion and solvent-based methods like spray drying. The high thermal and mechanical shear stress during hot melt extrusion, or the use of an organic solvent during solvent-based methods, are examples of clear drawbacks for those methods, limiting their applicability for certain systems. In this work a novel process technology is introduced, called Nano-Dry-Melting (NDM), which can provide an alternative option for ASD manufacturing. NDM consists of a comminution step in which the drug is ground to nanosize and a drying step provides a complete amorphization of the system at temperatures below the melting point. Two drug–polymer systems were prepared using NDM with a wet media mill and a spray dryer and analyzed regarding their degree of crystallinity using XRD analysis. Feasibility studies were performed with indomethacin and PVP. Furthermore, a “proof-of-concept” study was conducted with niclosamide. The experiments successfully led to amorphous samples at temperatures of about 50 K below the melting point within seconds of heat exposition. With this novel, solvent-free and therefore “green” production technology it is feasible to manufacture ASDs even with those drug candidates that cannot be processed by conventional process technologies.
Collapse
|
10
|
Proof-of-Concept for Adjusted Surface Energies and Modified Fines as a Novel Concept in Particle Engineering for DPI Formulations. Pharmaceutics 2022; 14:pharmaceutics14050951. [PMID: 35631537 PMCID: PMC9145343 DOI: 10.3390/pharmaceutics14050951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Currently marketed dry powder inhaler (DPI) medicine lacks drug delivery performance due to insufficient powder dispersion. In carrier-based blends, incomplete drug detachment is typically attributed to excessive adhesion forces between carrier and drug particles. Adding force control agents (FCA) is known to increase drug detachment. Several researchers accounted this effect to a decrease in carrier surface energy (SE). In turn, an increase in SE should impede drug detachment. In this proof-of-concept study, we investigated the influence of the SE of the carrier material in binary blends by intentionally inverting the FCA approach. We increased SEs by dry particle coating utilising high-shear mixing, which resulted in decreased respirable fractions of the respective blends. Thus, we confirmed the SE of the carrier influences drug delivery and should be considered in formulation approaches. Complementing engineering techniques on the carrier level, we evaluated a method to modify the SE of extrinsic fines in ternary powder blends for inhalation. By the co-milling of fine lactose and an additive, we tailored the SE and hence the adhesiveness of additional fine excipients. Thus, the extent and the strength of drug–fines agglomerates may be controllable. For ternary DPI formulations, this work highlights the potential benefits of matching the SE of both fines and drugs.
Collapse
|
11
|
Surface energy considerations in ternary powder blends for inhalation. Int J Pharm 2021; 609:121189. [PMID: 34662648 DOI: 10.1016/j.ijpharm.2021.121189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
The need for optimisation of DPI formulations is a main research motivation in respiratory drug delivery. Well-established formulations like carrier-based blends still show a lack of efficiency. The addition of extrinsic fine excipients is extensively discussed since decades, supported by a wide range of solid-state characteristics to understand their mechanism and classify influencing parameters. The first part of this study aims at comparing the surface energies of lactose fines and their corresponding influence on the aerodynamic performance of the respective ternary blends. Five different fine lactose qualities with varying origins were used, which were distinguishable in terms of surface energy, but comparable regarding particle size, moisture content and chemical composition. It demonstrates the crucial influence of adhesion properties of fines, based on different surface energies. Secondly, one specific fine lactose quality was used on fundamentally different lactose carriers, which highlights the negligible influence of carrier properties if extrinsic fines are preferentially capable of excipient-drug interactions.
Collapse
|
12
|
Yarangsee C, Wattanaarsakit P, Sirithunyalug J, Leesawat P. Particle Engineering of Chitosan and Kaolin Composite as a Novel Tablet Excipient by Nanoparticles Formation and Co-Processing. Pharmaceutics 2021; 13:pharmaceutics13111844. [PMID: 34834259 PMCID: PMC8618914 DOI: 10.3390/pharmaceutics13111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Chitosan is not a common excipient for direct compression due to poor flowability and inadequate compressibility. Co-processing of chitosan and kaolin is a challenging method to overcome the limitations of the individual excipients. The purpose of the present study was to develop co-processed chitosan–kaolin by the spray drying technique (rotary atomizer spray dryer) and to characterize the excipient properties. The formation of chitosan nanoparticles was the major factor for desirable tablet hardness. The ratio of chitosan/tripolyphosphate of 10:1 and 20:1 had a significant effect on hardness. The successful development of co-processed chitosan–kaolin as a novel tablet excipient was obtained from a feed formulation composed of chitosan and kaolin at a ratio of 55:45 and the optimum chitosan/tripolyphosphate ratio of 20:1. Co-processing altered the physical properties of co-processed chitosan–kaolin in such a way that it enhanced the flowability and tableting performance compared to the physical mixture.
Collapse
Affiliation(s)
- Chonwipa Yarangsee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.Y.); (J.S.)
| | - Phanphen Wattanaarsakit
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.Y.); (J.S.)
| | - Phuriwat Leesawat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.Y.); (J.S.)
- Correspondence: ; Tel.: +66-53-944342
| |
Collapse
|
13
|
Study of Different Crystal Habits of Aprepitant: Dissolution and Material Attributes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study, aprepitant (APT) was selected to find its suitable crystal habit, which can improve its existing poor dissolution and manufacturing processability. Solvents were screened out for solubility analysis of APT and further crystal habit modification. Solid-state characterization studies like powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier infrared spectroscopy (FTIR) distinguished that tabular crystal habit was generated from acetone (APT-AC) and long tabular crystal habit was generated from ethyl acetate (APT-EA). Kawakita analysis and powder flow property studies showed that APT-EA is cohesive, has poor flow property and low bulk density compared to APT-AC (p < 0.05). Heckel plots reflected that APT-EA shows higher fragmentation and particle rearrangement during the initial stages as indicated by the higher intercept values. Higher slopes in APT-EA and APT-AC confirmed better plasticity but lower yield pressure in APT-AC proved good plastic deformation compared to APT-EA (p < 0.05). The dissolution profile of the APT-EA was found to be better than that of APT-AC. Overall, it can be concluded that APT-AC crystal habit has a better flow rate, tensile strength, and plasticity whereas APT-EA has better dissolution.
Collapse
|
14
|
Ke WR, Kwok PCL, Khanal D, Chang RYK, Chan HK. Co-spray dried hydrophobic drug formulations with crystalline lactose for inhalation aerosol delivery. Int J Pharm 2021; 602:120608. [PMID: 33862136 DOI: 10.1016/j.ijpharm.2021.120608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/15/2023]
Abstract
Spray drying is a rapid method for converting a liquid feed into dried particles for inhalation aerosols. Lactose is a major inhalation excipient used in spray-dried (SD) formulations. However, SD powders produced from solutions are usually amorphous hence unstable to moisture. This problem can potentially be minimized by spray drying a suspension (instead of solution) containing crystalline lactose particles and dissolved drugs. In the present study, the suspension formulation containing dissolved budesonide (BUD) or rifampicin (RIF) and suspended lactose crystals in isopropanol alcohol (IPA) were produced. For comparison, powders were also produced from solution formulations containing the same proportions of drug and lactose dissolved in 50:50 IPA/water as controls. These SD powders were stored at 25 °C/60% RH and 40 °C/75% RH for six months. The particulate properties and in vitro dispersion performance were examined at various storage time points. All powders obtained from spray drying of solutions recrystallized after one week of storage at 25 °C/60% RH. In contrast, SD BUD-lactose obtained from suspension did not change until after three-months of storage when the particle size increased gradually with morphology change and yet the crystallinity remained the same as determined by X-ray powder diffraction. For the SD RIF-lactose obtained from suspension, both particulate properties and in vitro powder dispersion performance showed no significant difference before and after storage at both storage conditions. To conclude, this is the first study to show that SD powder formulations obtained from suspensions containing lactose crystals demonstrated superior storage stability performance, which is desirable for inhaled powders.
Collapse
Affiliation(s)
- Wei-Ren Ke
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Bauer F, Meyer R, Bertmer M, Naumov S, Al-Naji M, Wissel J, Steinhart M, Enke D. Silanization of siliceous materials, part 3: Modification of surface energy and acid-base properties of silica nanoparticles determined by inverse gas chromatography (IGC). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
In-Depth Comparison of Dry Particle Coating Processes Used in DPI Particle Engineering. Pharmaceutics 2021; 13:pharmaceutics13040580. [PMID: 33921741 PMCID: PMC8073608 DOI: 10.3390/pharmaceutics13040580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
High-shear mixer coatings as well as mechanofusion processes are used in the particle-engineering of dry powder inhalation carrier systems. The aim of coating the carrier particle is usually to decrease carrier–drug adhesion. This study comprises the in-depth comparison of two established dry particle coating options. Both processes were conducted with and without a model additive (magnesium stearate). In doing so, changes in the behaviour of the processed particles can be traced back to either the process or the additive. It can be stated that the coarse model carrier showed no significant changes when processed without additives. By coating the particles with magnesium stearate, the surface energy decreased significantly. This leads to a significant enhancement of the aerodynamic performance of the respective carrier-based blends. Comparing the engineered carriers with each other, the high-shear mixer coating shows significant benefits, namely, lower drug–carrier adhesion and the higher efficiency of the coating process.
Collapse
|
17
|
Park H, Ha ES, Kim MS. Physicochemical analysis techniques specialized in surface characterization of inhalable dry powders. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00526-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Nguyen TTH, Hammond RB, Styliari ID, Murnane D, Roberts KJ. A digital workflow from crystallographic structure to single crystal particle attributes for predicting the formulation properties of terbutaline sulfate. CrystEngComm 2020. [DOI: 10.1039/d0ce00026d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A detailed inter-molecular (synthonic) analysis of terbutaline sulfate, an ionic addition salt for inhalation drug formulation, is related to its crystal morphology, the surface chemistry of the habit faces and hence to its crystal surface energy.
Collapse
Affiliation(s)
- Thai T. H. Nguyen
- Centre for the Digital Design of Drug Products
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - Robert B. Hammond
- Centre for the Digital Design of Drug Products
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | | | - Darragh Murnane
- School of Life and Medical Sciences
- University of Hertfordshire
- UK
| | - Kevin J. Roberts
- Centre for the Digital Design of Drug Products
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| |
Collapse
|
19
|
Brunsteiner M, Zellnitz S, Pinto JT, Karrer J, Paudel A. Can we predict trends in tribo-charging of pharmaceutical materials from first principles? POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Bauer F, Meyer R, Czihal S, Bertmer M, Decker U, Naumov S, Uhlig H, Steinhart M, Enke D. Functionalization of porous siliceous materials, Part 2: Surface characterization by inverse gas chromatography. J Chromatogr A 2019; 1603:297-310. [DOI: 10.1016/j.chroma.2019.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 01/12/2023]
|
21
|
Farshchi N, Abbasian A, Larijani K. Is Inverse Gas Chromatography (IGC) a Convenient Method to Determine Compatibility of Rubber Materials? Chromatographia 2019. [DOI: 10.1007/s10337-019-03791-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Zellnitz S, Roblegg E, Pinto J, Fröhlich E. Delivery of Dry Powders to the Lungs: Influence of Particle Attributes from a Biological and Technological Point of View. Curr Drug Deliv 2019; 16:180-194. [PMID: 30360739 DOI: 10.2174/1567201815666181024143249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Dry powder inhalers are medical devices used to deliver powder formulations of active pharmaceutical ingredients via oral inhalation to the lungs. Drug particles, from a biological perspective, should reach the targeted site, dissolve and permeate through the epithelial cell layer in order to deliver a therapeutic effect. However, drug particle attributes that lead to a biological activity are not always consistent with the technical requirements necessary for formulation design. For example, small cohesive drug particles may interact with neighbouring particles, resulting in large aggregates or even agglomerates that show poor flowability, solubility and permeability. To circumvent these hurdles, most dry powder inhalers currently on the market are carrier-based formulations. These formulations comprise drug particles, which are blended with larger carrier particles that need to detach again from the carrier during inhalation. Apart from blending process parameters, inhaler type used and patient's inspiratory force, drug detachment strongly depends on the drug and carrier particle characteristics such as size, shape, solid-state and morphology as well as their interdependency. This review discusses critical particle characteristics. We consider size of the drug (1-5 µm in order to reach the lung), solid-state (crystalline to guarantee stability versus amorphous to improve dissolution), shape (spherical drug particles to avoid macrophage clearance) and surface morphology of the carrier (regular shaped smooth or nano-rough carrier surfaces for improved drug detachment.) that need to be considered in dry powder inhaler development taking into account the lung as biological barrier.
Collapse
Affiliation(s)
- Sarah Zellnitz
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Joana Pinto
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
23
|
Applications of In Silico Solvent Screening and an Interactive Web-Based Portal for Pharmaceutical Crystallization Process Development. J Pharm Sci 2019; 108:2621-2634. [PMID: 30905703 DOI: 10.1016/j.xphs.2019.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022]
Abstract
In an effort to reduce development time and costs associated with active pharmaceutical ingredient process solvent selection and crystallization design, a tiered approach to crystallization solvent selection was developed that leverages different solubility modeling tools selected on the basis of available data and the intended use of the prediction. To facilitate easy access to routine solubility modeling functionality with a high level of automation and parallelization, a web-based in silico solvent-screening tool was also developed as well as a user interface to visualize and interpret the large number of predicted results. Examples are presented to illustrate the utility of the workflow and solvent-screening tool at various stages of development for a diverse range of crystallization processes. Implementation of the in silico solvent selection workflow has led to a ∼10× reduction in active pharmaceutical ingredient usage and 20% reduction in full-time employee time per project based on average after the first year.
Collapse
|
24
|
Ahmed B, Brown CJ, McGlone T, Bowering DL, Sefcik J, Florence AJ. Engineering of acetaminophen particle attributes using a wet milling crystallisation platform. Int J Pharm 2019; 554:201-211. [PMID: 30391338 DOI: 10.1016/j.ijpharm.2018.10.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 11/26/2022]
Abstract
Wet milling coupled with crystallisation has considerable potential to deliver enhanced control over particle attributes. The effect of process conditions and wet mill configuration on particle size, shape and surface energy has been investigated on acetaminophen using a seeded cooling crystallisation coupled with a wet mill unit generating size controlled acetaminophen crystals through an interchangeable rotor-tooth configuration. The integrated wet milling crystallisation platform incorporates inline focused beam reflectance measurement (FBRM) and particle vision measurement (PVM) for in-depth understanding of particle behaviour under high-shear conditions. We used a recently developed computational tool for converting chord length distribution (CLD) from FBRM to particle size distribution (PSD) to obtain quantitative insight into the effect of the competing mechanisms of size reduction and growth in a wet milling seeded crystallisation process for acetaminophen. The novelty of our wet milling crystallisation approach is in delivery of consistent surface energies across a range of particle sizes. This highlights the potential to engineer desirable particle attributes through a carefully designed, highly intensified crystallisation process.
Collapse
Affiliation(s)
- Bilal Ahmed
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Cameron J Brown
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Thomas McGlone
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Deborah L Bowering
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Jan Sefcik
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom; Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Alastair J Florence
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
25
|
Dixit D, Bunk S, Rane R, Ghoroi C. Influence of Ar plasma treatment on the wetting behavior of pharmaceutical powders. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
A Training on: Continuous Manufacturing (Direct Compaction) of Solid Dose Pharmaceutical Products. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9313-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Farah S, Domb AJ. Crystalline paclitaxel coated DES with bioactive protective layer development. J Control Release 2018; 271:107-117. [PMID: 29289571 DOI: 10.1016/j.jconrel.2017.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Abstract
Drug eluting stents (DES) based on polymeric-carriers currently lead the market, however, reports on clinical complications encourage the development of safer and more effective DES. We recently reported on carrier-free DES based on rapamycin crystalline coating as a potential therapeutic solution. Here, we report for the first time surface crystallization of paclitaxel (PT) onto metallic stents. The physicochemical principles of crystallization and key process parameters were extensively studied for fabrication of controllable and homogeneous crystalline coatings on stent scaffolds. Stents loaded with nearly 100μg PT were chosen as a potential therapeutic device with a multilayer coating of 4-7μm thickness. In vitro PT release from these coated stents shows constant release for at least 28days with 10% cumulatively released. The effect of fast dissolving top coating on the physical stability of the coated stent was determined. The top coating enhances the mechanical stability of the crystalline coating during deployment and expansion simulations. Also, incorporating PT in the protective top coating for developing bioactive top coating for multilayer controlled release purpose was intensively studied. This process has wide applications that can be further implemented for other drugs for effective local drug delivery from implantable medical devices.
Collapse
Affiliation(s)
- Shady Farah
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, 91120, Israel.
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
28
|
Surface Enrichment and Depletion of the Active Ingredient in Spray Dried Amorphous Solid Dispersions. Pharm Res 2018; 35:38. [PMID: 29380074 DOI: 10.1007/s11095-018-2345-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE To study the effects of physicochemical properties of drug and polymer, as well as the drug-polymer interactions, on the surface composition of SDDs. METHODS Ethanol solutions containing a model drug (IMC, NMP or FCZ) and a model polymer (PVPK12, PVPK30 or PVP-VA) were spray dried, and the surface composition of SDDs was analyzed by XPS. The surface tensions of pure components and their solutions were measured using Wilhelmy plate and/or calculated using ACD/Labs. NMR and DLS were used to obtain the diffusion coefficients of IMC, NMP, PVPK12 and PVPK30 in solvents. Flory-Huggins interaction parameters for selected drug-polymer pairs were obtained using a melting point depression method. RESULTS Significant surface enrichment or depletion of the drug was observed in SDDs depending on the particular drug-polymer combination. With PVP as the dispersion polymer, IMC and NMP were surface enriched; whereas FCZ, a hydrophilic drug, was surface depleted. With increasing PVP molecular weight, the surface drug concentration increased, and the effect was greater in the NMP/PVP and FCZ/PVP systems than in the IMC/PVP system where strong drug-polymer interaction existed. Changing the polymer from PVP to PVP-VA reduced the surface concentration of the drug. CONCLUSIONS The surface concentration of a SDD can be significantly different from the bulk concentration. The main results of this work are consistent with the notion that the relative surface tensions control surface enrichment or depletion. Besides, the relative diffusion rates of the components and the strength of their interactions may also affect the surface composition of the SDDs.
Collapse
|
29
|
Kondor A, Hogan SA. Relationships between surface energy analysis and functional characteristics of dairy powders. Food Chem 2017; 237:1155-1162. [DOI: 10.1016/j.foodchem.2017.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
|
30
|
Influence of particle properties on powder bulk behaviour and processability. Int J Pharm 2017; 518:138-154. [DOI: 10.1016/j.ijpharm.2016.12.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
|
31
|
Sun Y. Carrier free inhaled dry powder of budesonide tailored by supercritical fluid particle design. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Legras A, Kondor A, Heitzmann MT, Truss RW. Inverse gas chromatography for natural fibre characterisation: Identification of the critical parameters to determine the Brunauer-Emmett-Teller specific surface area. J Chromatogr A 2015; 1425:273-9. [PMID: 26627590 DOI: 10.1016/j.chroma.2015.11.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Abstract
Inverse gas chromatography (IGC) is an alternative technique to determine the specific surface area of natural fibres. Natural fibres have a complex surface chemistry and unique microstructure that challenge the current capabilities to perform surface characterisation. This study investigated the influence of multiple parameters on the measured Brunauer-Emmett-Teller (BET) specific surface area for samples of flax, kenaf and BioMid(®) cellulose fibres using IGC. The BET surface area of kenaf and flax differed with 0.51m(2)g(-1) and 1.35m(2)g(-1) respectively, the former being similar to the cellulose fibres (0.54m(2)g(-1)). The data was calculated under conditions where the BET equation showed good linearity (R(2)⩾0.995). Repeatability was excellent so that two runs sufficed to obtain representative BET surface area values. The findings showed the choice of solvent was important for all specimens to avoid any misleading data comparison due to molecular orientation effects that impact the adsorbent-adsorbate interactions. The higher surface area of the flax sample, and its higher variability, was correlated with a higher surface roughness observed under optical microscopy. Packing the chromatography column with long or chopped fibres produced results that were statistically insignificant.
Collapse
Affiliation(s)
- A Legras
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Cooperative Research Centre for Advanced Composites Structures Australia Pty Ldt, 1/320 Lorimer Street, Port Melbourne, VIC 3207, Australia.
| | - A Kondor
- Surface Measurement Systems LTD, 5 Wharfside, Rosemont Road, Alperton, Middlesex HA0 4PE, UK
| | - M T Heitzmann
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - R W Truss
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|