1
|
Gedde OR, Bonde A, Golbækdal PI, Skrydstrup T. Pd-Catalyzed Difluoromethylations of Aryl Boronic Acids, Halides, and Pseudohalides with ICF 2 H Generated ex Situ. Chemistry 2022; 28:e202200997. [PMID: 35388933 PMCID: PMC9321866 DOI: 10.1002/chem.202200997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
An expedient ex-situ generation of difluoroiodomethane (DFIM) and its immediate use in a Pd-catalyzed difluoromethylation of aryl boronic acids and ester derivatives in a two-chamber reactor is reported. Heating a solution of bromodifluoroacetic acid with sodium iodide in sulfolane proved to be effective for the generation of near stoichiometric amounts of DFIM for the ensuing catalytic coupling step. A two-step difluoromethylation of aryl (pseudo)halides with tetrahydroxydiboron as a low-cost reducing agent, both promoted by Pd catalysis, proved effective to install this fluorine-containing C1 group onto several pharmaceutically relevant molecules. Finally, the method proved adaptable to deuterium incorporation by simply adding D2 O to the DFIM-generating chamber.
Collapse
Affiliation(s)
- Oliver R. Gedde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Andreas Bonde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Peter I. Golbækdal
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| |
Collapse
|
2
|
Busquets O, Parcerisas A, Verdaguer E, Ettcheto M, Camins A, Beas-Zarate C, Castro-Torres RD, Auladell C. c-Jun N-Terminal Kinases in Alzheimer's Disease: A Possible Target for the Modulation of the Earliest Alterations. J Alzheimers Dis 2021; 82:S127-S139. [PMID: 33216036 DOI: 10.3233/jad-201053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given the highly multifactorial origin of Alzheimer's disease (AD) neuropathology, disentangling and orderly knowing mechanisms involved in sporadic onset are arduous. Nevertheless, when the elements involved are dissected into smaller pieces, the task becomes more accessible. This review aimed to describe the link between c-Jun N-terminal Kinases (JNKs), master regulators of many cellular functions, and the early alterations of AD: synaptic loss and dysregulation of neuronal transport. Both processes have a role in the posterior cognitive decline observed in AD. The manuscript focuses on the molecular mechanisms of glutamatergic, GABA, and cholinergic synapses altered by the presence of amyloid-β aggregates and hyperphosphorylated tau, as well as on several consequences of the disruption of cellular processes linked to neuronal transport that is controlled by the JNK-JIP (c-jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) complex, including the transport of AβPP or autophagosomes.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, Universitat Rovira i Virgili, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City, NY, USA
| | - Antoni Parcerisas
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neural Regeneration, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Rubén Darío Castro-Torres
- Department of Cell and Molecular Biology, Laboratory of Biology of Neurotransmission, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Carme Auladell
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Ugbaja S, Lawal I, Kumalo H, Lawal M. Alzheimer's Disease and β-Secretase Inhibition: An Update With a Focus on Computer-Aided Inhibitor Design. Curr Drug Targets 2021; 23:266-285. [PMID: 34370634 DOI: 10.2174/1389450122666210809100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is an intensifying neurodegenerative illness due to its irreversible nature. Identification of β-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) has been a significant medicinal focus towards AD treatment, and this has opened ground for several investigations. Despite the numerous works in this direction, no BACE1 inhibitor has made it to the final approval stage as an anti-AD drug. METHOD We provide an introductory background of the subject with a general overview of the pathogenesis of AD. The review features BACE1 inhibitor design and development with a focus on some clinical trials and discontinued drugs. Using the topical keywords BACE1, inhibitor design, and computational/theoretical study in the Web of Science and Scopus database, we retrieved over 49 relevant articles. The search years are from 2010 and 2020, with analysis conducted from May 2020 to March 2021. RESULTS AND DISCUSSION Researchers have employed computational methodologies to unravel potential BACE1 inhibitors with a significant outcome. The most used computer-aided approach in BACE1 inhibitor design and binding/interaction studies are pharmacophore development, quantitative structure-activity relationship (QSAR), virtual screening, docking, and molecular dynamics (MD) simulations. These methods, plus more advanced ones including quantum mechanics/molecular mechanics (QM/MM) and QM, have proven substantial in the computational framework for BACE1 inhibitor design. Computational chemists have embraced the incorporation of in vitro assay to provide insight into the inhibition performance of identified molecules with potential inhibition towards BACE1. Significant IC50 values up to 50 nM, better than clinical trial compounds, are available in the literature. CONCLUSION The continuous failure of potent BACE1 inhibitors at clinical trials is attracting many queries prompting researchers to investigate newer concepts necessary for effective inhibitor design. The considered properties for efficient BACE1 inhibitor design seem enormous and require thorough scrutiny. Lately, researchers noticed that besides appreciable binding affinity and blood-brain barrier (BBB) permeation, BACE1 inhibitor must show low or no affinity for permeability-glycoprotein. Computational modeling methods have profound applications in drug discovery strategy. With the volume of recent in silico studies on BACE1 inhibition, the prospect of identifying potent molecules that would reach the approved level is feasible. Investigators should try pushing many of the identified BACE1 compounds with significant anti-AD properties to preclinical and clinical trial stages. We also advise computational research on allosteric inhibitor design, exosite modeling, and multisite inhibition of BACE1. These alternatives might be a solution to BACE1 drug discovery in AD therapy.
Collapse
Affiliation(s)
- Samuel Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Isiaka Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, Saudi Arabia
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| |
Collapse
|
4
|
Nutraceutical and Probiotic Approaches to Examine Molecular Interactions of the Amyloid Precursor Protein APP in Drosophila Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22137022. [PMID: 34209883 PMCID: PMC8269328 DOI: 10.3390/ijms22137022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Studies using animal models have shed light into the molecular and cellular basis for the neuropathology observed in patients with Alzheimer’s disease (AD). In particular, the role of the amyloid precursor protein (APP) plays a crucial role in the formation of senile plaques and aging-dependent degeneration. Here, we focus our review on recent findings using the Drosophila AD model to expand our understanding of APP molecular function and interactions, including insights gained from the fly homolog APP-like (APPL). Finally, as there is still no cure for AD, we review some approaches that have shown promising results in ameliorating AD-associated phenotypes, with special attention on the use of nutraceuticals and their molecular effects, as well as interactions with the gut microbiome. Overall, the phenomena described here are of fundamental significance for understanding network development and degeneration. Given the highly conserved nature of fundamental signaling pathways, the insight gained from animal models such as Drosophila melanogaster will likely advance the understanding of the mammalian brain, and thus be relevant to human health.
Collapse
|
5
|
Karki HP, Jang Y, Jung J, Oh J. Advances in the development paradigm of biosample-based biosensors for early ultrasensitive detection of alzheimer's disease. J Nanobiotechnology 2021; 19:72. [PMID: 33750392 PMCID: PMC7945670 DOI: 10.1186/s12951-021-00814-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review highlights current developments, challenges, and future directions for the use of invasive and noninvasive biosample-based small biosensors for early diagnosis of Alzheimer's disease (AD) with biomarkers to incite a conceptual idea from a broad number of readers in this field. We provide the most promising concept about biosensors on the basis of detection scale (from femto to micro) using invasive and noninvasive biosamples such as cerebrospinal fluid (CSF), blood, urine, sweat, and tear. It also summarizes sensor types and detailed analyzing techniques for ultrasensitive detection of multiple target biomarkers (i.e., amyloid beta (Aβ) peptide, tau protein, Acetylcholine (Ach), microRNA137, etc.) of AD in terms of detection ranges and limit of detections (LODs). As the most significant disadvantage of CSF and blood-based detection of AD is associated with the invasiveness of sample collection which limits future strategy with home-based early screening of AD, we extensively reviewed the future trend of new noninvasive detection techniques (such as optical screening and bio-imaging process). To overcome the limitation of non-invasive biosamples with low concentrations of AD biomarkers, current efforts to enhance the sensitivity of biosensors and discover new types of biomarkers using non-invasive body fluids are presented. We also introduced future trends facing an infection point in early diagnosis of AD with simultaneous emergence of addressable innovative technologies.
Collapse
Affiliation(s)
- Hem Prakash Karki
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Yeongseok Jang
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jinmu Jung
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Jonghyun Oh
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
6
|
Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS NANO 2021; 15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Patient-friendly medical diagnostics and treatments have been receiving a great deal of interest due to their rapid and cost-effective health care applications with minimized risk of infection, which has the potential to replace conventional hospital-based medical procedures. In particular, the integration of recently developed materials into health care devices allows the rapid development of point-of-care (POC) sensing platforms and implantable devices with special functionalities. In this review, the recent advances in biosensors for patient-friendly diagnosis and implantable devices for patient-friendly treatment are discussed. Comprehensive analysis of portable and wearable biosensing platforms for patient-friendly health monitoring and disease diagnosis is provided, including topics such as materials selection, device structure and integration, and biomarker detection strategies. Moreover, specific challenges related to each biological fluid for wearable biosensor-based POC applications are presented. Also, advances in implantable devices, including recent materials development and wireless communication strategies, are discussed. Furthermore, various patient-friendly surgical and treatment approaches are reviewed, such as minimally invasive insertion and mounting, in vivo electrical and optical modulations, and post-operation health monitoring. Finally, the challenges and future perspectives toward the development of the patient-friendly diagnosis and treatment are provided.
Collapse
Affiliation(s)
- Pei Li
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Young Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry and Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Shevtsova EF, Maltsev AV, Vinogradova DV, Shevtsov PN, Bachurin SO. Mitochondria as a promising target for developing novel agents for treating Alzheimer's disease. Med Res Rev 2020; 41:803-827. [PMID: 32687230 DOI: 10.1002/med.21715] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
The mitochondria-targeting drugs can be conventionally divided into the following groups: those compensating for the energy deficit involved in neurodegeneration, including stimulants of mitochondrial bioenergetics and activators of mitochondrial biogenesis; and neuroprotectors, that are compounds increasing the resistance of mitochondria to opening of mitochondrial permeability transition (MPT) pores. Although compensating for the energy deficit and inhibition of MPT are obvious targets for drugs used in the very early stages of Alzheimer-like pathology, but their use as the monotherapy for patients with severe symptoms is unlikely to be sufficiently effective. It would be optimal to combine targets that would provide the cognitive-stimulating, the neuroprotective effects and the ability to affect specific disease-forming mechanisms. In the design of such drugs, assessment of their potential mitochondrial-targeted effects is of particular importance. The possibility of targeted drug design for simultaneous action on mitochondrial and neurotransmitter's receptors targets is, in particularly, based on the known interplay of various cellular pathways and the presence of common structural components. Of particular interest is directed search for multitarget drugs that would act simultaneously on mitochondrial calcium-dependent functions, the targets (receptors, enzymes, etc.) facilitating neurotransmission, and the molecular targets related to the action of so-called disease-modifying factors, in particular, the formation and overcoming of the toxicity of β-amyloid or hyperphosphorylated tau protein. The examples of such approaches realized on the level of preclinical and clinical trials are presented below.
Collapse
Affiliation(s)
- Elena F Shevtsova
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Andrey V Maltsev
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Darya V Vinogradova
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Pavel N Shevtsov
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Sergey O Bachurin
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| |
Collapse
|
8
|
Camins A, Beas-Zarate C. New Targets and Strategies of Medical Treatments in Neurological and Neurodegenerative Disorders. Curr Pharm Des 2020; 26:1233-1234. [DOI: 10.2174/138161282612200506115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Antoni Camins
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|