1
|
Xiao K, Liu L, He R, Rollins JA, Li A, Zhang G, He X, Wang R, Liu J, Zhang X, Zhang Y, Pan H. The Snf5-Hsf1 transcription module synergistically regulates stress responses and pathogenicity by maintaining ROS homeostasis in Sclerotinia sclerotiorum. THE NEW PHYTOLOGIST 2024; 241:1794-1812. [PMID: 38135652 DOI: 10.1111/nph.19484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023]
Abstract
The SWI/SNF complex is guided to the promoters of designated genes by its co-operator to activate transcription in a timely and appropriate manner to govern development, pathogenesis, and stress responses in fungi. Nevertheless, knowledge of the complexes and their co-operator in phytopathogenic fungi is still fragmented. We demonstrate that the heat shock transcription factor SsHsf1 guides the SWI/SNF complex to promoters of heat shock protein (hsp) genes and antioxidant enzyme genes using biochemistry and pharmacology. This is accomplished through direct interaction with the complex subunit SsSnf5 under heat shock and oxidative stress. This results in the activation of their transcription and mediates histone displacement to maintain reactive oxygen species (ROS) homeostasis. Genetic results demonstrate that the transcription module formed by SsSnf5 and SsHsf1 is responsible for regulating morphogenesis, stress tolerance, and pathogenicity in Sclerotinia sclerotiorum, especially by directly activating the transcription of hsp genes and antioxidant enzyme genes counteracting plant-derived ROS. Furthermore, we show that stress-induced phosphorylation of SsSnf5 is necessary for the formation of the transcription module. This study establishes that the SWI/SNF complex and its co-operator cooperatively regulate the transcription of hsp genes and antioxidant enzyme genes to respond to host and environmental stress in the devastating phytopathogenic fungi.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ruonan He
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Guiping Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xiaoyue He
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Rui Wang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| |
Collapse
|
2
|
Vanzolini T, Magnani M. Old and new strategies in therapy and diagnosis against fungal infections. Appl Microbiol Biotechnol 2024; 108:147. [PMID: 38240822 PMCID: PMC10799149 DOI: 10.1007/s00253-023-12884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Fungal infections represent a serious global health threat. The new emerging pathogens and the spread of different forms of resistance are now hardly challenging the tools available in therapy and diagnostics. With the commonly used diagnoses, fungal identification is often slow and inaccurate, and, on the other hand, some drugs currently used as treatments are significantly affected by the decrease in susceptibility. Herein, the antifungal arsenal is critically summarized. Besides describing the old approaches and their mechanisms, advantages, and limitations, the focus is dedicated to innovative strategies which are designed, identified, and developed to take advantage of the discrepancies between fungal and host cells. Relevant pathways and their role in survival and virulence are discussed as their suitability as sources of antifungal targets. In a similar way, molecules with antifungal activity are reported as potential agents/precursors of the next generation of antimycotics. Particular attention was devoted to biotechnological entities, to their novelty and reliability, to drug repurposing and restoration, and to combinatorial applications yielding significant improvements in efficacy. KEY POINTS: • New antifungal agents and targets are needed to limit fungal morbidity and mortality. • Therapeutics and diagnostics suffer of delays in innovation and lack of targets. • Biologics, drug repurposing and combinations are the future of antifungal treatments.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy.
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| |
Collapse
|
3
|
Rocha OB, do Carmo Silva L, de Carvalho Júnior MAB, de Oliveira AA, de Almeida Soares CM, Pereira M. In vitro and in silico analysis reveals antifungal activity and potential targets of curcumin on Paracoccidioides spp. Braz J Microbiol 2021; 52:1897-1911. [PMID: 34324170 PMCID: PMC8578512 DOI: 10.1007/s42770-021-00548-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The search for new compounds with activity against Paracoccidioides, etiologic agents of Paracoccidioidomycosis (PCM), is extremely necessary due to the current scenario of the available therapeutic arsenal. Treatment is restricted to three classes of antifungals with side effects. Curcumin is a polyphenol with antifungal effects that is extracted from Curcuma longa. The present work aimed to evaluate the activity of curcumin in different species of Paracoccidioides and to evaluate the potential molecular targets of curcumin using computational strategies. In addition, interactions with classic antifungals used in the treatment of PCM were evaluated. Curcumin inhibits the growth of Paracoccidioides spp. exerting a fungicidal effect. The combination of curcumin with amphotericin B, co-trimoxazole, and itraconazole showed a synergistic or additive interaction. Molecular targets as superoxide dismutase, catalase, and isocitrate lyase were proposed based on in silico approaches. Curcumin affects the fungal plasma membrane and increases the production of reactive oxygen species. Therefore, curcumin is a good alternative for the treatment of PCM.
Collapse
Affiliation(s)
- Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Marcos Antonio Batista de Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
4
|
Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi-Latest Findings. Antibiotics (Basel) 2021; 10:antibiotics10091053. [PMID: 34572635 PMCID: PMC8471798 DOI: 10.3390/antibiotics10091053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these entities. The present review provides an update (2017-May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them including studies of the mechanism of action and five dealing with natural compounds included in nanosystems. Thirty-seven manuscripts evaluated Candida spp. biofilms and two tested Fusarium and Cryptococcus spp. Only one manuscript involved Aspergillus fumigatus. From the data presented here, it is clear that the search of natural products with activity against fungal biofilms has been a highly active area of research in recent years. However, it also reveals the necessity of deepening the studies by (i) evaluating the effect of natural products on biofilms formed by the newly emerged and worrisome health-care associated fungi, C. auris, as well as on other non-albicans Candida spp., Cryptococcus sp. and filamentous fungi; (ii) elucidating the mechanisms of action of the most active natural products; (iii) increasing the in vivo testing.
Collapse
|
5
|
Lima RM, Freitas E Silva KS, Silva LDC, Ribeiro JFR, Neves BJ, Brock M, Soares CMDA, da Silva RA, Pereira M. A structure-based approach for the discovery of inhibitors against methylcitrate synthase of Paracoccidioides lutzii. J Biomol Struct Dyn 2021; 40:9361-9373. [PMID: 34060981 DOI: 10.1080/07391102.2021.1930584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by fungi of the genus Paracoccidioides. The treatment of PCM is complex, requiring a long treatment period, which often results in serious side effects. The aim of this study was to screen for inhibitors of a specific target of the fungus that is absent in humans. Methylcitrate synthase (MCS) is a unique enzyme of microorganisms and is responsible for the synthesis of methylcitrate at the beginning of the propionate degradation pathway. This pathway is essential for several microorganisms, since the accumulation of propionyl-CoA can impair virulence and prevent the development of the pathogen. We performed the modeling and molecular dynamics of the structure of Paracoccidioides lutzii MCS (PlMCS) and performed a virtual screening on 89,415 compounds against the active site of the enzyme. The compounds were selected according to the affinity and efficiency criteria of in vitro tests. Six compounds were able to inhibit the enzymatic activity of recombinant PlMCS but only the compound ZINC08964784 showed fungistatic and fungicidal activity against Paracoccidioides spp. cells. The analysis of the interaction profile of this compound with PlMCS showed its effectiveness in terms of specificity and stability when compared to the substrate (propionyl-CoA) of the enzyme. In addition, this compound did not show cytotoxicity in mammalian cells, with an excellent selectivity index. Our results suggest that the compound ZINC08964784 may become a promising alternative antifungal against Paracoccidioides spp. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raisa Melo Lima
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | - Lívia do Carmo Silva
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | - Bruno Junior Neves
- Faculty of Pharmacy, Laboratory for Molecular Modeling and Drug Design, Federal University of Goiás, Goiânia, Brazil
| | - Matthias Brock
- School of Life Science, Fungal Biology Group, University of Nottingham, Nottingham, UK
| | | | - Roosevelt Alves da Silva
- Collaborative Nucleus of Biosystems, Institute of Exact Sciences, Federal University of Jataí, Jataí, Brazil
| | - Maristela Pereira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
6
|
Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021; 7:106. [PMID: 33540749 PMCID: PMC7913102 DOI: 10.3390/jof7020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília (UnB), Brasilia, Distrito Federal 70910-900, Brazil;
| | - Isis Regina Grenier Capoci
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - André Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Bruna Lauton Simões
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Ana Karina Rodrigues Abadio
- Faculty of Agricultural Social Sciences, Mato Grosso State University, Nova Mutum, Mato Grosso 78450-000, Brazil;
| | - Larissa Fernandes Matos
- Faculty of Ceilandia, University of Brasília (UnB), Brasília, Distrito Federal 72220-275, Brazil;
- Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| |
Collapse
|
7
|
da Silva FDC, Futuro DO, Magalhães Forezi LDS. New Perspectives on Antifungal Therapy. Curr Pharm Des 2020; 26:1507-1508. [DOI: 10.2174/138161282614200515114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Debora Omena Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-002, Brazil
| | | |
Collapse
|
8
|
Li D, She X, Calderone R. The antifungal pipeline: the need is established. Are there new compounds? FEMS Yeast Res 2020; 20:5827531. [DOI: 10.1093/femsyr/foaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Our review summarizes and compares the temporal development (eras) of antifungal drug discovery as well as antibacterial ventures. The innovation gap that occurred in antibacterial discovery from 1960 to 2000 was likely due to tailoring of existing compounds to have better activity than predecessors. Antifungal discovery also faced innovation gaps. The semi-synthetic antibiotic era was followed closely by the resistance era and the heightened need for new compounds and targets. With the immense contribution of comparative genomics, antifungal targets became part of the discovery focus. These targets by definition are absolutely required to be fungal- or even lineage (clade) specific. Importantly, targets need to be essential for growth and/or have important roles in disease and pathogenesis. Two types of antifungals are discussed that are mostly in the FDA phase I–III clinical trials. New antifungals are either modified to increase bioavailability and stability for instance, or are new compounds that inhibit new targets. One of the important developments in incentivizing new antifungal discovery has been the prolific number of publications of global and country-specific incidence. International efforts that champion global antimicrobial drug discovery are discussed. Still, interventions are needed. The current pipeline of antifungals and alternatives to antifungals are discussed including vaccines.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, NW 302 Med Dent Building, 3900 Reservoir Rd NW, Washington, DC 20057, USA
| | - Xiaodong She
- Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS), Nanjing 210029, China
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, NW 302 Med Dent Building, 3900 Reservoir Rd NW, Washington, DC 20057, USA
| |
Collapse
|