1
|
Zhuang B, Zhong C, Ma Y, Wang A, Quan H, Hong L. Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. Int J Mol Sci 2024; 26:231. [PMID: 39796085 PMCID: PMC11720039 DOI: 10.3390/ijms26010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium. Currently, stem cells commonly used in medicine, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), can differentiate into various human cell types without ethical concerns. When combined with ncRNAs, these stem cells can more effectively induce directed differentiation, promote angiogenesis in the infarcted heart, and replenish normal cardiac cells. Additionally, stem cell-derived exosomes, which contain various ncRNAs, can improve myocardial damage in the infarcted region through paracrine mechanisms. However, our understanding of the specific roles and mechanisms of ncRNAs, stem cells, and exosomes secreted by stem cells during different stages of MI remains limited. Therefore, this review systematically categorizes the different stages of MI, aiming to summarize the direct regulatory effects of ncRNAs on an infarcted myocardium at different points of disease progression. Moreover, it explores the specific roles and mechanisms of stem cell therapy and exosome therapy in this complex pathological evolution process. The objective of this review was to provide novel insights into therapeutic strategies for different stages of MI and open new research directions for the application of stem cells and ncRNAs in the field of MI repair.
Collapse
Affiliation(s)
- Bingqi Zhuang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Chongning Zhong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Yuting Ma
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Ao Wang
- Experimental Teaching Center, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Hailian Quan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| |
Collapse
|
2
|
Røsand Ø, Wang J, Scrimgeour N, Marwarha G, Høydal MA. Exosomal Preconditioning of Human iPSC-Derived Cardiomyocytes Beneficially Alters Cardiac Electrophysiology and Micro RNA Expression. Int J Mol Sci 2024; 25:8460. [PMID: 39126028 PMCID: PMC11313350 DOI: 10.3390/ijms25158460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Experimental evidence, both in vitro and in vivo, has indicated cardioprotective effects of extracellular vesicles (EVs) derived from various cell types, including induced pluripotent stem cell-derived cardiomyocytes. The biological effects of EV secretion, particularly in the context of ischemia and cardiac electrophysiology, remain to be fully explored. Therefore, the goal of this study was to unveil the effects of exosome (EXO)-mediated cell-cell signaling during hypoxia by employing a simulated preconditioning approach on human-induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs). Electrophysiological activity of hIPSC-CMs was measured using a multielectrode array (MEA) system. A total of 16 h of hypoxic stress drastically increased the beat period. Moreover, hIPSC-CMs preconditioned with EXOs displayed significantly longer beat periods compared with non-treated cells after 16 h of hypoxia (+15.7%, p < 0.05). Furthermore, preconditioning with hypoxic EXOs resulted in faster excitation-contraction (EC) coupling compared with non-treated hIPSC-CMs after 16 h of hypoxia (-25.3%, p < 0.05). Additionally, microRNA (miR) sequencing and gene target prediction analysis of the non-treated and pre-conditioned hIPSC-CMs identified 10 differentially regulated miRs and 44 gene targets. These results shed light on the intricate involvement of miRs, emphasizing gene targets associated with cell survival, contraction, apoptosis, reactive oxygen species (ROS) regulation, and ion channel modulation. Overall, this study demonstrates that EXOs secreted by hIPSC-CM during hypoxia beneficially alter electrophysiological properties in recipient cells exposed to hypoxic stress, which could play a crucial role in the development of targeted interventions to improve outcomes in ischemic heart conditions.
Collapse
Affiliation(s)
| | | | | | | | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway; (Ø.R.); (J.W.); (N.S.); (G.M.)
| |
Collapse
|
3
|
Li X, Wang Z, Chen N. Perspective and Therapeutic Potential of the Noncoding RNA-Connexin Axis. Int J Mol Sci 2024; 25:6146. [PMID: 38892334 PMCID: PMC11173347 DOI: 10.3390/ijms25116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Noncoding RNAs (ncRNAs) are a class of nucleotide sequences that cannot be translated into peptides. ncRNAs can function post-transcriptionally by splicing complementary sequences of mRNAs or other ncRNAs or by directly engaging in protein interactions. Over the past few decades, the pervasiveness of ncRNAs in cell physiology and their pivotal roles in various diseases have been identified. One target regulated by ncRNAs is connexin (Cx), a protein that forms gap junctions and hemichannels and facilitates intercellular molecule exchange. The aberrant expression and misdistribution of connexins have been implicated in central nervous system diseases, cardiovascular diseases, bone diseases, and cancer. Current databases and technologies have enabled researchers to identify the direct or indirect relationships between ncRNAs and connexins, thereby elucidating their correlation with diseases. In this review, we selected the literature published in the past five years concerning disorders regulated by ncRNAs via corresponding connexins. Among it, microRNAs that regulate the expression of Cx43 play a crucial role in disease development and are predominantly reviewed. The distinctive perspective of the ncRNA-Cx axis interprets pathology in an epigenetic manner and is expected to motivate research for the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
4
|
Bonet F, Hernandez-Torres F, Ramos-Sánchez M, Quezada-Feijoo M, Bermúdez-García A, Daroca T, Alonso-Villa E, García-Padilla C, Mangas A, Toro R. Unraveling the Etiology of Dilated Cardiomyopathy through Differential miRNA-mRNA Interactome. Biomolecules 2024; 14:524. [PMID: 38785931 PMCID: PMC11117812 DOI: 10.3390/biom14050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing a common phenotype. The understanding of pathogenetic mechanisms and the determination of the functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially expressed genes (DEGs). The miRNA-mRNA interactions were identified by Pearson correlation analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by qRT-PCR and miRNA-mRNA interactions were validated by luciferase assays. We found 112 mRNAs and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways, JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA-mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2. Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for VCM and ICM, providing novel insights into the development of these DCM etiologies.
Collapse
Affiliation(s)
- Fernando Bonet
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Mónica Ramos-Sánchez
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Aníbal Bermúdez-García
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Tomás Daroca
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Elena Alonso-Villa
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | | | - Alipio Mangas
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| |
Collapse
|
5
|
Zhao Y, Du L, Sun J, Wang X, Cong Z, Chen S, Wang F, Li Z. Exosomal miR-218 derived from mesenchymal stem cells inhibits endothelial-to-mesenchymal transition by epigenetically modulating of BMP2 in pulmonary fibrosis. Cell Biol Toxicol 2023; 39:2919-2936. [PMID: 37247103 DOI: 10.1007/s10565-023-09810-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT), the process by which endothelial cells lose their characteristics and acquire mesenchymal phenotypes, participates in the pathogenic mechanism of idiopathic pulmonary fibrosis. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exos) has been introduced as a promising treatment in organ fibrosis. This study aimed to explore the effects as well as the molecular mechanism for hucMSC-Exo in pulmonary fibrosis. The intravenous administration of hucMSC-Exos alleviated bleomycin-induced pulmonary fibrosis in vivo. Moreover, hucMSC-Exos elevated miR-218 expression and restored endothelial properties weakened by TGF-β in endothelial cells. Knockdown of miR-218 partially abrogated the inhibition effect of hucMSC-Exos on EndMT. Our mechanistic study further demonstrated that MeCP2 was the direct target of miR-218. Overexpressing MeCP2 aggravated EndMT and caused increased CpG islands methylation at BMP2 promoter, which lead to BMP2 post-transcriptional gene silence. Transfection of miR-218 mimic increased BMP2 expression as well, which was downregulated by overexpression of MeCP2. Taken together, these findings indicate exosomal miR-218 derived from hucMSCs may possess anti-fibrotic properties and inhibit EndMT through MeCP2/BMP2 pathway, providing a new avenue of preventive application in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Lei Du
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Jiali Sun
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Xuelian Wang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Zhilei Cong
- Department of Emergency, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuyan Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Fei Wang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Zhen Li
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
6
|
Joshua J, Caswell JL, Monné Rodriguez JM, Kipar A, O'Sullivan ML, Wood G, Fonfara S. MicroRNA profiling of the feline left heart identifies chamber-specific expression signatures in health and in advanced hypertrophic cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100037. [PMID: 39801693 PMCID: PMC11708362 DOI: 10.1016/j.jmccpl.2023.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heart disease in humans and cats, nonetheless, the disease pathogenesis is still poorly understood. MicroRNAs are suspected to be involved in the disease process but the myocardial microRNA expression pattern in cats has not been identified. We hypothesized that microRNA profiles differ between healthy cats and cats with HCM. Small RNA sequencing on left ventricle (LV) and left atria (LA) samples from healthy cats (8 LV, 8 LA) and cats with HCM (7 LV, 5 LA) was performed. We identified 1039 differentially expressed microRNAs (False Discovery Rate <0.01, fold change >2). Cats with HCM were found to have a distinct microRNA expression profile with apparent regional heterogeneity. Comparing the HCM and control hearts, we detected 80 differentially expressed microRNAs for the HCM LV, and 37 for the LA. These included LV and LA enriched miR-21, miR-146b, and reduced miR-122-5p, which were recently suggested as key microRNAs for the HCM pathogenesis, and miR-132, which might be of therapeutic interest. Several top enriched microRNAs: miR-3958, miR-382-5p, miR-487a-5p (HCM LV); miR-chrD4_30107-3p (HCM LA); miR-3548 (HCM LV and LA) have either not been reported in the heart or only little is known. We identified potentially relevant microRNAs and further investigations into their role are required. Genes known to be targeted by the differentially expressed microRNAs were associated with inflammation and growth pathways in the HCM LV and LA, cardioprotective pathways in the LV, and fibrosis and structural changes in the LA when compared to healthy hearts.
Collapse
Affiliation(s)
- Jessica Joshua
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph N1G 2W1, Ontario, Canada
| | - Jeff L. Caswell
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
| | - Josep M. Monné Rodriguez
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Pathology, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Anja Kipar
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Pathology, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - M. Lynne O'Sullivan
- University of Prince Edward Island, Department of Companion Animals, Charlottetown C1A 4P3, Prince Edward Island, Canada
| | - Geoffrey Wood
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
| | - Sonja Fonfara
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
7
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Yan T, Zhu X, Zhang X, Jia X, Liu J, Wang X, Xiao Y, Xiao Z, Liu T, Dong Y. The application of proteomics and metabolomics to reveal the molecular mechanism of Nutmeg-5 in ameliorating cardiac fibrosis following myocardial infarction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154382. [PMID: 35963196 DOI: 10.1016/j.phymed.2022.154382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nutmeg-5, an ancient and classic formula in traditional Mongolian medicine comprising five kinds of traditional Chinese medicine, is widely used in the treatment of myocardial infarction (MI, called heart "Heyi" disease in Mongolian medicine). Cardiac fibrosis plays a critical role in the development and progression of heart failure after MI. However, the material basis and pharmacological mechanisms of the effect of Nutmeg-5 on cardiac fibrosis after MI remain unclear. OBJECTIVE The aim of this study was to first explore the potential material basis and molecular mechanism of action of Nutmeg-5 in improving cardiac fibrosis after MI via a multiomics approach. METHODS The constituents in Nutmeg-5 were identified by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). High-performance liquid chromatography (HPLC) and gas chromatography (GC)-based fingerprints of Nutmeg-5 were analysed, and characteristic peaks were identified by comparison to standard samples. A rat MI model was created by permanent ligation of the left anterior descending artery. The protective effect of Nutmeg-5 on cardiac fibrosis after MI was evaluated by tissue histology and measurement of the serum biomarkers of myocardial injury. Cardiac fibrosis levels were evaluated by Sirius red staining. Differentially expressed proteins in the myocardium and metabolites in the serum were explored by proteomic and untargeted metabolome analyses, respectively. Pearson correlation analysis was performed to explore the association between serum metabolites and myocardial proteins. RESULTS A total of 67 constituents were identified in Nutmeg-5 by UPLC-MS/MS. Sixteen components were identified in the fingerprint of Nutmeg-5 by comparison with a standard sample. Six lactones were isolated from Nutmeg-5 and quantified by HPLC and GC. MI was significantly alleviated in Nutmeg-5-treated rats compared to MI rats, as demonstrated by their decreased mortality, improved cardiac function, and attenuated cardiac fibrosis and myocardial injury. A total of 252 significant differential metabolites were identified in plasma between model and Nutmeg-5-treated rats by untargeted metabolome analysis. Among these, 36 critical metabolites were associated with Nutmeg-5 activity. Proteomic analysis identified 338 differentially expressed proteins in the rat myocardium between MI and Nutmeg-5-treated rats, including 204 upregulated and 134 downregulated proteins. Protein set enrichment analysis revealed that Nutmeg-5 treatment significantly inhibited the extracellular matrix (ECM)-receptor interaction pathway, which was activated in the myocardium of MI rats. A significant decrease in collagen and alpha smooth muscle actin expression levels was found in the myocardium of Nutmeg-5-treated rats compared to MI rats. These results illustrated that Nutmeg-5 had a significant protective effect on cardiac fibrosis after MI. A significant correlation was found between the ECM-receptor interaction pathway in the myocardium and critical metabolites in the serum. In addition, there were positive correlations between the levels of critical metabolites and the expression levels of transforming growth factor (TGF)-β1 and Smad2 in the rat myocardium. CONCLUSIONS Nutmeg-5 alleviated cardiac fibrosis after MI in rats by inhibiting the myocardial ECM-receptor interaction pathway and TGF-β1/Smad2 signalling, which was achieved by regulating plasma metabolites.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China
| | - Xiaoling Zhu
- Inner Mongolian International Mongolian Hospital, University East Street, Hohhot 010065, PR China
| | - Xueni Zhang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China
| | - Xin Jia
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China; Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Xianjue Wang
- Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Yunfeng Xiao
- Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, PR China
| | - Zhibin Xiao
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China.
| | - Yu Dong
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China.
| |
Collapse
|
9
|
Deep sequencing unveils altered cardiac miRNome in congenital heart disease. Mol Genet Genomics 2022; 297:1123-1139. [PMID: 35668131 DOI: 10.1007/s00438-022-01908-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Congenital heart disease (CHD) surges from fetal cardiac dysmorphogenesis and chiefly contributes to perinatal morbidity and cardiovascular disease mortality. A continual rise in prevalence and prerequisite postoperative disease management creates need for better understanding and new strategies to control the disease. The interaction between genetic and non-genetic factors roots the multifactorial status of this disease, which remains incompletely explored. The small non-coding microRNAs (miRs, miRNAs) regulate several biological processes via post-transcriptional regulation of gene expression. Abnormal expression of miRs in developing and adult heart is associated with anomalous cardiac cell differentiation, cardiac dysfunction, and cardiovascular diseases. Here, we attempt to discover the changes in cardiac miRNA transcriptome in CHD patients over those without CHD (non-CHD) and find its role in CHD through functional annotation. This study explores the miRNome in three most commonly occurring CHD subtypes, namely atrial septal defect (ASD), ventricular septal defect (VSD), and tetralogy of fallot (TOF). We found 295 dysregulated miRNAs through high-throughput sequencing of the cardiac tissues. The bioinformatically predicted targets of these differentially expressed miRs were functionally annotated to know they were entailed in cell signal regulatory pathways, profoundly responsible for cell proliferation, survival, angiogenesis, migration and cell cycle regulation. Selective miRs (hsa-miR-221-3p, hsa-miR-218-5p, hsa-miR-873-5p) whose expression was validated by qRT-PCR, have been reported for cardiogenesis, cardiomyocyte proliferation, cardioprotection and cardiac dysfunction. These results indicate that the altered miRNome to be responsible for the disease status in CHD patients. Our data expand the existing knowledge on the epigenetic changes in CHD. In future, characterization of these cardiac-specific miRs will add huge potential to understand cardiac development, function, and molecular pathogenesis of heart diseases with a prospect of epigenetic manipulation for cardiac repair.
Collapse
|
10
|
Garcia AN, Casanova NG, Kempf CL, Bermudez T, Valera DG, Song JH, Sun X, Cai H, Moreno-Vinasco L, Gregory T, Oita RC, Hernon VR, Camp SM, Rogers C, Kyubwa EM, Menon N, Axtelle J, Rappaport J, Bime C, Sammani S, Cress AE, Garcia JGN. eNAMPT Is a Novel Damage-associated Molecular Pattern Protein That Contributes to the Severity of Radiation-induced Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 66:497-509. [PMID: 35167418 PMCID: PMC9116358 DOI: 10.1165/rcmb.2021-0357oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
The paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and Nampt+/- heterozygous C57BL6 mice and nonhuman primates (NHPs, Macaca mulatta) were exposed to a single WTLI dose (9.8 or 10.7 Gy for NHPs, 20 Gy for mice). WT mice received IgG1 (control) or an eNAMPT-neutralizing polyclonal or monoclonal antibody (mAb) intraperitoneally 4 hours after WTLI and weekly thereafter. At 8-12 weeks after WTLI, NAMPT expression was assessed by immunohistochemistry, biochemistry, and plasma biomarker studies. RILF severity was determined by BAL protein/cells, hematoxylin and eosin, and trichrome blue staining and soluble collagen assays. RNA sequencing and bioinformatic analyses identified differentially expressed lung tissue genes/pathways. NAMPT lung tissue expression was increased in both WTLI-exposed WT mice and NHPs. Nampt+/- mice and eNAMPT polyclonal antibody/mAb-treated mice exhibited significantly attenuated WTLI-mediated lung fibrosis with reduced: 1) NAMPT and trichrome blue staining; 2) dysregulated lung tissue expression of smooth muscle actin, p-SMAD2/p-SMAD1/5/9, TGF-β, TSP1 (thrombospondin-1), NOX4, IL-1β, and NRF2; 3) plasma eNAMPT and IL-1β concentrations; and 4) soluble collagen. Multiple WTLI-induced dysregulated differentially expressed lung tissue genes/pathways with known tissue fibrosis involvement were each rectified in mice receiving eNAMPT mAbs.The eNAMPT/TLR4 inflammatory network is essentially involved in radiation pathobiology, with eNAMPT neutralization an effective therapeutic strategy to reduce RILF severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | - Jay Rappaport
- Tulane National Primate Research Center, New Orleans, Louisiana
| | | | | | - Anne E. Cress
- Department of Cell and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|