1
|
Zhang BT, Song X, Cho CS(W, Wong CK, Wang D. Deciphering Anticancer Mechanisms of Calycosin in Lung Adenocarcinoma Through Multi-Omics: Targeting SMAD3-Mediated NOTCH Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:1455. [PMID: 40361382 PMCID: PMC12071042 DOI: 10.3390/cancers17091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality, particularly in advanced stages. This study investigates the anticancer mechanisms of calycosin, an isoflavonoid derived from Astragalus membranaceus, in LUAD. METHODS Using integrative approaches including bulk and single-cell RNA sequencing, network pharmacology, and molecular docking, we identified SMAD3 as a critical biomarker associated with LUAD staging and prognosis. RESULTS Calycosin targets SMAD3, modulating the NOTCH signaling pathway in monocytes/macrophages to suppress tumor growth, invasion, and immune evasion. Enrichment analyses revealed significant involvement of NOTCH signaling components in SMAD3-correlated genes, particularly in advanced-stage LUAD. Single-cell RNA sequencing further demonstrated NOTCH pathway enrichment in tumor-associated monocytes/macrophages. Additionally, KMT2A was identified as a key transcriptional regulator in these cells. CONCLUSIONS These findings highlight the potential effects of calycosin and provide novel insights into targeting the tumor-immune microenvironment in LUAD.
Collapse
Affiliation(s)
- Bi-Tian Zhang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China;
| | - Xiaoyu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
| | | | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China;
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dongjie Wang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China;
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
2
|
Zheng Y, Zheng Y, Chen H, Tan X, Zhang G, Kong M, Jiang R, Yu H, Shan K, Liu J, Zhang R, Liu Z, Wu J. Erianin triggers ferroptosis in colorectal cancer cells by facilitating the ubiquitination and degradation of GPX4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156465. [PMID: 39938177 DOI: 10.1016/j.phymed.2025.156465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/18/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) continues to represent a significant global public health challenge. Ferroptosis, a novel form of cell death dependent on iron and involving lipid peroxidation, has emerged as an effective strategy for treating various cancers with great potential for application. PURPOSE This study aimed to investigate the therapeutic potential of erianin, a novel dibenzyl compound isolated from the well-known herbal medicine Dendrobium chrysotoxum Lindl, in the treatment of CRC through induction of ferroptosis. METHODS Human CRC HCT116 and SW480 cells were employed for in vitro investigations, while an AOM/DSS CRC animal model was established for in vivo experiments. RESULTS The results demonstrated that erianin effectively inhibited the growth of CRC cells and suppressed tumorigenesis in the AOM/DSS CRC animal model. Erianin induced ferroptosis in CRC cells as evidenced by a significant increase in intracellular Fe2+ levels and lipid peroxides, along with a decrease in glutathione. Additionally, ferroptosis inhibitors reversed the cytotoxicity of erianin against CRC cells as well as its induction of ferroptosis. Notably, novel glutathione peroxidase 4 (GPX4), a core regulatory factor of ferroptosis, was found to be overexpressed in human primary colon adenocarcinoma tissues compared with normal tissues. However, erianin significantly reduced GPX4 expression by facilitating its ubiquitination and degradation. Furthermore, the overexpression of GPX4 mitigated erianin-induced ferroptotic cell death; conversely, the silencing of GPX4 amplified these effects. CONCLUSION Erianin demonstrates the potential to inhibit CRC by inducing ferroptosis through accelerating the ubiquitination and degradation of GPX4, indicating its promise as a therapeutic candidate against CRC.
Collapse
Affiliation(s)
- Yuting Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yinli Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Department of Pathology, Guangzhou 510060, China.
| | - Haipeng Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Xuanjing Tan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Guiyu Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Seventh Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China.
| | - Muyan Kong
- The Seventh Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China.
| | - Ruidi Jiang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hong Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Keyao Shan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Jiyao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Jinjun Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
3
|
Shi Y, Min X, Li Y, Guo L, Cai Z, Li D, Jiang X, Feng N, Li X, Yang X. Yinjia pills inhibits the malignant biological behavior of HeLa cells through PKM2-medicated inhibition of JAK/STAT3 pathway. Cytotechnology 2025; 77:5. [PMID: 39575323 PMCID: PMC11579276 DOI: 10.1007/s10616-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
Cervical cancer is one of the most common tumors in women and is a major problem in gynecological health. Studies have shown that Yinjia pills (YJP), a traditional Chinese medicine, can effectively slow the progression of cervical cancer. Therefore, this study mainly explored the molecular mechanism by which YJP delays the progression of cervical cancer. The expression level of PKM2 in cervical cancer was evaluated by the gene expression profiling interactive analysis (GEPIA) database, and the prognostic value of the PKM2 gene was evaluated by the Kaplan‒Meier plotter database. HeLa cervical cancer cells were treated with different concentrations of YJP (2.5, 5, 10, and 20 mg/mL). The levels of the inflammatory factors were detected by ELISA. Cell proliferation activity, migration and invasion were detected by CCK-8 assay, Transwell assays and cell scratch experiment. Apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of proteins. In this study, PKM2 was upregulated in both cervical squamous cell carcinoma (CESC) and endometrial adenocarcinoma tissues, and a Kaplan‒Meier analysis showed that higher PKM2 expression was associated with lower patient survival. YJP inhibited the proliferation, migration and invasion of HeLa cells in a dose-dependent manner, promoted the apoptosis of HeLa cells, and inhibited the expression of inflammatory factors. In addition, YJP inhibited the activation of the JAK/STAT3 pathway and the occurrence of EMT. Knockdown of PKM2 also inhibited the malignant biological behavior of HeLa cells, but overexpression of PKM2 weakened the inhibitory effect of YJP on the malignant biological behavior of HeLa cells. Angoline, a JAK/STAT3 pathway inhibitor, attenuated the effect of PKM2 overexpression on the efficacy of YJP. In conclusion, YJP can inhibit the activation of the JAK/STAT3 pathway by regulating PKM2, thereby inhibiting the malignant biological behavior of HeLa cells.
Collapse
Affiliation(s)
- Ying Shi
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaoli Min
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan China
| | - Yi Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Lihua Guo
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Zheng Cai
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Dongge Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xueying Jiang
- The First Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan China
| | - Ni Feng
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaolin Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaoxia Yang
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| |
Collapse
|
4
|
Huo M, Gao Z, Wang G, Hou Z, Zheng J. Huaier promotes sensitivity of colorectal cancer to oxaliplatin by inhibiting METTL3 to regulate the Wnt/β‑catenin signaling pathway. Oncol Rep 2025; 53:7. [PMID: 39513580 PMCID: PMC11574703 DOI: 10.3892/or.2024.8840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Colorectal cancer (CRC) ranks fifth in terms of incidence rate and mortality among malignant tumors in China. Oxaliplatin (OXA) is a first‑line drug for the clinical treatment of CRC, but its antitumor effect is limited because of the development of drug resistance. The present study aimed to investigate whether the traditional Chinese medicine Huaier can regulate the Wnt/β‑catenin signaling pathway by affecting the expression of METTL3, thereby promoting the sensitivity of HCT‑8/L cells to OXA. The expression of METTL3 was analyzed based on the UCSC Xena and Gene Expression Omnibus databases. Silent METTL3 and overexpression METTL3 models were constructed, and Cell Counting Kit‑8 and flow cytometry were used to detect the effects of Huaier on the viability and apoptosis of HCT‑8/L cells. Western blotting, reverse transcription‑quantitative PCR, nuclear cytoplasmic separation and immunofluorescence were used to detect the effects of Huaier on the expression of METTL3, Pgp, Wnt/β‑catenin signaling pathway‑related proteins, apoptosis‑related proteins and related mRNA. The results demonstrated that patients with high expression levels of METTL3 had a shorter overall survival period. The expression level of METTL3 significantly increased in drug‑resistant CRC cells. Silencing METTL3 promoted apoptosis of CRC cells and increased their sensitivity to OXA by inhibiting the Wnt/β‑catenin signaling pathway. Huaier downregulated the expression of METTL3, thereby promoting apoptosis of drug‑resistant CRC cells and increasing their sensitivity to OXA by inhibiting the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Mingyi Huo
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhixu Gao
- Department of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Guizhen Wang
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhiping Hou
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Jining Zheng
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
5
|
Shen LS, Chen JW, Gong RH, Lin Z, Lin YS, Qiao XF, Hu QM, Yang Y, Chen S, Chen GQ. β,β-Dimethylacrylalkannin, a key component of Zicao, induces cell cycle arrest and necrosis in hepatocellular carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155959. [PMID: 39178682 DOI: 10.1016/j.phymed.2024.155959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND β,β-Dimethylacrylalkannin (DMAKN), a natural naphthoquinone found in Zicao, a traditional Chinese medicine (TCM), serves as the designated quantitative marker in the Chinese Pharmacopoeia. Despite its established role in assessing Zicao quality, DMAKN's biological potential remains underexplored in research. METHODS We investigated DMAKN's involvement in Zicao's anti-hepatocellular carcinoma (HCC) properties using a combination of HPLC content analysis and comprehensive bioinformatics. Subsequently, both in vitro and in vivo experiments were conducted to evaluate DMAKN's efficacy against HCC. Mechanistic investigations focused on elucidating DMAKN's impact on cell cycle regulation and induction of cell death. RESULTS Integrated HPLC analysis and bioinformatics identified DMAKN as the primary active compound responsible for Zicao's anti-HCC activity. In vitro and in vivo studies confirmed DMAKN's potent efficacy against HCC. Notably, DMAKN demonstrated dual effects on HCC cells: inhibiting proliferation at lower doses and inducing rapid cell death at higher doses. Mechanistic insights revealed that low-dose DMAKN induced G2/M phase cell cycle arrest through modulation of CDK1 and Cdc25C phosphorylation, while high-dose DMAKN triggered necrosis. Importantly, high-dose DMAKN caused a sharp increase in intracellular ROS levels in a short time, while low-dose DMAKN gradually increased ROS levels over a long period. Additionally, low-dose DMAKN-induced ROS activated the JNK pathway, crucial for cell cycle arrest, whereas high-dose DMAKN-induced necrosis was ROS-dependent but JNK-independent. CONCLUSION This study underscores DMAKN's pivotal role as the principal anti-HCC compound in Zicao, delineating its differential effects and underlying mechanisms. These results demonstrate the potential of DMAKN as a therapeutic agent for the treatment of HCC, providing important information for further study and advancement in cancer therapy.
Collapse
Affiliation(s)
- Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Jia-Wen Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China
| | - Zesi Lin
- Southern Medical University Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Xing-Fang Qiao
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Qian-Mei Hu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China.
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China.
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China.
| |
Collapse
|
6
|
Shen F, Zheng YS, Dong L, Cao Z, Cao J. Enhanced tumor suppression in colorectal cancer via berberine-loaded PEG-PLGA nanoparticles. Front Pharmacol 2024; 15:1500731. [PMID: 39555093 PMCID: PMC11563832 DOI: 10.3389/fphar.2024.1500731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Colorectal cancer (CRC) stands as the third most widespread cancer globally with poor prognosis. Berberine (Ber), as one herbal phytochemical, showed promise in CRC therapy, but its exact mechanism is unclear. Small molecule traditional drugs face challenges in quick metabolism and low bio-availability after systemic administration. Nanodrug deliver system, with their unique properties, has the advantages of protecting drugs, improving drug bio-availability, and reducing toxic and side effects, which exhibited huge drug delivery potential. Herein, the PEG-PLGA nanocarrier was used for encapsulated Ber according to nanoprecipitation and obtained nanomedicine, denoted as NPBer. In vitro, the flow cytometry test and CCK8 assays indicated that NPBer was more easily taken up by HCT116 CRC cells, and had stronger inhibition on cell proliferation with the increase of drug concentration. In addition, RNA-Seq was employed to explore the alterations in the transcriptomes of cancer cells subsequent to treatment with Free Ber or NPBer.The sequencing results indicate that Free Ber could activate cellular aging mechanisms, intensified the iron death pathway, optimized oxidative phosphorylation efficiency, exacerbated apoptosis, accelerated programmed cell death, and negatively modulated key signaling pathways in CRC cells including Wnt, TGF-beta, Hippo, and mTOR signaling pathways. Based on PEG-PLGA nanocarriers, NPBer can improve the in vivo delivery efficiency of Ber, thereby enhancing its antitumor efficacy in vivo, enhancing apoptosis by enhancing the mitochondrial autophagy and autophagy activities of CRC cells, negatively regulating the inflammatory mediator to regulate TRP channels, and inhibiting the activation of Notch signaling pathway. In vivo, NPBer can significantly improve its accumulation and durable drug targeting in tumor site, resulting in induce maximum cell apoptosis and effectively inhibit the proliferation of HCT116 tumor. This strategy provided a promising antitumor therapeutic strategy using Ber-based drugs.
Collapse
Affiliation(s)
- Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yun-Sheng Zheng
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lan Dong
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ziyang Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Ning N, Li X, Nan Y, Chen G, Huang S, Du Y, Gu Q, Li W, Yuan L. Molecular mechanism of Saikosaponin-d in the treatment of gastric cancer based on network pharmacology and in vitro experimental verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8943-8959. [PMID: 38864908 DOI: 10.1007/s00210-024-03214-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The study aimed to utilize network pharmacology combined with cell experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA and HPA databases. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, transwell invasion, transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.
Collapse
Affiliation(s)
- Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, TCM Hospital of Ningxia Medical University, Wuzhong, 751100, China.
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
8
|
Wang L, Chen H, Deng L, Hu M, Wang Z, Zhang K, Lian C, Wang X, Zhang J. Roburic acid inhibits lung cancer metastasis and triggers autophagy as verified by network pharmacology, molecular docking techniques and experiments. Front Oncol 2024; 14:1449143. [PMID: 39450260 PMCID: PMC11499198 DOI: 10.3389/fonc.2024.1449143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Roburic acid (ROB) is a newly discovered tetracyclic triterpene acid extracted from oak galls, which has anti-inflammatory effects, but the mechanism of its anticancer effect is not clear. Our study focuses on exploring the potential mechanism of action of ROB in the treatment of lung cancer using a combination of network pharmacological prediction, molecular docking technique and experimental validation. Methods A network pharmacology approach was used to screen the protein targets of ROB and lung cancer, and PPI network analysis and enrichment analysis were performed on the intersecting genes. The tissue and organ distribution of the targets was also evaluated based on the BioGPS database. To ensure the reliability of the network pharmacology prediction results, we proceeded to use molecular docking technique to determine the relationship between drugs and targets. Finally, in vitro experiments with cell lines were performed to further reveal the potential mechanism of ROB for the treatment of lung cancer. Results A total of 83 potential targets of ROB in lung cancer were collected and further screened by using Cytoscape software, and 7 targets of PTGS2, CYP19A1, PTGS1, AR, CYP17A1, PTGES and SRD5A1 were obtained as hub genes and 7 hub targets had good binding energy with ROB. GO and KEGG analysis showed that ROB treatment of lung cancer mainly involves Arachidonic acid metabolism, Notch signaling pathway, cancer pathway and PPAR signaling pathway. The results of in vitro experiments indicated that ROB may inhibit the proliferation and metastasis of lung cancer cells and activate the PPARγ signaling pathway, as well as induce cellular autophagy. Conclusions The results of this study comprehensively elucidated the potential targets and molecular mechanisms of ROB for the treatment of lung cancer, providing new ideas for further lung cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Lili Deng
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Mengling Hu
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Kai Zhang
- Research Center of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Joint Research Center for Regional Diseases of Institute of Healthcare Management (IHM), The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| |
Collapse
|
9
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
10
|
Lin H, Zhang X, Zheng Y, Tang C, Wang J. Research on the soothing Liver - Qi stagnation method in the treatment of postoperative papillary thyroid carcinoma patients' concomitant depression: A randomized controlled clinical trial. Medicine (Baltimore) 2024; 103:e39325. [PMID: 39287310 PMCID: PMC11404975 DOI: 10.1097/md.0000000000039325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Postoperative papillary thyroid carcinoma (P-PTC) patients often grapple with depression fueled by the looming threat of recurrence. While the Liver-Qi stagnation method is frequently employed for depression management, a notable scarcity of clinical trials exists regarding its application in patients with P-PTC and concurrent depression. This study presents a randomized controlled clinical trial, aiming to establish the efficacy of the Liver-Qi stagnation method in alleviating depression in patients with P-PTC. METHODS In this randomized controlled clinical trial, P-PTC patients diagnosed with concomitant depression were systematically enrolled. Subjects were randomly assigned to either the control or test group, both receiving standard treatment comprising Levothyroxine sodium tablets and decoction of benefiting Qi and nourishing Yin. Additionally, the test group received supplementation with bupleuri radix-paeoniae alba radix (CH-BS) alongside the baseline therapy. The intervention spanned 12 weeks. Pre- and post-treatment evaluations were conducted using the Hamilton Depression Scale (HAMD), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and Traditional Chinese Medicine (TCM) syndrome score scale. Concurrently, blood inflammatory factors and serum 5-hydroxytryptamine (5-HT) levels were measured to comprehensively assess treatment outcomes. RESULTS During the 12-week intervention, the test group demonstrated a significant reduction in HAMD scores compared to the control group (P < .05). Moreover, post-treatment serum 5-HT levels were significantly elevated in the test group compared to the control group (P < .05). Findings gleaned from the EORTC QLQ - C30 revealed a noteworthy improvement in social function and overall quality of life scores within both groups post-treatment in comparison to baseline (P < .05). Concurrently, post-treatment scores for fatigue and insomnia symptoms witnessed a significant decrease compared to baseline (P < .05). Notably, the test group exhibited superior scores in the emotional domain in contrast to the control group (P < .05). Both groups exhibited a substantial decrease in TCM syndrome scores from baseline (P < .05). Noteworthy increases were found in IFN-γ < 2.44 rate (62.86%) and IL-6 < 2.44 rate (74.29%) in the test group compared to pretreatment levels (P < .05). CONCLUSION The soothing Liver-Qi stagnation method induces a rise in serum 5-HT levels, reducing depression-related inflammatory factors, culminating in the alleviation of depression for P-PTC.
Collapse
Affiliation(s)
- Huiyue Lin
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang Province, China
| | - Xueting Zhang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqian Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenchen Tang
- Department of Experimental Management, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juyong Wang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Song D, Chen M, Chen X, Xu J, Wu S, Lyu Y, Zhao Q. Apoptosis induction and inhibition of invasion and migration in gastric cancer cells by Isoorientin studied using network pharmacology. BMC Complement Med Ther 2024; 24:309. [PMID: 39160561 PMCID: PMC11334567 DOI: 10.1186/s12906-024-04605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND To investigate the effects of Isoorientin on the apoptosis, proliferation, invasion, and migration of human gastric cancer cells (HGC27 cells). METHODS We used network pharmacology to predict the targets of drugs and diseases. The CCK-8 assay was used to determine the effects of Isoorientin on the proliferation of HGC27 cells. Flow cytometry was employed to analyze the effects of Isoorientin on cell apoptosis and cell cycle distribution of HGC27 cells. Scratch test and transwell chamber test were conducted to assess the effects of Isoorientin on invasion and migration, respectively. Additionally, qPCR and western blot were performed to examine the impact of Isoorientin on apoptosis-related genes and protein expression, respectively. RESULTS The Isoorientin significantly inhibited the proliferation, migration, and invasion of HGC27 cells compared to the control group. Furthermore, Isoorientin induced apoptosis in HGC27 cells by upregulating the relative expression of Bax and caspase-3 while downregulating the relative expression of p-PI3K, p-AKT, and Bcl-2 proteins. CONCLUSION The Isoorientin exhibits inhibitory effects on the proliferation, invasion, and migration of HGC27 cells, and induces apoptosis in gastric cancer cells.
Collapse
Affiliation(s)
- Dan Song
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712082, China
| | - Maosheng Chen
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Xiangjun Chen
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Jiaojiao Xu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Siqi Wu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Yaxin Lyu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Qin Zhao
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China.
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712082, China.
| |
Collapse
|
12
|
He J, Li G, Wu Y, Zhang T, Yao M, Zang M, Zou J, Song J, Li L, Chen Q, Cao G, Cai L. Traditional Chinese Medicine JianPiHuaTan formula improving quality of life and survival in patients with colorectal cancer through RAS/RAF downstream signaling pathways. Front Pharmacol 2024; 15:1391399. [PMID: 38974035 PMCID: PMC11225497 DOI: 10.3389/fphar.2024.1391399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
Objective JianPiHuaTan Formula (JPHTF), a traditional Chinese medicine (TCM), has been utilized as an adjunctive therapy for colorectal cancer (CRC). The study aims to evaluate the potential clinical benefits of JPHTF and its effectiveness in inhibiting tumor growth. Methods 300 stage II/III CRC patients and 412 advanced CRC patients were enrolled to verify the clinical value of JPHTF in CRC treatment. Furthermore, CRC patient-derived xenograft (PDX) mice were utilized to investigate the regulatory mechanisms of JPHTF. Results JPHTF significantly improved abdominal distension, shortness of breath, drowsiness, loss of appetite, sleep, and tiredness in stage II/III CRC patients, thereby improving their quality of life. Simultaneously, JPHTF served as a supportive therapy in extending the overall survival (OS) of stage IV CRC patients with RAS/RAF mutations undergoing chemotherapy. Additionally, JPHTF effectively impeded tumor progression in CRC PDX models with RAS mutation, accompanied by a reduction in tumor cell content in the JPHTF group. Transcriptomic analysis revealed the involvement of the Hippo and Hedgehog signaling pathways in JPHTF-mediated CRC inhibition. Furthermore, mice in the JPHTF group exhibited increased immune cell infiltration. Conclusion These findings suggested that JPHTF may inhibits tumor growth in CRC with RAS mutation by modulating RAS/RAF downstream signaling pathways, specifically the Hippo and Hedgehog signaling, leading to increased immune cell infiltration.
Collapse
Affiliation(s)
- Jian He
- GCP Center, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guojun Li
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Wu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Zhang
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjiang Yao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, China
| | - Mingxuan Zang
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianhua Zou
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinjie Song
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liusheng Li
- Department of Oncology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | | | - Guang Cao
- Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Linlin Cai
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
14
|
Luo Y, Zhang G, Hu C, Huang L, Wang D, Chen Z, Wang Y. The Role of Natural Products from Herbal Medicine in TLR4 Signaling for Colorectal Cancer Treatment. Molecules 2024; 29:2727. [PMID: 38930793 PMCID: PMC11206024 DOI: 10.3390/molecules29122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The toll-like receptor 4 (TLR4) signaling pathway constitutes an intricate network of protein interactions primarily involved in inflammation and cancer. This pathway triggers intracellular signaling cascades, modulating transcription factors that regulate gene expression related to immunity and malignancy. Previous studies showed that colon cancer patients with low TLR4 expression exhibit extended survival times and the TLR4 signaling pathway holds a significant role in CRC pathogenesis. In recent years, traditional Chinese medicines (TCMs) have garnered substantial attention as an alternative therapeutic modality for CRC, primarily due to their multifaceted composition and ability to target multiple pathways. Emerging evidence indicates that specific TCM products, such as andrographolide, rosmarinic acid, baicalin, etc., have the potential to impede CRC development through the TLR4 signaling pathway. Here, we review the role and biochemical processes of the TLR4 signaling pathway in CRC, and natural products from TCMs affecting the TLR4 pathway. This review sheds light on potential treatment strategies utilizing natural TLR4 inhibitors for CRC, which contributes to the advancement of research and accelerates their clinical integration into CRC treatment.
Collapse
Affiliation(s)
- Yan Luo
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Guochen Zhang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Chao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Lijun Huang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Zhejie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| |
Collapse
|
15
|
Liu HX, Lian L, Hou LL, Liu CX, Ren JH, Qiao YB, Wen SY, Li QS. Herb pair of Huangqi-Danggui exerts anti-tumor immunity to breast cancer by upregulating PIK3R1. Animal Model Exp Med 2024; 7:234-258. [PMID: 38863309 PMCID: PMC11228089 DOI: 10.1002/ame2.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND According to traditional Chinese medicine (TCM), drugs supplementing the vital energy, Qi, can eliminate tumors by restoring host immunity. The objective of this study is to investigate the underlying immune mechanisms of anti-tumor activity associated with Qi-supplementing herbs, specifically the paired use of Huangqi and Danggui. METHODS Analysis of compatibility regularity was conducted to screen the combination of Qi-supplementing TCMs. Using the MTT assay and a transplanted tumor mice model, the anti-tumor effects of combination TCMs were investigated in vitro and in vivo. High content analysis and flow cytometry were then used to evaluate cellular immunity, followed by network pharmacology and molecular docking to dissect the significant active compounds and potential mechanisms. Finally, the anti-tumor activity and the mechanism of the active ingredients were verified by molecular experiments. RESULTS There is an optimal combination of Huangqi and Danggui that, administered as an aqueous extract, can activate immunity to suppress tumor and is more effective than each drug on its own in vitro and in vivo. Based on network pharmacology analysis, PIK3R1 is the core target for the anti-tumor immunity activity of combined Huangqi and Danggui. Molecular docking analysis shows 6 components of the combined Danggui and Huangqi extract (quercetin, jaranol, isorhamnetin, kaempferol, calycosin, and suchilactone) that bind to PIK3R1. Jaranol is the most important component against breast cancer. The suchilactone/jaranol combination and, especially, the suchilactone/kaempferol combination are key for immunity enhancement and the anti-tumor effects of the extract. CONCLUSIONS The combination of Huangqi and Danggui can activate immunity to suppress breast cancer and is more effective than the individual drugs alone.
Collapse
Affiliation(s)
- Hai-Xin Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Li Lian
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Li-Li Hou
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Cai-Xia Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jin-Hong Ren
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yuan-Biao Qiao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Qing-Shan Li
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
16
|
Wang J, Xiao B, Ren S, Zeng D, Ma X, Zhang H. A systematic review and meta-analysis of the anti-tumor effects of Paeoniae Radix Rubra in animal models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117987. [PMID: 38423407 DOI: 10.1016/j.jep.2024.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Rubra (PRR) is the dried root of Paeonia lactiflora Pall, which has been widely used to anti-thrombotic, lipid-lowering, anti-spasmodic, antioxidant, antibacterial, hepatoprotective, and anti-tumor in Chinese clinical practice. Recent research has demonstrated that PRR plays a significant anti-tumor role in animal models of tumor-bearing. AIM OF THE STUDY There has not been the evaluation of the anti-tumor effects of PRR. This study conducts a meta-analysis to assess the anti-tumor efficacy of PRR on animal models, providing scientific evidence for clinical application of PRR in the adjuvant therapy of tumors. MATERIALS AND METHODS English databases (PubMed, The Cochrane Library, Embase, and Web of Science) and Chinese databases (CNKI, WanFang, SinoMed, CTSJ-VIP) were used to search all pertinent animal studies investigating the anti-tumor effects of PRR and its extracts. The quality of the included studies was evaluated using the SYRCLE animal experiment risk assessment tool, and statistical analysis was carried out using Revman 5.3 software. Egger's test and funnel plots were used to assess potential publication bias in the studies. RESULTS The initial search produced a total of 3905 potentially pertinent studies, and 24 studies met the inclusion criteria. These studies included animal tumor models of hepatocellular carcinoma, lung cancer, sarcoma, bladder cancer, leukemia, colon cancer, glioblastoma, and pancreatic cancer. The meta-analysis findings demonstrated that both PRR and its extracts significantly inhibited tumor growth in animals. Compared with the control group, PRR substantively inhibited tumor volume (SMD, -3.09; 95% CI, [-4.05, -2.13]; P < 0.0001), reduced tumor weight (SMD, -1.08; 95% CI, [-1.37, -0.78]; P < 0.0001), decreased tumor number (SMD, -2.16; 95% CI, [-3.45, -0.86]; P = 0.001), and prolonged the survival duration time (SMD, 0.97; 95% CI, [0.23, 1.71]; P = 0.01) on the experimental animals. CONCLUSIONS PRR displayed a potential therapeutic efficacy on eight tumors in animal models including hepatocellular carcinoma, lung cancer, sarcoma, bladder cancer, leukemia, colon cancer, glioblastoma, and pancreatic cancer. However, the quality and quantity of included studies may affect the accuracy of positive results. In the future, more high-quality randomized controlled animal experiments are need for meta-analysis.
Collapse
Affiliation(s)
- Jie Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China.
| | - Bin Xiao
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China.
| | - Shuanshan Ren
- School of Health Management, Xihua University, Chengdu, 610039, China.
| | - Dequan Zeng
- School of Health Management, Xihua University, Chengdu, 610039, China.
| | - Xingming Ma
- School of Health Management, Xihua University, Chengdu, 610039, China.
| | - Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637199, China.
| |
Collapse
|
17
|
Zhang W, Dong J, Xu J, Qian Y, Chen D, Fan Z, Yang H, Xiang J, Xue X, Luo X, Jiang Y, Wang Y, Huang Z. Columbianadin suppresses glioblastoma progression by inhibiting the PI3K-Akt signaling pathway. Biochem Pharmacol 2024; 223:116112. [PMID: 38458331 DOI: 10.1016/j.bcp.2024.116112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Glioblastoma (GBM) is the most common malignant glioma among brain tumors with low survival rate and high recurrence rate. Columbianadin (CBN) has pharmacological properties such as anti-inflammatory, analgesic, thrombogenesis-inhibiting and anti-tumor effects. However, it remains unknown that the effect of CBN on GBM cells and its underlying molecular mechanisms. In the present study, we found that CBN inhibited the growth and proliferation of GBM cells in a dose-dependent manner. Subsequently, we found that CBN arrested the cell cycle in G0/G1 phase and induced the apoptosis of GBM cells. In addition, CBN also inhibited the migration and invasion of GBM cells. Mechanistically, we chose network pharmacology approach by screening intersecting genes through targets of CBN in anti-GBM, performing PPI network construction followed by GO analysis and KEGG analysis to screen potential candidate signaling pathway, and found that phosphatidylinositol 3-kinase/Protein Kinase-B (PI3K/Akt) signaling pathway was a potential target signaling pathway of CBN in anti-GBM. As expected, CBN treatment indeed inhibited the PI3K/Akt signaling pathway in GBM cells. Furthermore, YS-49, an agonist of PI3K/Akt signaling, partially restored the anti-GBM effect of CBN. Finally, we found that CBN inhibited GBM growth in an orthotopic mouse model of GBM through inhibiting PI3K/Akt signaling pathway. Together, these results suggest that CBN has an anti-GBM effect by suppressing PI3K/Akt signaling pathway, and is a promising drug for treating GBM effectively.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Danni Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hao Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianglei Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xuan Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
18
|
Cai R, Chen X, Khan S, Li H, Tan J, Tian Y, Zhao S, Yin Z, Jin D, Guo J. Aspongopus chinensis Dallas induces pro-apoptotic and cell cycle arresting effects in hepatocellular carcinoma cells by modulating miRNA and mRNA expression. Heliyon 2024; 10:e27525. [PMID: 38500987 PMCID: PMC10945178 DOI: 10.1016/j.heliyon.2024.e27525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Aspongopus chinensis Dallas is a traditional Chinese medicinal insect with several anticancer properties can inhibit cancer cell growth, by inhibiting cell division, autophagy and cell cycle. However, the precise therapeutics effects and mechanisms of this insect on liver cancer are still unknown. This study examined the inhibitory influence of A. chinensis on the proliferation of hepatocellular carcinoma (HCC) cells and explore the underlying mechanism using high-throughput sequencing. The results showed that A. chinensis substantially reduced the viability of Hep G2 cells. A total of 33 miRNAs were found to be upregulated, while 43 miRNAs were downregulated. Additionally, 754 mRNAs were upregulated and 863 mRNAs were downregulated. Significant enrichment of differentially expressed genes was observed in signaling pathways related to tumor cell growth, cell cycle regulation, and apoptosis. Differentially expressed miRNAs exhibited a targeting relationship with various target genes, including ARC, HSPA6, C11orf86, and others. Hence, cell cycle and apoptosis were identified by flow cytometry. These findings indicate that A. chinensis impeded cell cycle advancement, halted the cell cycle in the G0/G1 and S stages, and stimulated apoptosis. Finally, mouse experiments confirmed that A. chinensis significantly inhibits tumor growth in vivo. Therefore, our findings indicate that A. chinensis has a notable suppressive impact on the proliferation of HCC cells. The potential mechanism of action could involve the regulation of mRNA expression via miRNA, ultimately leading to cell cycle arrest and apoptosis. The results offer a scientific foundation for the advancement and application of A. chinensis in the management of HCC.
Collapse
Affiliation(s)
- Renlian Cai
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xumei Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Samiullah Khan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Haiyin Li
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Ying Tian
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shuai Zhao
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhiyong Yin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Daochao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jianjun Guo
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
19
|
Chen Q, Zhang T, Li B, Zhu Z, Ma X, Zhang Y, Li L, Zhu J, Zhang G. Gentiopicroside inhibits the progression of gastric cancer through modulating EGFR/PI3K/AKT signaling pathway. Eur J Med Res 2024; 29:47. [PMID: 38212810 PMCID: PMC10782718 DOI: 10.1186/s40001-024-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND This study was designed to clarify the function and potential mechanism of gentiopicroside (GPS) in regulating the malignant progression of gastric cancer (GC) through in vitro cellular experiments and in vivo animal models. METHODS AGS and HGC27 cells were divided into control group and GPS treatment groups (50 µM and 100 µM). Then, the cellular proliferation, colony formation, migration, invasion, and apoptosis were detected, respectively. Transmission electron microscope (TEM) was used to observe the mitochondrial changes, and the mitochondrial membrane potential (MMP) was determined using the JC-1 commercial kit. Network pharmacology analysis was utilized to screen the potential molecule that may be related to the GPS activity on GC cells, followed by validation tests using Western blot in the presence of specific activator. In addition, xenografted tumor model was established using BALB/c nude mice via subcutaneous injection of HGC27 cells, along with pulmonary metastasis model. Then, the potential effects of GPS on the tumor growth and metastasis were detected by immunohistochemistry (IHC) and HE staining. RESULTS GPS inhibited the proliferation, invasion and migration of GC cell lines in a dose-dependent manner. Besides, it could induce mitochondrial apoptosis. Epidermal growth factor receptor (EGFR) may be a potential target for GPS action in GC by network pharmacological analysis. GPS inhibits activation of the EGFR/PI3K/AKT axis by reducing EGFR expression. In vivo experiments indicated that GPS induced significant decrease in tumor volume, and it also inhibited the pulmonary metastasis. For the safety concerns, GPS caused no obvious toxicities to the heart, liver, spleen, lung and kidney tissues. IHC staining confirmed GPS downregulated the activity of EGFR/PI3K/AKT. CONCLUSIONS Our investigation demonstrated for the first time that GPS could inhibit GC malignant progression by targeting the EGFR/PI3K/AKT signaling pathway. This study indicated that GPS may be serve as a safe anti-tumor drug for further treatment of GC.
Collapse
Affiliation(s)
- Qishuai Chen
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, People's Republic of China
| | - Tongtong Zhang
- Department of Laboratory Medical, Zibo Central Hospital, Zibo, 255000, Shandong Province, People's Republic of China
| | - Bingjun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, People's Republic of China
| | - Zhenguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, People's Republic of China
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, People's Republic of China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, People's Republic of China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, People's Republic of China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, People's Republic of China.
| |
Collapse
|
20
|
Kahar N, Mishra P, Bhatt R, Seth R. Chemical characterization of the crude extract of Sauromatum venosum (voodoo lily) and docking study with 12-O-acetylingol 8-tiglate for cytotoxicity testing in SaOS 2 (osteoblastic osteosarcoma cells). ANAL SCI 2024; 40:151-162. [PMID: 37872463 DOI: 10.1007/s44211-023-00441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
The current study was carried out to investigate the anticancer potential of Sauromatum venosum (SV) tuber by gas chromatography with high-resolution mass spectrometry (GC-HRMS) analysis of ethanolic (eSV), hydroalcoholic (hSV), and aqueous extracts (wSV), and in silico study were performed to investigate the main targets of 12-O-acetylingol 8-tiglate by computational docking. The GC-HRMS analysis of three plant samples was carried out on a system equipped with a high-resolution mass spectrometer. The major compounds were identified in all crude extracts. Computation docking analysis was performed for the prediction of the main target of the cancer proliferation of active compound of the Sauromatum venosum tuber extract in cancer therapy. A total of 45 phytocompounds were detected including diterpenoids, esters of fatty acid, hydrocarbons, and alkanes in the tuber of SV. Among all the crude samples tested, eSV showed the lowest IC50 value treated with SaOS2 cells. 12-O-acetylingol 8-tiglate is one of the phytocompounds identified in eSV extract and has been found to exhibit cytotoxic effects against various cancer cells, as reported in the research. It shows the optimum binding affinity with - 8.59 kcal/mol binding energy with a molecular target protein TNF-α (PDB ID: 7PKA). The observed interactions strongly support the anticancer activity of 12-O-acetylingol 8-tiglate and its role in the medicinal efficacy of the plant. These findings highlight the potential of the compound as a valuable source for the development of a therapeutic agent aimed at combating cancer. However, it is important to note that additional in vitro and in vivo studies are required to validate these findings and establish the therapeutic potential.
Collapse
Affiliation(s)
- Namrata Kahar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, 495009, India
| | | | - Renu Bhatt
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Rohit Seth
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
21
|
Li Z, Li J, Liu X, Sun Z, Sun X. Ethyl Acetate Fraction from Hedyotis Diffusa Plus Scutellaria Barbata Inhibits the Progression of Breast Cancer via Targeting LMO1 and AKT/Mtor Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:1735-1744. [PMID: 37711008 DOI: 10.2174/1386207326666230913105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Traditional Chinese medicines are widely used in cancer treatment. Scutellaria barbata and Hedyotis diffusa herb pair (SH) has an anticancer effects in various tumors. However, the specific mechanism of SH in breast cancer remains unclear. METHODS In the present research, we investigated the effect and regulatory network of SH in in breast cancer. CCK8, colony formation, transwell, wound healing and flow cytometry analysis were used for the detection of cell function. RESULTS Ethyl acetate fraction from SH at an equal weight ratio (EA11) could inhibit the proliferation, migration and invasion of MCF7 and MDA-MB-231 cells. It also induced apoptosis in these two cell lines by downregulating Bcl2 and upregulating Bax and Cleaved-Caspase3. SH reduced the activation of the AKT/mTOR signaling pathway and the expression of p70S6K. Sequencing results showed that LMO1 was significantly downregulated in SH-treated cells compared with control cells. Importantly, overexpression of LMO1 attenuated the inhibitory effect of SH on cell proliferation and invasion and induced inflammatory tumor microenvironment. CONCLUSION In conclusion, the SH herb pair inhibited the proliferation and metastasis through downregulating LMO1 expression and reducing the activation of the AKT/mTOR signaling pathway. LMO1 has the potential as a new target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhiyuan Li
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shadong, Jinan, China
| | - Jingwei Li
- Department of Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofei Liu
- Department of Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziyuan Sun
- Department of Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Sun
- Department of Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Qi X, Chen Y, Liu S, Liu L, Yu Z, Yin L, Fu L, Deng M, Liang S, Lü M. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:696-709. [PMID: 37092313 PMCID: PMC10128503 DOI: 10.1080/13880209.2023.2200787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Sanguinarine (SAG) is the most abundant constituent of Macleaya cordata (Willd.) R. Br. (Popaceae). SAG has shown antimammary and colorectal metastatic effects in mice in vivo, suggesting its potential for cancer chemotherapy. OBJECTIVE To determine the antimetastatic effect and underlying molecular mechanisms of SAG on melanoma. MATERIALS AND METHODS CCK8 assay was used to determine the inhibition of SAG on the proliferation of A375 and A2058 cells. Network pharmacology analysis was applied to construct a compound-target network and select potential therapeutic targets of SAG against melanoma. Molecular docking simulation was conducted for further analysis of the selected targets. In vitro migration/invasion/western blot assay with 1, 1.5, 2 μM SAG and in vivo effect of 2, 4, 8 mg/kg SAG in xenotransplantation model in nude mice. RESULTS The key targets of SAG treatment for melanoma were mainly enriched in PI3K-AKT pathway, and the binding energy of SAG to PI3K, AKT, and mTOR were -6.33, -6.31, and -6.07 kcal/mol, respectively. SAG treatment inhibited the proliferation, migration, and invasion ability of A375 and A2058 cells (p < 0.05) with IC50 values of 2.378 μM and 2.719 μM, respectively. It also decreased the phosphorylation levels of FAK, PI3K, AKT, mTOR and protein expression levels of MMP2 and ICAM-2. In the nude mouse xenograft model, 2, 4, 8 mg/kg SAG was shown to be effective in inhibiting tumour growth. CONCLUSIONS Our research offered a theoretical foundation for the clinical antitumor properties of SAG, further suggesting its potential application in the clinic.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Yin
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Lu Fu
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- CONTACT Sicheng Liang Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- Muhan Lü Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| |
Collapse
|
23
|
Fang J, Zou X, Gong L, Xi J, Liu Y, Yang X, Zhang X, Gui C. Acid ground nano-realgar processed product inhibits breast cancer by inducing mitophagy via the p53/BNIP3/NIX pathway. J Cell Mol Med 2023; 27:3478-3490. [PMID: 37610095 PMCID: PMC10660646 DOI: 10.1111/jcmm.17917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Breast cancer is a highly prevalent malignancy with the first morbidity and the primary reason for female cancer-related deaths worldwide. Acid ground nano-realgar processed product (NRPP) could inhibit breast cancer cell proliferation and induce autophagy in our previous research; however, the underlying mechanisms are still unclear. Therefore, this research aimed to verify whether NRPP induces breast cancer mitophagy and explore the mitophagy-mediated mechanism. Primarily, rhodamine-123 assay and transmission electron microscopy were applied to detect mitochondrial membrane potential (MMP) and ultrastructural changes in the MDA-MB-435S cells, respectively. Mito-Tracker Green/Lyso-Tracker Red staining, western blot, immunofluorescence and RT-PCR were used to explore molecular mechanisms of NRPP-induced mitophagy in vitro. MDA-MB-435S breast cancer xenograft models were established to assess the activity and mechanisms of NRPP in vivo. Our results showed that NRPP decreased MMP and increased autophagosome numbers in MDA-MB-435S cells and activated mitophagy. Furthermore, mitophagy was consolidated because mitochondria and lysosomes colocalized phenomenology were observed, and the expression of LC3II/I and COXIV was upregulated. Additionally, we found the p53/BNIP3/NIX pathway was activated. Finally, NRPP inhibited tumour growth and downregulated the levels of TNF-α, IL-1β and IL-6. Necrosis, damaged mitochondria and autophagosomes were observed in xenograft tumour cells, and proteins and mRNA levels of LC3, p53, BNIP3 and NIX were increased. Overall, NRPP inhibited MDA-MB-435S cell proliferation and tumour growth by inducing mitophagy via the p53/BNIP3/NIX pathway. Thus, NRPP is a promising candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Jiahui Fang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
- Department of Pharmacy, Taihe HospitalHubei University of MedicineShiyanHubeiChina
| | - Xue Zou
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Ling Gong
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Juan Xi
- College of InspectionHubei University of Chinese MedicineWuhanHubeiChina
| | - Yi Liu
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Xiaoli Yang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Xiuqiao Zhang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Chun Gui
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| |
Collapse
|
24
|
Zheng Y, Li L, Chen H, Zheng Y, Tan X, Zhang G, Jiang R, Yu H, Lin S, Wei Y, Wang Y, Zhang R, Liu Z, Wu J. Luteolin exhibits synergistic therapeutic efficacy with erastin to induce ferroptosis in colon cancer cells through the HIC1-mediated inhibition of GPX4 expression. Free Radic Biol Med 2023; 208:530-544. [PMID: 37717793 DOI: 10.1016/j.freeradbiomed.2023.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Colon cancer continues to be a prevalent gastrointestinal malignancy with a bleak prognosis. The induction of ferroptosis, a new form of regulated cell death, has emerged as a potentially effective strategy for the treatment of colon cancer. However, numerous colon cancer cells display resistance to ferroptosis induced by erastin, a well-established ferroptosis inducer. Finding drugs that can enhance the susceptibility of colon cancer cells to erastin is of utmost importance. This study aimed to examine the synergistic therapeutic impact of combining erastin with a bioactive flavonoid compound luteolin on the ferroptosis-mediated suppression of colon cancer. Human colon cancer HCT116 and SW480 cells were used for the in vitro studies and a xenograft of colon cancer model in BALB/c nude mice was established for the in vivo experiments. The results showed that combinative treatment of luteolin and erastin effectively inhibited the viability and proliferation of colon cancer cells. Luteolin and erastin cotreatment synergistically induced ferroptosis, concomitant with a reduction in glutathione and an elevation in lipid peroxides. In vivo, combinative treatment of luteolin and erastin exhibited a pronounced therapeutic effect on xenografts of colon cancer, characterized by a significant induction of ferroptosis. Mechanistically, luteolin in combination with erastin synergistically reduced the expression of glutathione peroxidase 4 (GPX4), an antioxidase overexpressed in colon cancer cells. Furthermore, luteolin and erastin cotreatment significantly upregulated the expression of hypermethylated in cancer 1 gene (HIC1), a transcriptional repressor also recognized as a tumor suppressor. HIC1 overexpression notably augmented the suppression of GPX4 expression and facilitated ferroptotic cell death. In contrast, HIC1 silencing attenuated the inhibition of GPX4 expression and eliminated the ferroptosis. Conclusively, these results clearly demonstrated that luteolin acts synergistically with erastin and renders colon cancer cells vulnerable to ferroptosis through the HIC1-mediated inhibition of GPX4 expression, which may act as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yinli Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Leyan Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Haipeng Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Yuting Zheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Xuanjing Tan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Guiyu Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Ruidi Jiang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Hong Yu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Senyi Lin
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Yijie Wei
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Jinjun Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
25
|
Jia Y, Li X, Meng X, Lei J, Xia Y, Yu L. Anticancer perspective of 6-shogaol: anticancer properties, mechanism of action, synergism and delivery system. Chin Med 2023; 18:138. [PMID: 37875983 PMCID: PMC10594701 DOI: 10.1186/s13020-023-00839-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Cancer is a malignant disease that has plagued human beings all the time, but the treatment effect of commonly used anticancer drugs in clinical practice is not ideal by reason of their drug tolerance and Strong adverse reactions to patients. Therefore, it is imperative to find effective and low-toxic anticancer drugs. Many research works have shown that natural products in Chinese herbal medicine have great anticancer potential, such as 6-shogaol, a monomer composition obtained from Chinese herbal ginger, which has been confirmed by numerous in vitro or vivo studies to be an excellent anti-cancer active substance. In addition, most notably, 6-shogaol has different selectivity for normal and cancer cells during treatment, which makes it valuable for further research and clinical development. Therefore, this review focus on the anti-cancer attributes, the mechanism and the regulation of related signaling pathways of 6-shogaol. In addition, its synergy with commonly used anticancer drugs, potential drug delivery systems and prospects for future research are discussed. This is the first review to comprehensively summarize the anti-cancer mechanism of 6-shogaol, hoping to provide a theoretical basis and guiding significance for future anti-cancer research and clinical development of 6-shogaol.
Collapse
Affiliation(s)
- Yaoxia Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Li
- Jianyang Chinese Medicine Hospital, Chengdu, 641400, China
| | - Xiangqi Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Jinjie Lei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Yangmiao Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Lingying Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
26
|
Ma X, Zhang M, Xia W, Song Y. Antitumor mechanism of Saikosaponin A in the Xiaoying Sanjie Decoction for treatment of anaplastic thyroid cancer by network pharmacology analysis and experiments in vitro and in vivo. Fitoterapia 2023; 170:105665. [PMID: 37673277 DOI: 10.1016/j.fitote.2023.105665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Effective therapies for anaplastic thyroid cancer (ATC) are still limited due to its dedifferentiated phenotype and high invasiveness. Xiaoying Sanjie Decoction (XYSJD), a clinically empirical Chinese medicine compound, has shown positive effects for ATC treatment and recovery. However, the pharmacological mechanisms of effective active compound in XYSJD remain unclear. In this study, we aimed at elucidating the antitumor mechanism of the active compound and identifying the kernel molecular mechanisms of XYSJD against ATC. Firstly, the main chemical constituents of XYSJD were identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Then we used network pharmacology and ClusterONE algorithm to analyze the possible targets and pathways of the prescription and active compound Saikosaponin A (SSA). Seven core targets, including P2RY12, PDK1, PPP1CC, PPP2CA, TBK1, ITGB1 and ITGB6, which may be involved in the anti-tumor activity of XYSJD were screened. Finally, using cell biology, molecular biology and experimental zoology techniques, we investigated the mechanism of active compound SSA in the treatment of ATC. The results of qRT-PCR indicated that these seven nuclear targets might play an important role in SSA, the active compound of XYSJD. The combined data provide preliminary study of the pharmacological mechanisms of SSA in XYSJD. SSA may be a promising potential therapeutic and chemopreventive candidate for ATC.
Collapse
Affiliation(s)
- Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Central Laboratory, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yanan Song
- Central Laboratory, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
27
|
Huang R, Xu M, Guo W, Cheng M, Dong R, Tu J, Xu S, Zou C. Network pharmacology and experimental verification-based strategy for exploring the mechanisms of luteolin in the treatment of osteosarcoma. Cancer Cell Int 2023; 23:213. [PMID: 37749554 PMCID: PMC10521544 DOI: 10.1186/s12935-023-03046-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Luteolin is an active ingredient in various traditional Chinese medicines for the treatment of multiple tumors. However, the mechanisms of its inhibitory effect on osteosarcoma proliferation and metastasis remain unclear. PURPOSE To elucidate the anti-osteosarcoma mechanisms of luteolin based on network pharmacology and experimental verification. STUDY DESIGN Integrate network pharmacology predictions, scRNA-seq analysis, molecular docking, and experimental validation. METHODS Luteolin-related targets and osteosarcoma-associated targets were collected from several public databases. The luteolin against osteosarcoma targets were screened and a PPI network was constructed to identify the hub targets. The GO and KEGG enrichment of osteosarcoma-associated targets and luteolin against osteosarcoma targets were performed. And scRNA-seq analysis was performed to determine the distribution of the core target expression in OS tissues. Molecular docking, cell biological assays, and osteosarcoma orthotopic mouse model was performed to validate the inhibitory effect and mechanisms of luteolin on osteosarcoma proliferation and metastasis. RESULTS Network pharmacology showed that 251 luteolin against osteosarcoma targets and 8 hub targets including AKT1, ALB, CASP3, IL6, JUN, STAT3, TNF, and VEGFA, and the PI3K-AKT signaling pathway might play an important role in anti-osteosarcoma of luteolin. Analysis of public data revealed that AKT1, IL6, JUN, STAT3, TNF, and VEGFA expression in OS tissue was significantly higher than that in normal bones, and the diagnostic value of VEGFA for overall survival and metastasis was increased over time. scRNA-seq analysis revealed significantly higher expression of AKT1, STAT3, and VEGFA in MYC+ osteoblastic OS cells, especially in primary samples. Moreover, the docking activity between luteolin and the hub targets was excellent, as verified by molecular docking. Experimental results showed that luteolin could inhibit cell viability and significantly decrease the expression of AKT1, STAT3, IL6, TNF, and VEGFA, and luteolin could also inhibit osteosarcoma proliferation and metastasis in osteosarcoma orthotopic mouse model. CONCLUSION This study shows that luteolin may regulate multiple signaling pathways by targeting various genes like AKT1, STAT3, IL6, TNF, and VEGFA to inhibit osteosarcoma proliferation and metastasis.
Collapse
Affiliation(s)
- Renxuan Huang
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Mingxian Xu
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Weitang Guo
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Mingzhe Cheng
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Rui Dong
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Sciences, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| | - Jian Tu
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Shao Xu
- Department of Stomatology, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Road, Guangzhou, 510630, China.
| | - Changye Zou
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
28
|
Lin H, Zhang X, Zhang Y, Cui W, Jia F, Wang J. Association between Chinese herbal medicine (CHM) treatment and depression among cancer patients in China: An outpatient-based cross-sectional study. Medicine (Baltimore) 2023; 102:e34695. [PMID: 37653736 PMCID: PMC10470751 DOI: 10.1097/md.0000000000034695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023] Open
Abstract
Depression is a prevalent condition among cancer patients and significantly impacts their quality of life. Traditional Chinese Medicine, particularly Chinese Herbal Medicine (CHM), has shown potential in both anti-tumor and anti-depressive effects. However, there is a dearth of scientific literature exploring the association between CHM treatment and depression in cancer patients. This study aims to investigate the relationship between CHM treatment and depression in cancer patients. A cross-sectional study was conducted among cancer outpatients at Longhua Hosiptal, Shanghai University of Traditional Chinese Medicine, from June 2020 to April 2021 (Ethical approval number: 2020LCSY057). All patients signed informed consent and completed The European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire (EORTC QLQ-C30). Hamilton depression scale was evaluated depression by psychiatrists. The power of the sample size was determined using Gpower statistical and SPSS were used for statistical analysis. A total of 809 completed the study. Gender, medical insurance, the classification of time since diagnosis, ECOG, cancer stage, metastasis, gene mutation, treatment plan and CHM treatment were an important factor affecting depression (P < .05). Further analysis investigated the impact of CHM treatment on depression. There were 374 enrolled in CHM group and 435 enrolled in Non-CHM group. The assessment results of Hamilton depression scale and EORTC QLQ-C30 in CHM group were superior to those in Non-CHM group. The morbidity of depression is 50.27% in CHM group and 66.44% in Non-CHM group. After adjusting for potential confounders (gender, medical insurance, cancer stage, etc.), CHM treatment indicated negative correlation with depression (Odds ratio (OR) = 0.7, 95% confidence interval (CI): 0.5-0.9, P = .020). The interaction effects within each subgroup were no significantly affect the relationship between CHM treatment and depression (P > .05). CHM treatment was an independent protective factor for depression in cancer patients, and lead to better quality of life for cancer patients.
Collapse
Affiliation(s)
- Huiyue Lin
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueting Zhang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjing Cui
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Jia
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juyong Wang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Li TF, Hwang IH, Tsai CH, Hwang SJ, Wu TP, Chen FP. To explore the effects of herbal medicine among cancer patients in Taiwan: A cohort study. J Chin Med Assoc 2023; 86:767-774. [PMID: 37273198 DOI: 10.1097/jcma.0000000000000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is widely used by ethnic Chinese communities. TCM is covered by Taiwan's National Health Insurance (NHI) program. We evaluated the efficacy and outcomes of complementary Chinese herbal medicine (CHM) therapy in patients with cancer. METHODS This population-based cohort study was conducted using the data of patients who received a cancer diagnosis between 2005 and 2015 in Taiwan. Eligible patients were divided into standard and complementary CHM therapy groups. The complementary CHM therapy group was further divided into low cumulative dosage (LCD), medium cumulative dosage (MCD), and high cumulative dosage (HCD) subgroups. Overall survival (OS), mortality risk, cancer recurrence, and metastasis were analyzed for all cancers and five major cancers (lung, liver, breast, colorectal, and oral cancers). RESULTS We included 5707 patients with cancer (standard therapy, 4797 [84.1%]; complementary CHM therapy, 910 [15.9%]; LCD, 449 [7.9%]; MCD, 374 [6.6%], and HCD, 87 [1.5%]). For the LCD, MCD, and HCD subgroups, the mortality risk was 0.83, 0.64, and 0.45, and the 11-year OS, 5-year cumulative cancer recurrence, and 5-year cumulative cancer metastasis rates were 6.1 ± 0.2, 6.9 ± 0.2, and 8.2 ± 0.4 years; 39.2%, 31.5%, and 18.8%; and 39.5%, 32.8%, and 16.6%, respectively. The cumulative cancer recurrence and metastasis rates of the standard therapy group were 40.9% and 32.8%, respectively. The cumulative recurrence and metastasis rates of all cancers, lung cancer, and liver cancer and all cancers, colorectal cancer, and breast cancer, respectively, were significantly lower in the HCD subgroup than in the other subgroups and standard therapy group ( p < 0.05). CONCLUSION Patients receiving complementary CHM therapy may have prolonged OS and reduced risks of mortality, recurrence, and metastasis. A dose-response relationship was noted between CHM therapy and mortality risk: increased dosage was associated with improved OS and reduced mortality risk.
Collapse
Affiliation(s)
- Tsai-Feng Li
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - I-Hsuan Hwang
- Center for Quality Control, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Hung Tsai
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shinn-Jang Hwang
- Family Medicine Division, En Chu Kong Hospital, New Taipei, Taiwan, ROC
| | - Ta-Peng Wu
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
30
|
Liao L, Zhang F, Zhuo Z, Huang C, Zhang X, Liu R, Gao B, Ding S. Regulation of Fatty Acid Metabolism and Inhibition of Colorectal Cancer Progression by Erchen Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9557720. [PMID: 37078067 PMCID: PMC10110375 DOI: 10.1155/2023/9557720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 04/21/2023]
Abstract
Erchen decoction (ECD) is a traditional Chinese prescription widely used in the treatment of various diseases such as obesity, fatty liver, diabetes, and hypertension. In this study, we investigated the effect of ECD on fatty acid metabolism in a colorectal cancer (CRC) mouse model fed a high-fat (HF) diet. The HF-CRC mouse model was established by azoxymethane (AOM)/dextran sulphate sodium (DSS) combined with a high-fat diet. Mice were then gavaged with ECD. Change in the body weight was recorded every two weeks for 26 weeks. Changes in blood glucose (GLU), total cholesterol (TC), total triglycerides (TG), and C-reactive protein (CRP) were measured. Colorectal tissues were collected to observe changes in colorectal length and tumorigenesis. Hematoxylin-eosin (HE) staining and immunohistochemical staining were performed to observe changes in intestinal structure and inflammatory markers. Fatty acids and the expression of related genes in colorectal tissues were also studied. ECD gavage inhibited HF-induced weight gain. CRC induction and HF diet intake resulted in increased GLU, TC, TG, and CRP, where ECD gavage reduced these elevated indicators. ECD gavage also increased colorectal length and inhibited tumorigenesis. HE staining revealed that ECD gavage suppressed inflammatory infiltration of colorectal tissues. ECD gavage suppressed the fatty acid metabolism abnormalities caused by HF-CRC in colorectal tissues. Consistently, ECD gavage lowered ACSL4, ACSL1, CPT1A, and FASN levels in colorectal tissues. Conclusions. ECD inhibited HF-CRC progression through the regulation of fatty acid metabolism.
Collapse
Affiliation(s)
- Linghong Liao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Fei Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Zewei Zhuo
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chengbao Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaofang Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruifang Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Bizhen Gao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shanshan Ding
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
31
|
Gao C, Pan H, Ma F, Zhang Z, Zhao Z, Song J, Li W, Fan X. Centipeda minima active components and mechanisms in lung cancer. BMC Complement Med Ther 2023; 23:89. [PMID: 36959600 PMCID: PMC10035269 DOI: 10.1186/s12906-023-03915-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been extensively used for neoplasm treatment and has provided many promising therapeutic candidates. We previously found that Centipeda minima (C. minima), a Chinese medicinal herb, showed anti-cancer effects in lung cancer. However, the active components and underlying mechanisms remain unclear. In this study, we used network pharmacology to evaluate C. minima active compounds and molecular mechanisms in lung cancer. METHODS We screened the TCMSP database for bioactive compounds and their corresponding potential targets. Lung cancer-associated targets were collected from Genecards, OMIM, and Drugbank databases. We then established a drug-ingredients-gene symbols-disease (D-I-G-D) network and a protein-protein interaction (PPI) network using Cytoscape software, and we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using R software. To verify the network pharmacology results, we then performed survival analysis, molecular docking analysis, as well as in vitro and in vivo experiments. RESULTS We identified a total of 21 C. minima bioactive compounds and 179 corresponding targets. We screened 804 targets related to lung cancer, 60 of which overlapped with C. minima. The top three candidate ingredients identified by D-I-G-D network analysis were quercetin, nobiletin, and beta-sitosterol. PPI network and core target analyses suggested that TP53, AKT1, and MYC are potential therapeutic targets. Moreover, molecular docking analysis confirmed that quercetin, nobiletin, and beta-sitosterol, combined well with TP53, AKT1, and MYC respectively. In vitro experiments verified that quercetin induced non-small cell lung cancer (NSCLC) cell death in a dose-dependent manner. GO and KEGG analyses found 1771 enriched GO terms and 144 enriched KEGG pathways, including a variety of cancer related pathways, the IL-17 signaling pathway, the platinum drug resistance pathway, and apoptosis pathways. Our in vivo experimental results confirmed that a C. minima ethanol extract (ECM) enhanced cisplatin (CDDP) induced cell apoptosis in NSCLC xenografts. CONCLUSIONS This study revealed the key C. minima active ingredients and molecular mechanisms in the treatment of lung cancer, providing a molecular basis for further C. minima therapeutic investigation.
Collapse
Affiliation(s)
- Cuiyun Gao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengjun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ze Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zedan Zhao
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jialing Song
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xiangzhen Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
32
|
Julca I, Mutwil-Anderwald D, Manoj V, Khan Z, Lai SK, Yang LK, Beh IT, Dziekan J, Lim YP, Lim SK, Low YW, Lam YI, Tjia S, Mu Y, Tan QW, Nuc P, Choo LM, Khew G, Shining L, Kam A, Tam JP, Bozdech Z, Schmidt M, Usadel B, Kanagasundaram Y, Alseekh S, Fernie A, Li HY, Mutwil M. Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36807520 DOI: 10.1111/jipb.13469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Vaishnervi Manoj
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zahra Khan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lay K Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Ing T Beh
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jerzy Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yoon P Lim
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Shen K Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yee W Low
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Yuen I Lam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiao W Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Le M Choo
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Gillian Khew
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Loo Shining
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Bjoern Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Hoi Y Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
33
|
Hu Y, Zhai W, Tan D, Chen H, Zhang G, Tan X, Zheng Y, Gao W, Wei Y, Wu J, Yang X. Uncovering the effects and molecular mechanism of Astragalus membranaceus (Fisch.) Bunge and its bioactive ingredients formononetin and calycosin against colon cancer: An integrated approach based on network pharmacology analysis coupled with experimental validation and molecular docking. Front Pharmacol 2023; 14:1111912. [PMID: 36755950 PMCID: PMC9899812 DOI: 10.3389/fphar.2023.1111912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Colon cancer is a highly malignant cancer with poor prognosis. Astragalus membranaceus (Fisch.) Bunge (Huang Qi in Chinese, HQ), a well-known Chinese herbal medicine and a popular food additive, possesses various biological functions and has been frequently used for clinical treatment of colon cancer. However, the underlying mechanism is not fully understood. Isoflavonoids, including formononetin (FMNT) and calycosin (CS), are the main bioactive ingredients isolated from HQ. Thus, this study aimed to explore the inhibitory effects and mechanism of HQ, FMNT and CS against colon cancer by using network pharmacology coupled with experimental validation and molecular docking. The network pharmacology analysis revealed that FMNT and CS exerted their anticarcinogenic actions against colon cancer by regulating multiple signaling molecules and pathways, including MAPK and PI3K-Akt signaling pathways. The experimental validation data showed that HQ, FMNT and CS significantly suppressed the viability and proliferation, and promoted the apoptosis in colon cancer Caco2 and HT-29 cells. HQ, FMNT and CS also markedly inhibited the migration of Caco2 and HT-29 cells, accompanied by a marked increase in E-cadherin expression, and a notable decrease in N-cadherin and Vimentin expression. In addition, HQ, FMNT and CS strikingly decreased the expression of ERK1/2 phosphorylation (p-ERK1/2) without marked change in total ERK1/2 expression. They also slightly downregulated the p-Akt expression without significant alteration in total Akt expression. Pearson correlation analysis showed a significant positive correlation between the inactivation of ERK1/2 signaling pathway and the HQ, FMNT and CS-induced suppression of colon cancer. The molecular docking results indicated that FMNT and CS had a strong binding affinity for the key molecules of ERK1/2 signaling pathway. Conclusively, HQ, FMNT and CS exerted good therapeutic effects against colon cancer by mainly inhibiting the ERK1/2 signaling pathway, suggesting that HQ, FMNT and CS could be useful supplements that may enhance chemotherapeutic outcomes and benefit colon cancer patients.
Collapse
Affiliation(s)
- Yu Hu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenjuan Zhai
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Duanling Tan
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haipeng Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guiyu Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuanjing Tan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuting Zheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenhui Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yijie Wei
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinjun Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,*Correspondence: Jinjun Wu, ; Xin Yang,
| | - Xin Yang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,*Correspondence: Jinjun Wu, ; Xin Yang,
| |
Collapse
|
34
|
Yang AY, Liu HL, Yang YF. Study on the mechanism of action of Scutellaria barbata on hepatocellular carcinoma based on network pharmacology and bioinformatics. Front Pharmacol 2023; 13:1072547. [PMID: 36699068 PMCID: PMC9869961 DOI: 10.3389/fphar.2022.1072547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Hepatocellular carcinoma is one of the most common cancers with the characteristics of invasion and high mortality. Current forms of prevention remain severe. Scutellaria barbata is widely used in traditional Chinese medicine treatment of various tumors. This study explored the mechanism of Scutellaria barbata in the treatment of hepatocellular carcinoma by network pharmacology and bioinformatics. Methods: The active ingredients of Scutellaria barbata and potential targets for the treatment of hepatocellular carcinoma were collected by network pharmacology. The protein interaction network was constructed to screen the core targets, and the association between the core targets and diseases was further verified by bioinformatics methods. Finally, the active ingredients corresponding to the targets closely related to the disease were screened for AMDE characteristics analysis. Molecular docking of drug-like ingredients with corresponding targets was performed. We used CCK-8 kit to determine the effect of active ingredients on cell proliferation. Results: 29 candidate active ingredients and 461 related targets of Scutellaria barbata were screened. A total of 8238 potential therapeutic targets for hepatocellular carcinoma were indentified. Finally, 373 potential targets for the treatment of HCC were obtained. The active ingredients: wogonin, Rhamnazin, eriodictyol, quercetin, baicalein, and luteolin, etc. The core targets were CDK1, CDK4, SRC, and E2F1. A total of 3056 GO enrichment entries were obtained, and 180 enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in PI3K-Akt signaling pathway, IL-17 signaling pathway, TNF signaling pathway, apoptosis pathway, and hepatocellular carcinoma pathway. Molecular docking results showed that the screened compounds had strong binding ability with the corresponding target proteins. CCK8 assays showed that Rhamnazin and Luteolin suppressed the proliferation of HCC cells significantly compared with controls. Conclusion: This study revealed that the mechanism of Scutellaria barbata in the treatment of hepatocellular carcinoma may be that the active ingredients inhibit the expression of core genes and block the PI3K-AKT signaling pathway to inhibit the proliferation, and migration and induce apoptosis of cancer cells.
Collapse
Affiliation(s)
- An-Yin Yang
- Department of Liver Disease, Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Liu
- Medical College of Southeast University, Nanjing, China
| | - Yong-Feng Yang
- Department of Liver Disease, Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Yong-Feng Yang,
| |
Collapse
|
35
|
Systems Pharmacology-Based Strategy to Investigate the Mechanism of Ruangan Lidan Decoction for Treatment of Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2940654. [PMID: 36578460 PMCID: PMC9791079 DOI: 10.1155/2022/2940654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022]
Abstract
epatocellular carcinoma (HCC) is one of the leading contributors to cancer mortality worldwide. Currently, the prevention and treatment of HCC remains a major challenge. As a traditional Chinese medicine (TCM) formula, Ruangan Lidan decoction (RGLD) has been proved to own the effect of relieving HCC symptoms. However, due to its biological effects and complex compositions, its underlying mechanism of actions (MOAs) have not been fully clarified yet. In this study, we proposed a pharmacological framework to systematically explore the MOAs of RGLD against HCC. We firstly integrated the active ingredients and potential targets of RGLD. We next highlighted 25 key targets that played vital roles in both RGLD and HCC disease via a protein-protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Furthermore, an ingredient-target network of RGLD consisting of 216 ingredients with 306 targets was constructed, and multilevel systems pharmacology analyses indicated that RGLD could act on multiple biological processes related to the pathogenesis of HCC, such as cellular response to hypoxia and cell proliferation. Additionally, integrated pathway analysis of RGLD uncovered that RGLD might treat HCC through regulating various pathways, including MAPK signaling pathway, PI3K/Akt signaling pathway, TNF signaling pathway, and ERBB signaling pathway. Survival analysis results showed that HCC patients with low expression of VEGFA, HIF1A, CASP8, and TOP2A were related with a higher survival rate than those with high expression, indicating the potential clinical significance for HCC. Finally, molecular docking results of core ingredients and targets further proved the feasibility of RGLD in the treatment of HCC. Overall, this study indicates that RGLD may treat HCC through multiple mechanisms, which also provides a potential paradigm to investigate the MOAs of TCM prescription.
Collapse
|
36
|
A Mechanism of Isoorientin-Induced Apoptosis and Migration Inhibition in Gastric Cancer AGS Cells. Pharmaceuticals (Basel) 2022; 15:ph15121541. [PMID: 36558992 PMCID: PMC9788167 DOI: 10.3390/ph15121541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Isoorientin (ISO) is a flavonoid compound containing a luteolin structure, which can induce autophagy in some tumor cells. This study investigated the impact of ISO in gastric cancer AGS cells, and performed an experimental analysis on the main signaling pathways and transduction pathways it regulates. CCK-8 assay results showed that ISO reduced the survival rate of gastric cancer AGS cells, but the toxicity to normal cells was minimal. Hoechst 33342/PI double staining assay results showed that ISO induced apoptosis in gastric cancer AGS cells. Further analysis by flow cytometry and Western blot showed that ISO induced apoptosis via a mitochondria-dependent pathway. In addition, the level of reactive oxygen species (ROS) in gastric cancer AGS cells also increased with the extension of the ISO treatment time. However, cell apoptosis was inhibited by preconditioning cells with N-acetylcysteine (NAC). Moreover, ISO arrested the cell cycle at the G2/M phase by increasing intracellular ROS levels. Cell migration assay results showed that ISO inhibited cell migration by inhibiting the expression of p-AKT, p-GSK-3β, and β-catenin and was also related to the accumulation of ROS. These results suggest that ISO-induced cell apoptosis by ROS-mediated MAPK/STAT3/NF-κB signaling pathways inhibited cell migration by regulating the AKT/GSK-3β/β-catenin signaling pathway in gastric cancer AGS cells.
Collapse
|
37
|
Lin Y, Zhang Y, Wang D, Yang B, Shen YQ. Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154481. [PMID: 36215788 DOI: 10.1016/j.phymed.2022.154481] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM), as a significant part of the global pharmaceutical science, the abundant molecular compounds it contains is a valuable potential source of designing and screening new drugs. However, due to the un-estimated quantity of the natural molecular compounds and diversity of the related problems drug discovery such as precise screening of molecular compounds or the evaluation of efficacy, physicochemical properties and pharmacokinetics, it is arduous for researchers to design or screen applicable compounds through old methods. With the rapid development of computer technology recently, especially artificial intelligence (AI), its innovation in the field of virtual screening contributes to an increasing efficiency and accuracy in the process of discovering new drugs. PURPOSE This study systematically reviewed the application of computational approaches and artificial intelligence in drug virtual filtering and devising of TCM and presented the potential perspective of computer-aided TCM development. STUDY DESIGN We made a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Then screening the most typical articles for our research. METHODS The systematic review was performed by following the PRISMA guidelines. The databases PubMed, EMBASE, Web of Science, CNKI were used to search for publications that focused on computer-aided drug virtual screening and design in TCM. RESULT Totally, 42 corresponding articles were included in literature reviewing. Aforementioned studies were of great significance to the treatment and cost control of many challenging diseases such as COVID-19, diabetes, Alzheimer's Disease (AD), etc. Computational approaches and AI were widely used in virtual screening in the process of TCM advancing, which include structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS). Besides, computational technologies were also extensively applied in absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction of candidate drugs and new drug design in crucial course of drug discovery. CONCLUSIONS The applications of computer and AI play an important role in the drug virtual screening and design in the field of TCM, with huge application prospects.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Triptonoterpene, a Natural Product from Celastrus orbiculatus Thunb, Has Biological Activity against the Metastasis of Gastric Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228005. [PMID: 36432106 PMCID: PMC9693919 DOI: 10.3390/molecules27228005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Cancer is one of the greatest threats to human health. Gastric cancer (GC) is the fifth most common malignant tumor in the world. Invasion and metastasis are the major difficulties in the treatment of GC. Herbal medicines and their extracts have a lengthy history of being used to treat tumors in China. The anti-tumoral effects of the natural products derived from herbs have received a great deal of attention. Our previous studies have shown that the traditional Chinese herb Celastrus orbiculatus Thunb extract (COE) can inhibit the invasion and metastasis of GC cells, but the specific anti-cancer components of COE are still unclear. Dozens of natural products from COE have been isolated and identified by HPLC spectroscopy in our previous experiments. Triptonoterpene is one of the active ingredients in COE. In this study, we focused on revealing whether Triptonoterpene has an excellent anti-GC effect and can be used as an effective component of Celastrus orbiculatus Thunb in the treatment of tumors. We first observed that Triptonoterpene reduces GC cell proliferation through CCK-8 assays and colony formation experiments. The cell adhesion assays have shown that Triptonoterpene inhibits adhesion between cells and the cell matrix during tumor invasion. In addition, the cell migration assay has shown that Triptonoterpene inhibits the invasion and migration of GC cells. The high-connotation cell dynamic tracking experiment has also shown the same results. The effects of Triptonoterpene on epidermal mesenchymal transition (EMT)-related and matrix metalloproteinases (MMPs)-related proteins in gastric cancer cells were detected by Western blots. We found that Triptonoterpene could significantly inhibit the changes in EMT-related and invasion and metastasis-related proteins. Altogether, these results suggest that Triptonoterpene is capable of inhibiting the migration and invasion of GC cells. Triptonoterpene, as a natural product from Celastrus orbiculatus Thunb, has significant anti-gastric cancer effects, and is likely to be one of the major equivalent components of Celastrus orbiculatus Thunb.
Collapse
|
39
|
Qin YY, Feng S, Zhang XD, Peng B. Screening of traditional Chinese medicine monomers as ribonucleotide reductase M2 inhibitors for tumor treatment. World J Clin Cases 2022; 10:11299-11312. [PMID: 36387821 PMCID: PMC9649558 DOI: 10.12998/wjcc.v10.i31.11299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ribonucleotide reductase (RR) is a key enzyme in tumor proliferation, especially its subunit-RRM2. Although there are multiple therapeutics for tumors, they all have certain limitations. Given their advantages, traditional Chinese medicine (TCM) monomers have become an important source of anti-tumor drugs. Therefore, screening and analysis of TCM monomers with RRM2 inhibition can provide a reference for further anti-tumor drug development.
AIM To screen and analyze potential anti-tumor TCM monomers with a good binding capacity to RRM2.
METHODS The Gene Expression Profiling Interactive Analysis database was used to analyze the level of RRM2 gene expression in normal and tumor tissues as well as RRM2's effect on the overall survival rate of tumor patients. TCM monomers that potentially act on RRM2 were screened via literature mining. Using AutoDock software, the screened monomers were docked with the RRM2 protein.
RESULTS The expression of RRM2 mRNA in multiple tumor tissues was significantly higher than that in normal tissues, and it was negatively correlated with the overall survival rate of patients with the majority of tumor types. Through literature mining, we discovered that berberine, ursolic acid, gambogic acid, cinobufagin, quercetin, daphnetin, and osalmide have inhibitory effects on RRM2. The results of molecular docking identified that the above TCM monomers have a strong binding capacity with RRM2 protein, which mainly interacted through hydrogen bonds and hydrophobic force. The main binding sites were Arg330, Tyr323, Ser263, and Met350.
CONCLUSION RRM2 is an important tumor therapeutic target. The TCM monomers screened have a good binding capacity with the RRM2 protein.
Collapse
Affiliation(s)
- Ya-Ya Qin
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Song Feng
- School of Basic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Dong Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Bin Peng
- School of Basic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
40
|
Zhai W, Hu Y, Zhang Y, Zhang G, Chen H, Tan X, Zheng Y, Gao W, Wei Y, Wu J. A systematic review of phytochemicals from Chinese herbal medicines for non-coding RNAs-mediated cancer prevention and treatment: From molecular mechanisms to potential clinical applications. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Jian M, Sun X, Cheng G, Zhang H, Li X, Song F, Liu Z, Wang Z. Discovery of Phenolic Matrix Metalloproteinase Inhibitors by Peptide Microarray for Osteosarcoma Treatment. JOURNAL OF NATURAL PRODUCTS 2022; 85:2424-2432. [PMID: 36122348 DOI: 10.1021/acs.jnatprod.2c00626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of the abnormal upregulation of matrix metalloproteinase (MMP) activities in tumors, MMP inhibitors (MMPIs) are validated anticancer drug candidates. We identified several MMPIs including mangiferin as an MMP-9 inhibitor with a half maximal inhibitory concentration (IC50) value of 250 nM, isosilybin as an MMP-13 inhibitor with an IC50 value of 250 nM, and isoliquiritigenin as a broad-spectrum MMPI (with IC50 values of 16 nM for MMP-1, 10 nM for MMP-2, 81 nM for MMP-3, 8 nM for MMP-7, 10 nM for MMP-9, and 14 nM for MMP-13) through studying the interactions of 6 MMPs secreted by U-2OS cells with 51 phenolic natural products on the peptide microarray platform. In addition, the inhibitory mechanisms of as-discovered MMPIs were evaluated by a molecular docking simulation. The antitumor efficiencies of MMPIs were demonstrated by both a cell scratch test and growth suppression of mouse-born OS tumors. The results of the cell scratch test suggested that isoliquiritigenin significantly inhibited the migration of U-2OS cells. In addition, administration of isoliquiritigenin significantly reduced the tumor size (by about 80%) and prolonged the survival time (by more than 70 days). This study suggests that the discovery of MMPIs from phenolic natural products is a meaningful way to screen anticancer agents.
Collapse
Affiliation(s)
- Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Guorong Cheng
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Fengrui Song
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
42
|
Zhang Y, Hua L, Lin C, Yuan M, Xu W, Raj D. A, Venkidasamy B, Cespedes-Acuna CL, Nile SH, Yan G, Zheng H. Pien-Tze-Huang alleviates CCl4-induced liver fibrosis through the inhibition of HSC autophagy and the TGF-β1/Smad2 pathway. Front Pharmacol 2022; 13:937484. [PMID: 36188553 PMCID: PMC9523731 DOI: 10.3389/fphar.2022.937484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Ethnopharmacological relevance: Pien-Tze-Huang (PZH)—a traditional Chinese medicine (TCM) compound—has been employed to treat various liver inflammation and tumors for over 10 decades. Interestingly, most of the pharmacological effects had been validated and explored toward liver ailment along with pro-inflammatory conditions and cancer at the cellular and molecular level to date. Aim of the study: The present study aimed to investigate the therapeutic effect of PZH on autophagy and TGF-β1 signaling pathways in rats with liver fibrosis and hepatic stellate cell line (HSC). Materials and methods: Male SD rats with carbon tetrachloride (CCl4)-induced liver fibrosis were used as the animal model. Next, PZH treatment was given for 8 weeks. Afterward, the therapeutic effects of PZH were analyzed through a hepatic tissue structure by hematoxylin-eosin (H&E), Van Gieson (VG) staining, and transmission electron microscopy (TEM), activity of ALT and AST by enzyme-associated immunosorbent assay as well. Subsequently, mRNA and protein expression were examined by quantitative polymerase chain reaction (qPCR), Western blotting, and immunohistochemistry (IHC). Then, the cell vitality of PZH-treated HSC and the expression of key molecules prevailing to autophagy were studied in vitro. Meanwhile, SM16 (a novel small molecular inhibitor which inhibits TGFβ-induced Smad2 phosphorylation) was employed to confirm PZH’s effects on the proliferation and autophagy of HSC. Results: PZH pharmacologically exerted anti-hepatic fibrosis effects as demonstrated by protecting hepatocytes and improving hepatic function. The results revealed the reduced production of extracellular collagen by adjusting the balance of matrix metalloproteinase (MMP) 2, MMP9, and tissue inhibitor of matrix metalloproteinase 1 (TIMP1) in PZH-treated CCl4-induced liver fibrosis. Interestingly, PZH inhibited the activation of HSC by down-regulating TGF-β1 and phosphorylating Smad2. Furthermore, PZH down-regulated yeast Atg6 (Beclin-1) and microtubule-associated protein light chain 3 (LC3) toward suppressing HSC autophagy, and PZH exhibited similar effects to that of SM16. Conclusion: To conclude, PZH alleviated CCl4-induced liver fibrosis to reduce the production of extracellular collagen and inhibiting the activation of HSC. In addition, their pharmacological mechanisms related to autophagy and TGF-β1/Smad2 signaling pathways were revealed for the first time.
Collapse
Affiliation(s)
- Yuqin Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Liping Hua
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Chunfeng Lin
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mingzhou Yuan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Anand Raj D.
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Carlos L. Cespedes-Acuna
- Plant Biochemistry and Phytochemical Ecology Lab, Basic Sciences Department University of Bio Bio, Chillan, Chile
| | - Shivraj Hariram Nile
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| | - Guohong Yan
- Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| | - Haiyin Zheng
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| |
Collapse
|
43
|
Yu J, Yang H, Lv C, Dai X. The cytotoxicity of karanjin toward breast cancer cells is involved in the PI3K/Akt signaling pathway. Drug Dev Res 2022; 83:1673-1682. [PMID: 36065628 DOI: 10.1002/ddr.21986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Karanjin is a bioactive furanoflavonoid with various pharmacological activities including anticancer activities. However, the effect and the related mechanism of karanjin in breast cancer (BC) have not been revealed. The potential targets of karanjin and BC were predicted using SwissTargetPrediction and GeneCards databases, respectively. The overlapping targets between karanjin and BC were identified using the Venn diagram. DAVID database was used for the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis. Cell viability, proliferation, and apoptosis were examined by MTT (3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium bromide), EdU (5-ethynyl-2'-deoxyuridine) incorporation, and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick-end labeling) assays, respectively. The protein levels were measured by western blot analysis. We screened out 28 overlapping targets between karanjin and BC. KEGG analysis showed that the targets of karanjin in BC were associated with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Karanjin inhibited cell viability and impeded the proliferative ability of BC cells. Moreover, karanjin treatment induced apoptosis in BC cells. Additionally, karanjin treatment blocked the PI3K/Akt signaling pathway and activation of the PI3K/Akt pathway reversed the antitumor effect of karanjin on BC cells. In conclusion, karanjin exerted antitumor activity in BC cells by regulating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China.,Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital of Nanyang, Nanyang, China
| | - Chunliu Lv
- Department of Breast Tumor Plastic Surgery (Department of Head and Neck Surgery), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaowei Dai
- Department of Intensive Care Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
44
|
Wang YN, Zou M, Wang D, Zhang ZK, Qu LP, Xu J, Shi CD, Gao F. An exploratory study on TCM syndrome differentiation in preoperative patients with colorectal cancer assisted by laboratory indicators. Heliyon 2022; 8:e10207. [PMID: 36033259 PMCID: PMC9404354 DOI: 10.1016/j.heliyon.2022.e10207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/13/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022] Open
Abstract
Objective This paper aims to explore the relationship between the syndrome differentiation of traditional Chinese medicine (TCM) in colorectal cancer and the clinical laboratory indicators of patients, and to further seek the laboratory indicators to assist TCM syndrome differentiation. Methods From May 2020 to June 2021, 122 colorectal cancer patients with a clear pathological diagnosis who had not undergone surgery or chemotherapy were classified according to the TCM syndrome classification. The clinical laboratory indicators of 122 patients with preoperative colorectal cancer were collected, and the correlation between preoperative colorectal cancer TCM syndromes and Karnofsky score and clinical laboratory indicators was analyzed. The indicators affecting TCM syndromes were included in the disordered multivariate logistic regression analysis model to analyze the relative risk of the influencing factors. Results The syndromes of colorectal cancer patients were classified into excess syndrome, deficiency syndrome, and syndrome of intermingled deficiency & excess. The differences in total bilirubin (TBIL), hemoglobin (HB), uric acid (UA), and hematocrit (HCT) between the three groups were statistically significant (P < 0.05). The indexes such as TBIL, HB, UA, and HCT in preoperative patients with excess syndrome of colorectal cancer were higher than those in patients with syndrome of intermingled deficiency & excess and deficiency syndrome, and the comparison between groups using the LSD method showed that UA and HCT were different between the excess syndrome and deficiency syndrome groups (P < 0.05). Multivariate logistic regression analysis indicated that Gender, Tumor location, TNM stage, Total protein (TP), Red blood cell (RBC), HB, HCT, Platelet (PLT) and Fibrinogen (FIB) were all risk factors affecting TCM syndromes of preoperative colorectal cancer (P < 0.05). Conclusion There is a correlation between the TCM syndromes of colorectal cancer and the clinical laboratory indicators of the patients. Gender, Tumor location, TNM stage, TP, RBC, HB, HCT, PLT and FIB are the risk factors of TCM syndrome differentiation in preoperative patients with colorectal cancer. TBIL, UA, HB, and HCT may be the four relevant indicators of TCM syndrome differentiation in colorectal cancer.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Min Zou
- Department of Colorectal & Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Dou Wang
- Xinjiang Medical University, Urumqi 830000, China
| | - Zhi-Kuan Zhang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Lian-Ping Qu
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jing Xu
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Cai-Dong Shi
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Feng Gao
- Department of Colorectal & Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| |
Collapse
|
45
|
Wu Q, Shi X, Pan Y, Liao X, Xu J, Gu X, Yu W, Chen Y, Yu G. The Chemopreventive Role of β-Elemene in Cholangiocarcinoma by Restoring PCDH9 Expression. Front Oncol 2022; 12:874457. [PMID: 35903688 PMCID: PMC9314746 DOI: 10.3389/fonc.2022.874457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background β-Elemene, an effective anticancer component isolated from the Chinese herbal medicine Rhizoma Zedoariae, has been proved to have therapeutic potential against multiple cancers by extensive clinical trials and experimental research. However, its preventive role in cholangiocarcinoma (CCA) and the mechanisms of action of β-elemene on CCA need to be further investigated. Methods A thioacetamide (TAA)-induced pre-CCA animal model was well-established, and a low dosage of β-elemene was intragastrically (i.g.) administered for 6 months. Livers were harvested and examined histologically by a deep-learning convolutional neural network (CNN). cDNA array was used to analyze the genetic changes of CCA cells following β-elemene treatment. Immunohistochemical methods were applied to detect β-elemene-targeted protein PCDH9 in CCA specimens, and its predictive role was analyzed. β-Elemene treatment at the cellular or animal level was performed to test the effect of this traditional Chinese medicine on CCA cells. Results In the rat model of pre-CCA, the ratio of cholangiolar proliferation lesions was 0.98% ± 0.72% in the control group, significantly higher than that of the β-elemene (0. 47% ± 0.30%) groups (p = 0.0471). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the top 10 pathways affected by β-elemene treatment were associated with energy metabolism, and one was associated with the cell cycle. β-Elemene inactivated a number of oncogenes and restored the expression of multiple tumor suppressors. PCDH9 is a target of β-elemene and displays an important role in predicting tumor recurrence in CCA patients. Conclusions These findings proved that long-term use of β-elemene has the potential to interrupt the progression of CCA and improve the life quality of rats. Moreover, β-elemene exerted its anticancer potential partially by restoring the expression of PCDH9.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xintong Shi
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yating Pan
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Liao
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Gu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlong Yu
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Ying Chen,
| | - Guanzhen Yu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Ying Chen,
| |
Collapse
|
46
|
Zhao D, Zhang J, Zhu Y, He C, Fei W, Yue N, Wang C, Wang L. Study of Antidepressant-Like Effects of Albiflorin and Paeoniflorin Through Metabolomics From the Perspective of Cancer-Related Depression. Front Neurol 2022; 13:828612. [PMID: 35873784 PMCID: PMC9304767 DOI: 10.3389/fneur.2022.828612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mental health has become a new challenge in cancer treatment, with a high prevalence of depression in patients with cancer. Albiflorin (AF) and paeoniflorinn (PF) are isomers extracted from the root of Paeoniae Radix Alba (Baishao in Chinese), belonging to the monoterpene glycosides, and multiple studies have been conducted on their antidepression and anti-cancer effects. However, the effects of AF and PF on cancer-related depression are unclear. Therefore, the current study aims to investigate whether the two isomers are able to exert antidepressant-like effects and understand the underlying mechanisms in a rat model, established by combining irradiation with chronic restraint stress and solitary confinement. Our results demonstrate a significant regulation of AF and PF in the pharmacodynamic index, including the peripheral blood, organ index, behavioral traits, and HPA axis, relative to control rats. In serum and cerebral cortex metabonomics analysis, AF and PF showed a significantly restorative trend in abnormal biomarkers and regulating ether lipid metabolism, alanine, aspartate, glutamate metabolism, tryptophan metabolism, carnitine metabolism, arachidonic acid metabolism, arginine and proline metabolism pathway. Eight potential biomarkers were further screened by means of receiver operating characteristic (ROC) analysis. The data indicate that AF and PF could effectively ameliorate a depression-like state in the model rats, and the mechanism may be associated with the regulation of the neuroendocrine immune system and disrupted metabolic pathways. Further experiments are warranted to comprehensively evaluate the antidepressant effects of AF and PF in cancer-related depression. This study provides a better insight into the action mechanisms of antidepression of TCM, and provides a new perspective for the therapy of cancer-related depression.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Jianjun Zhang
| | - Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng He
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Na Yue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenglong Wang
- Ethnic Medicine Characteristic Diagnosis and Treatment Center, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang
| |
Collapse
|
47
|
Liang H, Li Y, Wang F, Zhao J, Yang X, Wu D, Zhang C, Liu Y, Huang J, Su M, He Z, Liu Y, Wang J, Tang D. Combining Network Pharmacology and Experimental Validation to Study the Action and Mechanism of Water extract of Asparagus Against Colorectal Cancer. Front Pharmacol 2022; 13:862966. [PMID: 35774597 PMCID: PMC9237230 DOI: 10.3389/fphar.2022.862966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Asparagus (ASP) is a well-known traditional Chinese medicine with nourishing, moistening, fire-clearing, cough-suppressing, and intestinal effects. In addition, it exerts anti-inflammatory, antioxidant, anti-aging, immunity-enhancing, and anti-tumor pharmacological effect. The anti-tumor effect of ASP has been studied in hepatocellular carcinoma. However, its action and pharmacological mechanism in colorectal cancer (CRC) are unclear. The present study aimed to identify the potential targets of ASP for CRC treatment using network pharmacology and explore its possible therapeutic mechanisms using in vitro and in vivo experiments. The active compounds and potential targets of ASP were obtained from the TCMSP database, followed by CRC-related target genes identification using GeneCards and OMIM databases, which were matched with the potential targets of ASP. Based on the matching results, potential targets and signaling pathways were identified by protein-protein interaction (PPI), gene ontology (GO) functions, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Finally, in vitro and in vivo experiments were performed to further validate the anti-cancer effects of ASP on CRC. Network pharmacology analysis identified nine active components from ASP from the database based on oral bioavailability and drug similarity index, and 157 potential targets related to ASP were predicted. The PPI network identified tumor protein 53 (TP53), Fos proto-oncogene, AP-1 transcription factor subunit (FOS), and AKT serine/threonine kinase 1 (AKT1) as key targets. GO analysis showed that ASP might act through response to wounding, membrane raft, and transcription factor binding. KEGG enrichment analysis revealed that ASP may affect CRC through the phosphatidylinositol-4,5-bisphosphate 3-kinase PI3K/AKT/mechanistic target of rapamycin kinase (mTOR) signaling pathway. In vitro, ASP inhibited cell proliferation, migration, and invasion of HCT116 and LOVO cells, and caused G0/G1 phase arrest and apoptosis in CRC cells. In vivo, ASP significantly inhibited the growth of CRC transplanted tumors in nude mice. Furthermore, pathway analysis confirmed that ASP could exert its therapeutic effects on CRC by regulating cell proliferation and survival through the PI3K/AKT/mTOR signaling pathway. This study is the first to report the potential role of ASP in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Huiling Liang
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Feiqing Wang
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| | - Jianing Zhao
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xu Yang
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dan Wu
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chike Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yanqing Liu
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Huang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Min Su
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zhixu He
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yang Liu
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Yang Liu, ; Jishi Wang, ; Dongxin Tang,
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Yang Liu, ; Jishi Wang, ; Dongxin Tang,
| | - Dongxin Tang
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Yang Liu, ; Jishi Wang, ; Dongxin Tang,
| |
Collapse
|
48
|
Liu R, Sun X, Hu Z, Peng C, Wu T. Knockdown of long non-coding RNA MIR155HG suppresses melanoma cell proliferation, and deregulated MIR155HG in melanoma is associated with M1/M2 balance and macrophage infiltration. Cells Dev 2022; 170:203768. [DOI: 10.1016/j.cdev.2022.203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
|
49
|
yingBai Y, meiCheng Y, Wang W, Yang L, Yang Y. In vivo and in vitro studies of Alloimperatorin induced autophagy in cervical cancer cells via reactive oxygen species pathway. Bioengineered 2022; 13:14299-14314. [PMID: 36708242 PMCID: PMC9995126 DOI: 10.1080/21655979.2022.2084243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 01/29/2023] Open
Abstract
Alloimperatorin (Alloi) has been shown to have anti-proliferative effects in our previous studies. we aimed to investigate whether Alloimperatorin induces autophagy through the reactive oxygen species (ROS) pathway and anticancer activity in vivo. The anti-proliferative effect of Alloimperatorin was evaluated using a cell counting kit (CCK-8 kit). Apoptosis was detected using flow cytometry. Confocal microscopy, immunofluorescence, and mRFP-GFP-LC3 lentivirus transfection were used to verify autophagy. Electron microscopy detection of autophagosomes was induced by Alloimperatorin. Western blotting was used to detect autophagy proteins in HeLa and SiHa cells. A xenograft model was used to monitor the inhibitory effect of Alloimperatorin on tumor growth in nude mice. The results showed that Alloimperatorin induced ROS production and inhibited the proliferation of HeLa and SiHa cells. Furthermore, Alloimperatorin increased the apoptosis rate in HeLa and SiHa cells. Confocal microscopy fluorescence indicated that Alloimperatorin increased autophagy fluorescence of HeLa and SiHa cells. mRFP-GFP-LC3 lentivirus transfection and electron microscopy demonstrated that Alloimperatorin increased autophagy in HeLa and SiHa cells. Western blotting showed that Alloimperatorin induced the expression of autophagy proteins in HeLa and SiHa cells. However, N-acetylcysteine reversed the autophagy. These results demonstrate that Alloimperatorin can induce autophagy in HeLa and SiHa cells through the ROS pathway. In vivo xenograft experiments showed that Alloimperatorin could inhibit tumor growth in nude mice. Alloimperatorin is expected to be an effective new drug for cervical cancer treatment.Abbreviations: ROS, reactive oxygen species; Alloi, Alloimperatorin; CCK-8, Cell Counting Kit-8; NAC, N-acetyl-L-cysteine; DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate; OD, optical density; PBS, phosphate buffer solution; BCA, bicinchoninic acid; DAPI, 4,6-diamidino-2-phenylindole; DMSO, dimethyl sulfoxide.
Collapse
Affiliation(s)
- Ying yingBai
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Yue meiCheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Lijuan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Yongxiu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, PR China
| |
Collapse
|
50
|
Khan SA, Lee TKW. Network-Pharmacology-Based Study on Active Phytochemicals and Molecular Mechanism of Cnidium monnieri in Treating Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:5400. [PMID: 35628212 PMCID: PMC9140548 DOI: 10.3390/ijms23105400] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a high mortality rate globally. For thousands of years, Cnidium monnieri has been used to treat human ailments and is regarded as a veritable treasure trove for drug discovery. This study has investigated the key active phytochemicals and molecular mechanisms of Cnidium monnieri implicated in curing HCC. We utilized the TCMSP database to collect data on the phytochemicals of Cnidium monnieri. The SwissTargetPrediction website tool was used to predict the targets of phytochemicals of Cnidium monnieri. HCC-related genes were retrieved from OncoDB.HCC and Liverome, two liver-cancer-related databases. Using the DAVID bioinformatic website tool, Gene Ontology (GO) and KEGG enrichment analysis were performed on the intersecting targets of HCC-related genes and active phytochemicals in Cnidium monnieri. A network of active phytochemicals and anti-HCC targets was constructed and analyzed using Cytoscape software. Molecular docking of key active phytochemicals was performed with anti-HCC targets using AutoDock Vina (version 1.2.0.). We identified 19 active phytochemicals in Cnidium monnieri, 532 potential targets of these phytochemicals, and 566 HCC-related genes. Results of GO enrichment indicated that Cnidium monnieri might be implicated in affecting gene targets involved in multiple biological processes, such as protein phosphorylation, negative regulation of the apoptotic process, which could be attributed to its anti-HCC effects. KEGG pathway analyses indicated that the PI3K-AKT signaling pathway, pathways in cancer, proteoglycans in cancer, the TNF signaling pathway, VEGF signaling pathway, ErbB signaling pathway, and EGFR tyrosine kinase inhibitor resistance are the main pathways implicated in the anti-HCC effects of Cnidium monnieri. Molecular docking analyses showed that key active phytochemicals of Cnidium monnieri, such as ar-curcumene, diosmetin, and (E)-2,3-bis(2-keto-7-methoxy-chromen-8-yl)acrolein, can bind to core therapeutic targets EGFR, CASP3, ESR1, MAPK3, CCND1, and ERBB2. The results of the present study offer clues for further investigation of the anti-HCC phytochemicals and mechanisms of Cnidium monnieri and provide a basis for developing modern anti-HCC drugs based on phytochemicals in Cnidium monnieri.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Kowloon 999077, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|