1
|
Chen S, Li X, Wu Q, Li Y, Puig M, Moulin F, Choudhuri S, Gingrich J, Guo L. Investigation of cannabidiol-induced cytotoxicity in human hepatic cells. Toxicology 2024; 506:153884. [PMID: 39004336 PMCID: PMC11648445 DOI: 10.1016/j.tox.2024.153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cannabidiol (CBD) is one of the primary cannabinoids present in extracts of the plant Cannabis sativa L. A CBD-based drug, Epidiolex, has been approved by the U.S. FDA for the treatment of seizures in childhood-onset epileptic disorders. Although CBD-associated liver toxicity has been reported in clinical studies, the underlying mechanisms remain unclear. In this study, we demonstrated that CBD causes cytotoxicity in primary human hepatocytes and hepatic HepG2 cells. A 24-h CBD treatment induced cell cycle disturbances, cellular apoptosis, and endoplasmic reticulum (ER) stress in HepG2 cells. A potent ER stress inhibitor, 4-phenylbutyrate, markedly attenuated CBD-induced apoptosis and cell death. Additionally, we investigated the role of cytochrome P450 (CYP)-mediated metabolism in CBD-induced cytotoxicity using HepG2 cell lines engineered to express 14 individual CYPs. We identified CYP2C9, 2C19, 2D6, 2C18, and 3A5 as participants in CBD metabolism. Notably, cells overexpressing CYP2C9, 2C19, and 2C18 produced 7-hydroxy-CBD, while cells overexpressing CYP2C9, 2C19, 2D6, and 2C18 generated 7-carboxy-CBD. Furthermore, CBD-induced cytotoxicity was significantly attenuated in the cells expressing CYP2D6. Taken together, these data suggest that cell cycle disturbances, apoptosis, and ER stress are associated with CBD-induced cytotoxicity, and CYP2D6-mediated metabolism plays a critical role in decreasing the cytotoxicity of CBD.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA.
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, NCTR, U.S. FDA, Jefferson, AR 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20993, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD 20740, USA
| | - Jeremy Gingrich
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA.
| |
Collapse
|
2
|
Bustamante M, Balagué-Dobón L, Buko Z, Sakhi AK, Casas M, Maitre L, Andrusaityte S, Grazuleviciene R, Gützkow KB, Brantsæter AL, Heude B, Philippat C, Chatzi L, Vafeiadi M, Yang TC, Wright J, Hough A, Ruiz-Arenas C, Nurtdinov RN, Escaramís G, González JR, Thomsen C, Vrijheid M. Common genetic variants associated with urinary phthalate levels in children: A genome-wide study. ENVIRONMENT INTERNATIONAL 2024; 190:108845. [PMID: 38945087 DOI: 10.1016/j.envint.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Phthalates, or dieters of phthalic acid, are a ubiquitous type of plasticizer used in a variety of common consumer and industrial products. They act as endocrine disruptors and are associated with increased risk for several diseases. Once in the body, phthalates are metabolized through partially known mechanisms, involving phase I and phase II enzymes. OBJECTIVE In this study we aimed to identify common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) associated with the metabolism of phthalate compounds in children through genome-wide association studies (GWAS). METHODS The study used data from 1,044 children with European ancestry from the Human Early Life Exposome (HELIX) cohort. Ten phthalate metabolites were assessed in a two-void pooled urine collected at the mean age of 8 years. Six ratios between secondary and primary phthalate metabolites were calculated. Genome-wide genotyping was done with the Infinium Global Screening Array (GSA) and imputation with the Haplotype Reference Consortium (HRC) panel. PennCNV was used to estimate copy number variants (CNVs) and CNVRanger to identify consensus regions. GWAS of SNPs and CNVs were conducted using PLINK and SNPassoc, respectively. Subsequently, functional annotation of suggestive SNPs (p-value < 1E-05) was done with the FUMA web-tool. RESULTS We identified four genome-wide significant (p-value < 5E-08) loci at chromosome (chr) 3 (FECHP1 for oxo-MiNP_oh-MiNP ratio), chr6 (SLC17A1 for MECPP_MEHHP ratio), chr9 (RAPGEF1 for MBzP), and chr10 (CYP2C9 for MECPP_MEHHP ratio). Moreover, 115 additional loci were found at suggestive significance (p-value < 1E-05). Two CNVs located at chr11 (MRGPRX1 for oh-MiNP and SLC35F2 for MEP) were also identified. Functional annotation pointed to genes involved in phase I and phase II detoxification, molecular transfer across membranes, and renal excretion. CONCLUSION Through genome-wide screenings we identified known and novel loci implicated in phthalate metabolism in children. Genes annotated to these loci participate in detoxification, transmembrane transfer, and renal excretion.
Collapse
Affiliation(s)
- Mariona Bustamante
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | | | - Zsanett Buko
- Department of Oncological Science, Huntsman Cancer Institute, Salt Lake City, United States
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maribel Casas
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne-Lise Brantsæter
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Reproduction and Respiratory Health Team, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Amy Hough
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Carlos Ruiz-Arenas
- Computational Biology Program, CIMA University of Navarra, idiSNA, Pamplona 31008, Spain
| | - Ramil N Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Geòrgia Escaramís
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan R González
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Martine Vrijheid
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Zoccali C, Mallamaci F, Lightstone L, Jha V, Pollock C, Tuttle K, Kotanko P, Wiecek A, Anders HJ, Remuzzi G, Kalantar-Zadeh K, Levin A, Vanholder R. A new era in the science and care of kidney diseases. Nat Rev Nephrol 2024; 20:460-472. [PMID: 38575770 DOI: 10.1038/s41581-024-00828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Notable progress in basic, translational and clinical nephrology research has been made over the past five decades. Nonetheless, many challenges remain, including obstacles to the early detection of kidney disease, disparities in access to care and variability in responses to existing and emerging therapies. Innovations in drug development, research technologies, tissue engineering and regenerative medicine have the potential to improve patient outcomes. Exciting prospects include the availability of new drugs to slow or halt the progression of chronic kidney disease, the development of bioartificial kidneys that mimic healthy kidney functions, and tissue engineering techniques that could enable transplantable kidneys to be created from the cells of the recipient, removing the risk of rejection. Cell and gene therapies have the potential to be applied for kidney tissue regeneration and repair. In addition, about 30% of kidney disease cases are monogenic and could potentially be treated using these genetic medicine approaches. Systemic diseases that involve the kidney, such as diabetes mellitus and hypertension, might also be amenable to these treatments. Continued investment, communication, collaboration and translation of innovations are crucial to realize their full potential. In addition, increasing sophistication in exploring large datasets, implementation science, and qualitative methodologies will improve the ability to deliver transformational kidney health strategies.
Collapse
Affiliation(s)
- Carmine Zoccali
- Kidney Research Institute, New York City, NY, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Kidney (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Kidney Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Liz Lightstone
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Vivek Jha
- George Institute for Global Health, UNSW, New Delhi, India
- School of Public Health, Imperial College, London, UK
- Prasanna School of Public Health, Manipal Academy of Medical Education, Manipal, India
| | - Carol Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, NSW, Australia
| | - Katherine Tuttle
- Providence Medical Research Center, Providence Inland Northwest, Spokane, Washington, USA
- Department of Medicine, University of Washington, Seattle, Spokane, Washington, USA
- Kidney Research Institute, Institute of Translational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Peter Kotanko
- Kidney Research Institute, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027, Katowice, Poland
| | - Hans Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Bergamo, Italy
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, California, USA
- Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, Irvine, USA
- Veterans Affairs Healthcare System, Division of Nephrology, Long Beach, California, USA
| | - Adeera Levin
- University of British Columbia, Vancouver General Hospital, Division of Nephrology, Vancouver, British Columbia, Canada
- British Columbia, Provincial Kidney Agency, Vancouver, British Columbia, Canada
| | - Raymond Vanholder
- European Kidney Health Alliance, Brussels, Belgium
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
4
|
Bahrin NWS, Matusin SNI, Mustapa A, Huat LZ, Perera S, Hamid MRWHA. Exploring the effectiveness of molecular subtypes, biomarkers, and genetic variations as first-line treatment predictors in Asian breast cancer patients: a systematic review and meta-analysis. Syst Rev 2024; 13:100. [PMID: 38576013 PMCID: PMC10993489 DOI: 10.1186/s13643-024-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Breast cancer incidence has been on the rise significantly in the Asian population, occurring at an earlier age and a later stage. The potential predictive value of molecular subtypes, biomarkers, and genetic variations has not been deeply explored in the Asian population. This study evaluated the effect of molecular subtype classification and the presence or absence of biomarkers and genetic variations on pathological complete response (pCR) after neoadjuvant treatment in Asian breast cancer patients. METHODS A systematic search was conducted in MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library databases. Studies were selected if they included Asian breast cancer patients treated with neoadjuvant chemotherapy and contained data for qualitative or quantitative analyses. The quality of the included studies was assessed using the Newcastle Ottawa Scale. Following the random effects model, pooled odds ratios or hazard ratios with 95% confidence intervals for pCR were analysed using Review Manager Software. Heterogeneity between studies was assessed using Cochran's Q-test and I2 test statistics. RESULTS In total, 19,708 Asian breast cancer patients were pooled from 101 studies. In the neoadjuvant setting, taxane-anthracycline (TA) chemotherapy showed better pCR outcomes in triple-negative breast cancer (TNBC) (p<0.0001) and human epidermal growth factor receptor 2 enriched (HER2E) (p<0.0001) than luminal breast cancer patients. Similarly, taxane-platinum (TP) chemotherapy also showed better pCR outcomes in TNBC (p<0.0001) and HER2E (p<0.0001). Oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, HER2-positive and high Ki-67 were significantly associated with better pCR outcomes when treated with either TA or TP. Asian breast cancer patients harbouring wildtype PIK3CA were significantly associated with better pCR outcomes when treated with TA in the neoadjuvant setting (p=0.001). CONCLUSIONS In the neoadjuvant setting, molecular subtypes (HER2E and TNBC), biomarkers (ER, PR, HER2, HR, Ki-67, nm23-H1, CK5/6, and Tau), and gene (PIK3CA) are associated with increased pCR rates in Asian breast cancer patients. Hence, they could be further explored for their possible role in first-line treatment response, which can be utilised to treat breast cancer more efficiently in the Asian population. However, it needs to be further validated with additional powered studies. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021246295.
Collapse
Affiliation(s)
- Nurul Wafiqah Saipol Bahrin
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Siti Nur Idayu Matusin
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Aklimah Mustapa
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Lu Zen Huat
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Sriyani Perera
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mas Rina Wati Haji Abdul Hamid
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam.
| |
Collapse
|
5
|
Qaseem A, Andrews RA, Campos K, Goldzweig CL, MacDonald S, McLean RM, Powell RE, Fitterman N, Basch P, Choi E, Chou R, Hamori CJ, Mount CA, Campos K. Quality Indicators for Major Depressive Disorder in Adults: A Review of Performance Measures by the American College of Physicians. Ann Intern Med 2024; 177:507-513. [PMID: 38437692 DOI: 10.7326/m23-3077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Major depressive disorder (MDD) is a severe mood disorder that affects at least 8.4% of the adult population in the United States. Characteristics of MDD include persistent sadness, diminished interest in daily activities, and a state of hopelessness. The illness may progress quickly and have devastating consequences if left untreated. Eight performance measures are available to evaluate screening, diagnosis, and successful management of MDD. However, many performance measures do not meet the criteria for validity, reliability, evidence, and meaningfulness. The American College of Physicians (ACP) embraces performance measurement as a means to externally validate the quality of care of practices, medical groups, and health plans and to drive reimbursement processes. However, a plethora of performance measures that provide low or no value to patient care have inundated physicians, practices, and systems and burdened them with collecting and reporting of data. The ACP's Performance Measurement Committee (PMC) reviews performance measures using a validated process to inform regulatory and accreditation bodies in an effort to recognize high-quality performance measures, address gaps and areas for improvement in performance measures, and help reduce reporting burden. Out of 8 performance measures, the PMC found only 1 measure (suicide risk assessment) that was valid at all levels of attribution. This paper presents a review of MDD performance measures and highlights opportunities to improve performance measures addressing MDD management.
Collapse
Affiliation(s)
- Amir Qaseem
- American College of Physicians, Philadelphia, Pennsylvania (A.Q., K.C.)
| | | | - Karen Campos
- American College of Physicians, Philadelphia, Pennsylvania (A.Q., K.C.)
| | | | | | | | - Rhea E Powell
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania (R.E.P.)
| | - Nick Fitterman
- Northwell Health, New Hyde Park, New York; Department of Medicine, Huntington Hospital, Huntington, New York; and Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York (N.F.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Hazra S, Singh PA. Safety Aspects of Herb Interactions: Current Understanding and Future Prospects. Curr Drug Metab 2024; 25:28-53. [PMID: 38482621 DOI: 10.2174/0113892002289753240305062601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND The use of herbal medicines is on the rise throughout the world due to their perceived safety profile. However, incidences of herb-drug, herb-herb and herb-food interactions considering safety aspects have opened new arenas for discussion. OBJECTIVE The current study aims to provide comprehensive insights into the various types of herb interactions, the mechanisms involved, their assessment, and historical developments, keeping herbal safety at the central point of discussion. METHODS The authors undertook a focused/targeted literature review and collected data from various databases, including Science Direct, Wiley Online Library, Springer, PubMed, and Google Scholar. Conventional literature on herbal remedies, such as those by the WHO and other international or national organizations. RESULTS The article considered reviewing the regulations, interaction mechanisms, and detection of herb-herb, herb-drug and herb-food interactions in commonly used yet vital plants, including Glycyrrhiza glabra, Mentha piperita, Aloe barbadensis, Zingiber officinale, Gingko biloba, Withania somnifera, etc. The study found that healthcare professionals worry about patients not informing them about their herbal prescriptions (primarily used with conventional treatment), which can cause herb-drug/herb-food/herb-herb interactions. These interactions were caused by altered pharmacodynamic and pharmacokinetic processes, which might be explained using in-vivo, in-vitro, in-silico, pharmacogenomics, and pharmacogenetics. Nutrivigilance may be the greatest method to monitor herb-food interactions, but its adoption is limited worldwide. CONCLUSION This article can serve as a lead for clinicians, guiding them regarding herb-drug, herb-food, and herb-herb interactions induced by commonly consumed plant species. Patients may also be counseled to avoid conventional drugs, botanicals, and foods with a restricted therapeutic window.
Collapse
Affiliation(s)
- Subhajit Hazra
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| |
Collapse
|
7
|
Bellanca CM, Augello E, Cantone AF, Di Mauro R, Attaguile GA, Di Giovanni V, Condorelli GA, Di Benedetto G, Cantarella G, Bernardini R. Insight into Risk Factors, Pharmacogenetics/Genomics, and Management of Adverse Drug Reactions in Elderly: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1542. [PMID: 38004408 PMCID: PMC10674329 DOI: 10.3390/ph16111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The European Medicine Agency (EMA) has defined Adverse Drug Reactions (ADRs) as "a noxious and unintended response to a medicine", not including poisoning, accidental, or intentional overdoses. The ADR occurrence differs based on the approach adopted for defining and detecting them, the characteristics of the population under study, and the research setting. ADRs have a significant impact on morbidity and mortality, particularly among older adults, and represent a financial burden for health services. Between 30% and 60% of ADRs might be predictable and preventable, emerging as a result of inappropriate prescription, drug chemistry inherent toxicity, cell-specific drug toxicity, age- and sex-related anomalies in drug absorption, distribution, metabolism, and elimination (ADME), and drug-drug interactions (DDIs) in combination therapies or when a patient is treated with different drugs for concomitant disorders. This is particularly important in chronic diseases which require long-term treatments. Rapid developments in pharmacogenetics/genomics have improved the understanding of ADRs accompanied by more accurate prescriptions and reduction in unnecessary costs. To alleviate the burden of ADRs, especially in the elderly, interventions focused on pharmaceutical principles, such as medication review and reconciliation, should be integrated into a broader assessment of patients' characteristics, needs, and health priorities. Digital health interventions could offer valuable solutions to assist healthcare professionals in identifying inappropriate prescriptions and promoting patient adherence to pharmacotherapies.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Rosaria Di Mauro
- Dipartimento del Farmaco, ASP Trapani, 91100 Trapani, Italy; (R.D.M.); (V.D.G.)
| | - Giuseppe Antonino Attaguile
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | | | - Guido Attilio Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| |
Collapse
|
8
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
9
|
Gu S, Luo Q, Wen C, Zhang Y, Liu L, Liu L, Liu S, Chen C, Lei Q, Zeng S. Application of Advanced Technologies-Nanotechnology, Genomics Technology, and 3D Printing Technology-In Precision Anesthesia: A Comprehensive Narrative Review. Pharmaceutics 2023; 15:2289. [PMID: 37765258 PMCID: PMC10535504 DOI: 10.3390/pharmaceutics15092289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
There has been increasing interest and rapid developments in precision medicine, which is a new medical concept and model based on individualized medicine with the joint application of genomics, bioinformatics engineering, and big data science. By applying numerous emerging medical frontier technologies, precision medicine could allow individualized and precise treatment for specific diseases and patients. This article reviews the application and progress of advanced technologies in the anesthesiology field, in which nanotechnology and genomics can provide more personalized anesthesia protocols, while 3D printing can yield more patient-friendly anesthesia supplies and technical training materials to improve the accuracy and efficiency of decision-making in anesthesiology. The objective of this manuscript is to analyze the recent scientific evidence on the application of nanotechnology in anesthesiology. It specifically focuses on nanomedicine, precision medicine, and clinical anesthesia. In addition, it also includes genomics and 3D printing. By studying the current research and advancements in these advanced technologies, this review aims to provide a deeper understanding of the potential impact of these advanced technologies on improving anesthesia techniques, personalized pain management, and advancing precision medicine in the field of anesthesia.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qingyong Luo
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Li Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Liu Liu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
10
|
Cecchin E, Posocco B, Mezzalira S, Appetecchia M, Toffoli G. The Role of Gender Pharmacogenetics in the Personalization of Drug Treatment. J Pharmacol Exp Ther 2023; 386:190-197. [PMID: 37001987 DOI: 10.1124/jpet.122.001416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/21/2023] [Indexed: 07/20/2023] Open
Abstract
The use of pharmacogenetic guidelines in personalizing treatments has shown the potential to reduce interindividual variability in drug response by enabling genotype-matched dosing and drug selection. However, other important factors, such as patient gender, may interact strongly with pharmacogenetics in determining the individual profile of toxicity and efficacy but are still rarely considered when planning pharmacological treatment. The literature indicates that males and females respond differently to drugs, with women being at higher risk for toxicity and having different plasma exposure to drugs at standard doses. Recent studies have shown that pharmacogenetic variants may have different predictive value in different sexes, as in the case of treatment with opioids, angiotensin-converting enzyme inhibitors, or proton pump inhibitors. Of particular interest is the case of treatment with fluoropyrimidines for cancer. A significant increase in toxicity has been described in female patients, with a more pronounced effect of specific DPYD and TYMS polymorphisms also noted. This manuscript reviews the major findings in the field of sex-specific pharmacogenomics. SIGNIFICANCE STATEMENT: Interindividual variability in drug response is an emerging issue in pharmacology. The genetic profile of patients, as well as their gender, may play a role in the identification of patients more exposed to the risk of adverse drug reactions or poor efficacy. This article reviews the current state of research on the interaction between gender and pharmacogenetics in addressing interindividual variability.
Collapse
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano PN, Italy (E.C., B.P., S.M., G.T.); and Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute-IFO, Rome, Italy (M.A.)
| | - Bianca Posocco
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano PN, Italy (E.C., B.P., S.M., G.T.); and Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute-IFO, Rome, Italy (M.A.)
| | - Silvia Mezzalira
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano PN, Italy (E.C., B.P., S.M., G.T.); and Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute-IFO, Rome, Italy (M.A.)
| | - Marialuisa Appetecchia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano PN, Italy (E.C., B.P., S.M., G.T.); and Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute-IFO, Rome, Italy (M.A.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano PN, Italy (E.C., B.P., S.M., G.T.); and Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute-IFO, Rome, Italy (M.A.)
| |
Collapse
|
11
|
Qualification of Human Liver Microsomes for Antibacterial Activity Screening of Drug Metabolites. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microsomes are commonly used to perform in vitro drug metabolism, predominantly to form phase I drug metabolites. Pooled microsomes from multiple donors can contain microorganisms from underlying microbial diseases. Exposure to microbes can also occur during extraction if aseptic processing is compromised. Although microbial presence does not affect the metabolic activity of microsomes, presence of unwanted microorganisms can cause interference if the downstream application of microsomal drug metabolites is screening for antibacterial activity. In this work, traditional biochemical tests and advanced proteomics-based identification techniques were used to identify two gram-negative bacteria in pooled human liver microsomes. Several decontamination procedures were assessed to eradicate these two bacteria from the microsomes without affecting its metabolic capacity, and organic extraction was found to be the most convenient and efficient approach to decontaminate microsomes and screen drug metabolites for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
|
12
|
Postlewait LM. Assessment of Novel Therapeutics for Individualized Breast Cancer Care in the Modern Era: The Role of Metformin in Breast Cancer Therapy. Ann Surg Oncol 2023; 30:1-3. [PMID: 36224510 DOI: 10.1245/s10434-022-12627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Lauren M Postlewait
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Uthansingh K, Parida PK, Pati GK, Sahu MK, Padhy RN. Evaluating the Association of Genetic Polymorphism of Cytochrome p450 (CYP2C9*3) in Gastric Cancer Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Cureus 2022; 14:e27220. [PMID: 36035062 PMCID: PMC9399687 DOI: 10.7759/cureus.27220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
Background and aim As a distinguished system, the cytochrome P450 (CYP) enzyme superfamily is involved in the biotransformation of several endogenous and exogenous substances including drugs, toxins, and carcinogens. Reports on the role of CYP enzyme in gastric cancer (GC) from the Eastern region of India are scarce. The present study aimed to evaluate the effect of single nucleotide polymorphisms (SNP) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9*3) among cases with gastric malignancy. Material and methods The current study is a cross-sectional observational study carried out among 113 GC cases attending the Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India, and Srirama Chandra Bhanja Medical College and Hospital, Cuttack, India. Two ml of venous blood was collected from the confirmed cases of GC. The samples were subjected to genomic DNA isolation followed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP). Results The prevalence of both homozygous and heterozygous mutation in GC cases is 4% and 8%, respectively. The overall association of cytochrome P450 family 2 subfamily C member 9 (CYP2C9) mutation in GC cases is 12% whereas 88% were detected as wild/standard type. The mutation CYP2C9 SNP has been seen in Helicobacter pylori-infected cases and as well as those without H. pylori infection. Conclusions The CYP2C9*3 genetic polymorphism might play a significant role as a risk factor for the development of gastric malignancy irrespective of H. pylori infection, among the eastern Indian population.
Collapse
|
14
|
Wu Y, Li M, Guo Y, Liu T, Zhong L, Huang C, Ye C, Liu Q, Ren Z, Wang Y. The Effects of AT-533 and AT-533 gel on Liver Cytochrome P450 Enzymes in Rats. Eur J Drug Metab Pharmacokinet 2022; 47:345-352. [PMID: 35137361 DOI: 10.1007/s13318-022-00757-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES AT-533 is a novel heat shock protein 90 inhibitor, which exhibits various biological activities in vitro and in vivo. Cytochrome P450 (CYP) enzymes in the liver are involved in the biotransformation of drugs and considered to be essential indicators of liver toxicity. The aim of this study was to assess the effect of AT-533, either as active pharmaceutical ingredient or in gel form, on liver CYP enzymes. METHODS The effect of AT-533 or AT-533 gel on rat liver cytochrome P450 enzymes, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, was analyzed using LC-MS/MS. RESULTS AT-533 and AT-533 gel did not significantly increase or reduce the enzymatic activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 at any treatment dose. CONCLUSIONS AT-533 and AT-533 gel did not have any effect on CYP activity and may be considered safe for external use in gel form, as an alternative to conventional treatment.
Collapse
Affiliation(s)
- Yanting Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Menghe Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Yuying Guo
- Department of Cell Biology, Guangzhou Jinan Biomedicine Research and Development Center Co. Ltd, Guangzhou, People's Republic of China
| | - Tao Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Lishan Zhong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Chen Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Cuifang Ye
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Qiuying Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China.,Department of pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhe Ren
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China. .,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China. .,Department of Cell Biology, Guangzhou Jinan Biomedicine Research and Development Center Co. Ltd, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Alaeddin N, Stingl JC, Breteler MMB, de Vries FM. Validation of self-reported medication use applying untargeted mass spectrometry-based metabolomics techniques in the Rhineland study. Br J Clin Pharmacol 2021; 88:2380-2395. [PMID: 34907581 DOI: 10.1111/bcp.15175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS To assess the validity of self-reported continuous medication use with drug metabolites measured in plasma by using untargeted mass spectrometric techniques. METHODS In a population-based cohort in Bonn, Germany, we compared interview-based, self-reported medication intake with drug-specific metabolites measured in plasma (based on participants who completed their study visits between March 2016 and February 2020). Analyses were done stratified by sex and age (<65 years vs ≥65 years). Cohen's kappa (κ) statistics with 95% confidence intervals (CI) were calculated. RESULTS A total of 13 drugs used to treat hypertension, gout, diabetes, epilepsy and depression were analysed in a sample of 4386 individuals (mean age 55 years, 56.1% women). Eleven drugs showed almost perfect agreement (κ > 0.8), whereas sitagliptin and hydrochlorothiazide showed substantial (κ = 0.8, 95% CI 0.71-0.90) and moderate agreement (κ = 0.61, 95% CI 0.56-0.66), respectively. Frequency of use allowed sex- and age-stratified analyses for eight and nine drugs, respectively. For five drugs, concordance tended to be higher for women than for men. For most drugs, concordance was higher among individuals aged ≥65 years than among individuals aged <65 years, but these age-related differences were not statistically significant. CONCLUSION High concordance rates between self-reported drug use and metabolites measured in plasma suggest that self-reported drug use is reliable and accurate for assessing drug use.
Collapse
Affiliation(s)
- Nersi Alaeddin
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany
| | - Folgerdiena M de Vries
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
16
|
Williams GR, Cook L, Lewis LD, Tsongalis GJ, Nerenz RD. Clinical Validation of a 106-SNV MALDI-ToF MS Pharmacogenomic Panel. J Appl Lab Med 2021; 5:454-466. [PMID: 32445367 DOI: 10.1093/jalm/jfaa018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Laboratorians have the opportunity to help minimize the frequency of adverse drug reactions by implementing pharmacogenomic testing and alerting care providers to possible patient/drug incompatibilities before drug treatment is initiated. Methods combining PCR with MALDI-ToF MS have allowed for sensitive, economical, and multiplexed pharmacogenomic testing results to be delivered in a timely fashion. METHOD This study evaluated the analytical performance of the Agena Biosciences iPLEX® PGx 74 panel and a custom iPLEX panel on a MassARRAY MALDI-TOF MS instrument in a clinical laboratory setting. Collectively, these panels evaluate 112 SNVs across 34 genes implicated in drug response. Using commercially available samples (Coriell Biorepository) and in-house extracted DNA, we determined ideal reaction conditions and assessed accuracy, precision, and robustness. RESULTS Following protocol optimization, the Agena PGx74 and custom panels demonstrated 100% concordance with the 1000 Genomes Project Database and clinically validated hydrolysis probe genotyping assays. 100% concordance was also observed in all assessments of assay precision when appropriate QC metrics were applied. CONCLUSIONS Significant development time was required to optimize sample preparation and instrumental analysis and 3 assays were removed due to inconsistent performance. Following modification of the manufacturer's protocol and instituting manual review of each assay plate, the Agena PGx74 and custom panel constitute a cost-effective, robust, and accurate method for clinical identification of 106 SNVs involved in drug response.
Collapse
Affiliation(s)
- Grace R Williams
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Leanne Cook
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH
| | - Lionel D Lewis
- The Geisel School of Medicine at Dartmouth, Hanover, NH.,Section of Clinical Pharmacology, Department of Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH
| | - Gregory J Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Robert D Nerenz
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
17
|
Albala L, Loesche MA, Hayes BD, McEvoy DS, Filbin M, Dutta S, Eyre AJ. Sedation - Effects of disorders of abuse on therapeutic efficacy (SEDATE): A retrospective cohort study. Am J Emerg Med 2021; 49:294-299. [PMID: 34182272 DOI: 10.1016/j.ajem.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The impact of alcohol or opioid use disorders on medication dosing for procedural sedation in the emergency department (ED) is unclear, as most of the literature is from gastrointestinal endoscopy. Exploring how these patient factors affect sedative and analgesic medications may inform more nuanced sedation strategies in the emergency department. METHODS This was a retrospective chart-review cohort study across five EDs from 2015 to 2020. Included were adult patients who underwent procedural sedation in the ED, categorized into three a priori groups: alcohol use disorder (AUD), opioid use disorder (OUD), and individuals with neither (non-SUD). Wilcoxon test was used to compare the time-averaged dose of agents between groups. Logistic regression was used to model multi-agent sedations. The propofol time-averaged dose was the primary outcome. Secondary outcomes included other agents, sedation duration, and switching to other agents. RESULTS 2725 sedations were included in the analysis. 59 patients had a history of AUD, and 40 had a history of OUD. Time-averaged doses of medications did not differ significantly between AUD and non-SUD patients. Likewise, patients with OUD did not receive different doses of medications compared to non-SUD. The propofol doses for non-SUD, AUD, and OUD were 0.033 IQR 0.04; 0.042 IQR 0.05; and 0.058 IQR 0.04 mg/kg*min, respectively. Sedation duration was not different across groups. Having AUD or OUD is not associated with increased odds of requiring multiple sedative agents. CONCLUSION Although sedation in patients with AUD or OUD may be associated with significant case bias, these patient factors did not significantly alter outcomes compared to the general population. This study suggests there is no evidence to proactively adjust medication strategy in ED patients with AUD or OUD.
Collapse
Affiliation(s)
- Lorenzo Albala
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States of America.
| | - Michael A Loesche
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Bryan D Hayes
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Department of Pharmacy, Massachusetts General Hospital, Boston, MA, United States of America
| | - Dustin S McEvoy
- Digital Health eCare, Mass General Brigham, Boston, MA, United States of America
| | - Michael Filbin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Sayon Dutta
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Digital Health eCare, Mass General Brigham, Boston, MA, United States of America
| | - Andrew J Eyre
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| |
Collapse
|
18
|
Chromo-fluorogenic probes for β-galactosidase detection. Anal Bioanal Chem 2021; 413:2361-2388. [PMID: 33606064 DOI: 10.1007/s00216-020-03111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
β-Galactosidase (β-Gal) is a widely used enzyme as a reporter gene in the field of molecular biology which hydrolyzes the β-galactosides into monosaccharides. β-Gal is an essential enzyme in humans and its deficiency or its overexpression results in several rare diseases. Cellular senescence is probably one of the most relevant physiological disorders that involve β-Gal enzyme. In this review, we assess the progress made to date in the design of molecular-based probes for the detection of β-Gal both in vitro and in vivo. Most of the reported molecular probes for the detection of β-Gal consist of a galactopyranoside residue attached to a signalling unit through glycosidic bonds. The β-Gal-induced hydrolysis of the glycosidic bonds released the signalling unit with remarkable changes in color and/or emission. Additional examples based on other approaches are also described. The wide applicability of these probes for the rapid and in situ detection of de-regulation β-Gal-related diseases has boosted the research in this fertile field.
Collapse
|
19
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Norz V, Rausch S. Treatment and resistance mechanisms in castration-resistant prostate cancer: new implications for clinical decision making? Expert Rev Anticancer Ther 2020; 21:149-163. [PMID: 33106066 DOI: 10.1080/14737140.2021.1843430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: The armamentarium of treatment options in metastatic and non-metastatic CRPC is rapidly evolving. However, the question of how individual treatment decisions should be balanced by available predictive clinical parameters, pharmacogenetic and drug interaction profiles, or compound-associated molecular biomarkers is a major challenge for clinical practice.Areas covered: We discuss treatment and resistance mechanisms in PC with regard to their association to drug efficacy and tolerability. Current efforts of combination treatment and putative predictive biomarkers of available and upcoming compounds are highlighted with regard to their implication on clinical decision-making.Expert opinion: Several treatment approaches are delineated, where identification of resistance mechanisms in CRPC may guide treatment selection. To date, most of these candidate biomarkers will however be found only in a small subset of patients. While current approaches of combination treatment in CRPC are proving synergistic effects on cancer biology, higher complexity with regard to biomarker analysis and interaction profiles of the respective compounds may be expected. Among other aspects of personalized treatment, consideration of drug-drug interaction and pharmacogenetics is an underrepresented issue. However, the non-metastatic castration resistant prostate cancer situation may be an example for treatment selection based on drug interaction profiles in the future.
Collapse
Affiliation(s)
- Valentina Norz
- Department of Urology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Steffen Rausch
- Department of Urology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
Negishi M, Kobayashi K, Sakuma T, Sueyoshi T. Nuclear receptor phosphorylation in xenobiotic signal transduction. J Biol Chem 2020; 295:15210-15225. [PMID: 32788213 DOI: 10.1074/jbc.rev120.007933] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear pregnane X receptor (PXR, NR1I2) and constitutive active/androstane receptor (CAR, NR1I3) are nuclear receptors characterized in 1998 by their capability to respond to xenobiotics and activate cytochrome P450 (CYP) genes. An anti-epileptic drug, phenobarbital (PB), activates CAR and its target CYP2B genes, whereas PXR is activated by drugs such as rifampicin and statins for the CYP3A genes. Inevitably, both nuclear receptors have been investigated as ligand-activated nuclear receptors by identifying and characterizing xenobiotics and therapeutics that directly bind CAR and/or PXR to activate them. However, PB, which does not bind CAR directly, presented an alternative research avenue for an indirect ligand-mediated nuclear receptor activation mechanism: phosphorylation-mediated signal regulation. This review summarizes phosphorylation-based mechanisms utilized by xenobiotics to elicit cell signaling. First, the review presents how PB activates CAR (and other nuclear receptors) through a conserved phosphorylation motif located between two zinc fingers within its DNA-binding domain. PB-regulated phosphorylation at this motif enables nuclear receptors to form communication networks, integrating their functions. Next, the review discusses xenobiotic-induced PXR activation in the absence of the conserved DNA-binding domain phosphorylation motif. In this case, phosphorylation occurs at a motif located within the ligand-binding domain to transduce cell signaling that regulates hepatic energy metabolism. Finally, the review delves into the implications of xenobiotic-induced signaling through phosphorylation in disease development and progression.
Collapse
Affiliation(s)
- Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsutomu Sakuma
- School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima, Japan
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
22
|
Maliepaard M, Toiviainen T, De Bruin ML, Meulendijks D. Pharmacogenetic-Pharmacokinetic Interactions in Drug Marketing Authorization Applications via the European Medicines Agency Between 2014 and 2017. Clin Pharmacol Ther 2020; 108:338-349. [PMID: 32236952 PMCID: PMC7484984 DOI: 10.1002/cpt.1834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/14/2020] [Indexed: 11/10/2022]
Abstract
This study aimed to determine to which extent data on potential pharmacogenetic-pharmacokinetic (PG-PK) interactions are provided to, and assessed by, the European Medicines Agency (EMA) in novel drug marketing authorization applications (MAAs), and whether regulatory assessment of PG-PK interactions is adequate or could be optimized. For this purpose, we retrospectively analyzed MAAs of small molecule drugs assessed by the EMA between January 2014 and December 2017. As per two key requirements in the EMA's guideline, we analyzed cases where (i) a single functionally polymorphic drug metabolizing enzyme (DME) metabolizes > 25% of the drug, or (ii) the drug's PK shows high interindividual variability not explained by other factors than PG. Results showed that, of 113 drugs analyzed, 53 (47%) had ≥ 1 functionally polymorphic DME accounting for > 25% of the drug's metabolism, yielding 55 gene-drug pairs. For 36 of 53 (68%) of the products, CYP3A4 was the major DME. Compliance with European Union (EU) guidance on PG-PK issues in drug development was notably different for CYP3A4 substrates vs. non-CYP3A4 substrates. Adequate PG-PK data were provided during registration in 89% (16/18) of cases concerning non-CYP3A4 substrates, compared with 32% (12/37) of cases concerning CYP3A4 substrates. Concluding, PG-PK interactions related to non-CYP3A4 substrate drugs were, in general, addressed adequately in EU MAAs. PG-PK information on CYP3A4 substrates was available less frequently, despite some available evidence on the functional relevance of CYP3A4 polymorphisms. A more harmonized approach toward assessment of PG-PK issues in EU MAAs seems warranted, and a discussion on the relevance of CYP3A4 polymorphisms, such as CYP3A4*22, is recommended.
Collapse
Affiliation(s)
- Marc Maliepaard
- Dutch Medicines Evaluation Board (CBG‐MEB)UtrechtThe Netherlands
- Department of Pharmacology and ToxicologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Timi Toiviainen
- Dutch Medicines Evaluation Board (CBG‐MEB)UtrechtThe Netherlands
- Copenhagen Centre for Regulatory ScienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Marie L. De Bruin
- Copenhagen Centre for Regulatory ScienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Division of Pharmacoepidemiology and Clinical PharmacologyUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
23
|
Almeman AA. Major CYP450 polymorphism Among Saudi Patients. Drug Metab Lett 2020; 14:17-24. [PMID: 32703145 DOI: 10.2174/1872312814666200722122232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cytochrome P450 (CYP) contributes to a huge collection of medicinal products' Phase I metabolization. We aimed to summarize and investigate the current evidence regarding the frequency of CYP2D6, CYP2C9, CYP2C19, MDR1 in Saudi Arabia. METHODS A computerized search in four databases was done using the relevant keywords. Screening process was done in two steps; title and abstract screening and full-text screening. Data of demographic and characteristics of included studies and patients was extracted and tabulated. RESULTS Ten studies were eligible for our criteria and were included in this systematic review. Age of participants ranged between 17-65 years. Only two subjects showed PM phenotype of CYP2C19 in Saudi population. The most frequent alleles were CYP2C19*1 (62.9%), CYP2C19*2 (11.2%-32%), and CYP2C19*17 (25.7%). The CYP2C19m1 was observed in 97 cases of extensive metabolizing (EM) phenotype CYP2C19. Concerning the CYP2C9, the most frequent alleles were CYP2C9*1 and CYP2C9*2, and the most frequent genotype was CYP2C9*1*1. The CYP2D6*41 allele and C1236T MDR1 were the most frequent allele in this population. CONCLUSION The current evidence suggests that Saudi Arabians resembled European in the frequency of CYP2C19, Caucasians in both the incidence of CYP2C9 and CYP2C19m1 and absence of CYP2C19m2. The CYP2D6*41 allele frequency in Saudi Arabians is relatively high. We recommend a further research to evaluate the basic and clinical relevance of gene polymorphism in such ethnicity.
Collapse
Affiliation(s)
- Ahmad Abdulrahman Almeman
- Clinical pharmacology and therapeutics Department, Qassim University, Buraydah, Qassim. Saudi Arabia
| |
Collapse
|
24
|
Lapetina DL, Yang EH, Henriques BC, Aitchison KJ. Pharmacogenomics and Psychopharmacology. SEMINARS IN CLINICAL PSYCHOPHARMACOLOGY 2020:151-202. [DOI: 10.1017/9781911623465.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Marin JJG, Serrano MA, Monte MJ, Sanchez-Martin A, Temprano AG, Briz O, Romero MR. Role of Genetic Variations in the Hepatic Handling of Drugs. Int J Mol Sci 2020; 21:E2884. [PMID: 32326111 PMCID: PMC7215464 DOI: 10.3390/ijms21082884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
The liver plays a pivotal role in drug handling due to its contribution to the processes of detoxification (phases 0 to 3). In addition, the liver is also an essential organ for the mechanism of action of many families of drugs, such as cholesterol-lowering, antidiabetic, antiviral, anticoagulant, and anticancer agents. Accordingly, the presence of genetic variants affecting a high number of genes expressed in hepatocytes has a critical clinical impact. The present review is not an exhaustive list but a general overview of the most relevant variants of genes involved in detoxification phases. The available information highlights the importance of defining the genomic profile responsible for the hepatic handling of drugs in many ways, such as (i) impaired uptake, (ii) enhanced export, (iii) altered metabolism due to decreased activation of prodrugs or enhanced inactivation of active compounds, and (iv) altered molecular targets located in the liver due to genetic changes or activation/downregulation of alternative/compensatory pathways. In conclusion, the advance in this field of modern pharmacology, which allows one to predict the outcome of the treatments and to develop more effective and selective agents able to overcome the lack of effect associated with the existence of some genetic variants, is required to step forward toward a more personalized medicine.
Collapse
Affiliation(s)
- Jose J. G. Marin
- HEVEFARM Group, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.A.S.); (M.J.M.); (A.S.-M.); (A.G.T.); (O.B.); (M.R.R.)
| | | | | | | | | | | | | |
Collapse
|
26
|
Beaulieu‐Jones BK, Finlayson SG, Yuan W, Altman RB, Kohane IS, Prasad V, Yu K. Examining the Use of Real-World Evidence in the Regulatory Process. Clin Pharmacol Ther 2020; 107:843-852. [PMID: 31562770 PMCID: PMC7093234 DOI: 10.1002/cpt.1658] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
The 21st Century Cures Act passed by the United States Congress mandates the US Food and Drug Administration to develop guidance to evaluate the use of real-world evidence (RWE) to support the regulatory process. RWE has generated important medical discoveries, especially in areas where traditional clinical trials would be unethical or infeasible. However, RWE suffers from several issues that hinder its ability to provide proof of treatment efficacy at a level comparable to randomized controlled trials. In this review article, we summarized the advantages and limitations of RWE, identified the key opportunities for RWE, and pointed the way forward to maximize the potential of RWE for regulatory purposes.
Collapse
Affiliation(s)
| | - Samuel G. Finlayson
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusettsUSA
| | - William Yuan
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Russ B. Altman
- Departments of Bioengineering, Genetics, Medicine, and Biomedical Data ScienceStanford UniversityStanfordCaliforniaUSA
| | - Isaac S. Kohane
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Vinay Prasad
- Division of Hematology OncologyDepartment of Public Health and Preventive MedicineCenter for Health Care EthicsKnight Cancer InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Kun‐Hsing Yu
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
27
|
Vaz Crippa G, Zanetti TA, Biazi BI, Baranoski A, Marques LA, Coatti GC, Lepri SR, Mantovani MS. Up and down-regulation of mRNA in the cytotoxicity and genotoxicity of Plumbagin in HepG2/C3A. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103328. [PMID: 32000057 DOI: 10.1016/j.etap.2020.103328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Studies that evaluated the mechanisms of action of Plumbagin (PLB) and its toxicity may contribute to future therapeutic applications of this compound. We investigate biomarker important in the mechanisms of action correlate the expression of mRNA with the cytotoxic and genotoxic effects of PLB on HepG2/C3A. In the analysis of cytotoxicity, PLB decreased cell viability and membrane integrity at concentrations ≥ 15μM. Xenobiotic-metabolizing system showed strong mRNA induction of CYP1A1, CYP1A2, and CYP3A4, suggesting extensive metabolization. PLB induced apoptosis and an increase in the mRNA expression of genes BBC3, CASP3, and CASP8. At a concentration of 15μM, there was a reduction in the expression of PARP1 mRNA and an increase in the expression of BECN1 mRNA, suggesting that PLB may also induce cell death by autophagy. PLB induced an arrest at the G2/M phase due to DNA damage, as observed in the comet assay. This damage is associated with the increased mRNA expression of genes p21, GADD45A, and H2AFX and with changes in the expression of proteins H2AX, p21, p53, Chk1, and Chk2. These results allow a better understanding of the cellular action of PLB and of its toxicity, thereby contributing to the development of PLB-based drugs, with markers of mRNA expression possibly playing a role as indicators for monitoring toxicity in human cells.
Collapse
Affiliation(s)
- Giovanna Vaz Crippa
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Bruna Isabela Biazi
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Adrivânio Baranoski
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Lilian Areal Marques
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Giuliana Castello Coatti
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo - USP, Rua do Matão - Travessa 13, n. 106, São Paulo, São Paulo, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil.
| |
Collapse
|
28
|
Hunt PA, Vom Saal FS, Stahlhut R, Gerona R. BPA and risk assessment - Authors' reply. Lancet Diabetes Endocrinol 2020; 8:271-272. [PMID: 32197112 DOI: 10.1016/s2213-8587(20)30071-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | | | | | - Roy Gerona
- School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Moriwaki T, Abe S, Oshimura M, Kazuki Y. Transchromosomic technology for genomically humanized animals. Exp Cell Res 2020; 390:111914. [PMID: 32142854 DOI: 10.1016/j.yexcr.2020.111914] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
"Genomically" humanized animals are invaluable tools for generating human disease models and for biomedical research. Humanized animal models have generally been developed via conventional transgenic technologies; however, conventional gene delivery vectors such as viruses, plasmids, bacterial artificial chromosomes, P1 phase-derived artificial chromosomes, and yeast artificial chromosomes have limitations for transgenic animal creation as their loading gene capacity is restricted, and the expression of transgenes is unstable. Transchromosomic (Tc) techniques using mammalian artificial chromosomes, including human chromosome fragments, human artificial chromosomes, and mouse artificial chromosomes, have overcome these limitations. These tools can carry multiple genes or Mb-sized genomic loci and their associated regulatory elements, which has facilitated the creation of more useful and complex transgenic models for human disease, drug development, and humanized animal research. This review describes the history of Tc animal development, the applications of Tc animals, and future prospects.
Collapse
Affiliation(s)
- Takashi Moriwaki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Trans Chromosomics, Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Trans Chromosomics, Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
30
|
Chen L, Wang P, Manautou JE, Zhong XB. Knockdown of Long Noncoding RNAs Hepatocyte Nuclear Factor 1 α Antisense RNA 1 and Hepatocyte Nuclear Factor 4 α Antisense RNA 1 Alters Susceptibility of Acetaminophen-Induced Cytotoxicity in HepaRG Cells. Mol Pharmacol 2020; 97:278-286. [PMID: 32029527 DOI: 10.1124/mol.119.118778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acetaminophen (APAP) is a commonly used over-the-counter drug for its analgesic and antipyretic effects. However, APAP overdose leads to severe APAP-induced liver injury (AILI) and even death as a result of the accumulation of N-acetyl-p-benzoquinone imine, the toxic metabolite of APAP generated by cytochrome P450s (P450s). Long noncoding RNAs HNF1α antisense RNA 1 (HNF1α-AS1) and HNF4α antisense RNA 1 (HNF4α-AS1) are regulatory RNAs involved in the regulation of P450 expression in both mRNA and protein levels. This study aims to determine the impact of HNF1α-AS1 and HNF4α-AS1 on AILI. Small hairpin RNAs were used to knock down HNF1α-AS1 and HNF4α-AS1 in HepaRG cells. Knockdown of these lncRNAs altered APAP-induced cytotoxicity, indicated by MTT and LDH assays. Specifically, HNF1α-AS1 knockdown decreased APAP toxicity with increased cell viability and decreased LDH release, whereas HNF4α-AS1 knockdown exacerbated APAP toxicity, with opposite effects in the MTT and LDH assays. Alterations on gene expression by knockdown of HNF1α-AS1 and HNF4α-AS1 were examined in several APAP metabolic pathways, including CYP1A2, CYP2E1, CYP3A4, UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Knockdown of HNF1α-AS1 decreased mRNA expression of CYP1A2, 2E1, and 3A4 by 0.71-fold, 0.35-fold, and 0.31-fold, respectively, whereas knockdown of HNF4α-AS1 induced mRNAs of CYP1A2, 2E1, and 3A4 by 1.3-fold, 1.95-fold, and 1.9-fold, respectively. These changes were also observed in protein levels. Knockdown of HNF1α-AS1 and HNF4α-AS1 had limited effects on the mRNA expression of UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Altogether, our study suggests that HNF1α-AS1 and HNF4α-AS1 affected AILI mainly through alterations of P450-mediated APAP biotransformation in HepaRG cells, indicating an important role of the lncRNAs in AILI. SIGNIFICANCE STATEMENT: The current research identified two lncRNAs, hepatocyte nuclear factor 1α antisense RNA 1 and hepatocyte nuclear factor 4α antisense RNA 1, which were able to affect susceptibility of acetaminophen (APAP)-induced liver injury in HepaRG cells, possibly through regulating the expression of APAP-metabolizing cytochrome P450 enzymes. This discovery added new factors, lncRNAs, which can be used to predict cytochrome P450-mediated drug metabolism and drug-induced toxicity.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - Pei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| |
Collapse
|
31
|
Gendoo DMA. Bioinformatics and computational approaches for analyzing patient-derived disease models in cancer research. Comput Struct Biotechnol J 2020; 18:375-380. [PMID: 32128067 PMCID: PMC7044647 DOI: 10.1016/j.csbj.2020.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
Patient-derived organoids (PDO) and patient-derived xenografts (PDX) continue to emerge as important preclinical platforms for investigations into the molecular landscape of cancer. While the advantages and disadvantage of these models have been described in detail, this review focuses in particular on the bioinformatics and state-of-the art techniques that accompany preclinical model development. We discuss the strength and limitations of currently used technologies, particularly 'omics profiling and bioinformatics analyses, in addressing the 'efficacy' of preclinical models, both for tumour characterization as well as their use in identifying potential therapeutics. We select pancreatic ductal adenocarcinoma (PDAC) as a case study to highlight the state of the art of the field, and address new avenues for improved bioinformatics characterization of preclinical models.
Collapse
Affiliation(s)
- Deena M A Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
32
|
The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2 + Urine Derived Renal Progenitor Cells. Sci Rep 2020; 10:739. [PMID: 31959818 PMCID: PMC6970988 DOI: 10.1038/s41598-020-57723-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human urine is a non-invasive source of renal stem cells with regeneration potential. Urine-derived renal progenitor cells were isolated from 10 individuals of both genders and distinct ages. These renal progenitors express pluripotency-associated proteins- TRA-1-60, TRA-1-81, SSEA4, C-KIT and CD133, as well as the renal stem cell markers -SIX2, CITED1, WT1, CD24 and CD106. The transcriptomes of all SIX2+ renal progenitors clustered together, and distinct from the human kidney biopsy-derived epithelial proximal cells (hREPCs). Stimulation of the urine-derived renal progenitor cells (UdRPCs) with the GSK3β-inhibitor (CHIR99021) induced differentiation. Transcriptome and KEGG pathway analysis revealed upregulation of WNT-associated genes- AXIN2, JUN and NKD1. Protein interaction network identified JUN- a downstream target of the WNT pathway in association with STAT3, ATF2 and MAPK1 as a putative negative regulator of self-renewal. Furthermore, like pluripotent stem cells, self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3 pathway. The urine-derived renal progenitor cells and the data presented should lay the foundation for studying nephrogenesis in human.
Collapse
|
33
|
A Systematic Review of Drug Metabolism Studies of Plants With Anticancer Properties: Approaches Applied and Limitations. Eur J Drug Metab Pharmacokinet 2019; 45:173-225. [DOI: 10.1007/s13318-019-00582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
de Mello CPP, Rumsey J, Slaughter V, Hickman JJ. A human-on-a-chip approach to tackling rare diseases. Drug Discov Today 2019; 24:2139-2151. [PMID: 31412288 PMCID: PMC6856435 DOI: 10.1016/j.drudis.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Drug development for rare diseases, classified as diseases with a prevalence of < 200 000 patients, is limited by the high cost of research and low target population. Owing to a lack of representative disease models, research has been challenging for orphan drugs. Human-on-a-chip (HoaC) technology, which models human tissues in interconnected in vitro microfluidic devices, has the potential to lower the cost of preclinical studies and increase the rate of drug approval by introducing human phenotypic models early in the drug discovery process. Advances in HoaC technology can drive a new approach to rare disease research and orphan drug development.
Collapse
Affiliation(s)
| | | | - Victoria Slaughter
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Hesperos, Inc., Orlando, FL 32826, USA.
| |
Collapse
|
35
|
Chong CS, Kunze M, Hochreiter B, Krenn M, Berger J, Maurer-Stroh S. Rare Human Missense Variants can affect the Function of Disease-Relevant Proteins by Loss and Gain of Peroxisomal Targeting Motifs. Int J Mol Sci 2019; 20:E4609. [PMID: 31533369 PMCID: PMC6770196 DOI: 10.3390/ijms20184609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 12/30/2022] Open
Abstract
Single nucleotide variants (SNVs) resulting in amino acid substitutions (i.e., missense variants) can affect protein localization by changing or creating new targeting signals. Here, we studied the potential of naturally occurring SNVs from the Genome Aggregation Database (gnomAD) to result in the loss of an existing peroxisomal targeting signal 1 (PTS1) or gain of a novel PTS1 leading to mistargeting of cytosolic proteins to peroxisomes. Filtering down from 32,985 SNVs resulting in missense mutations within the C-terminal tripeptide of 23,064 human proteins, based on gene annotation data and computational prediction, we selected six SNVs for experimental testing of loss of function (LoF) of the PTS1 motif and five SNVs in cytosolic proteins for gain in PTS1-mediated peroxisome import (GoF). Experimental verification by immunofluorescence microscopy for subcellular localization and FRET affinity measurements for interaction with the receptor PEX5 demonstrated that five of the six predicted LoF SNVs resulted in loss of the PTS1 motif while three of five predicted GoF SNVs resulted in de novo PTS1 generation. Overall, we showed that a complementary approach incorporating bioinformatics methods and experimental testing was successful in identifying SNVs capable of altering peroxisome protein import, which may have implications in human disease.
Collapse
Affiliation(s)
- Cheng-Shoong Chong
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore.
| | - Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, 1090 Vienna, Austria.
| | - Bernhard Hochreiter
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, 1090 Vienna, Austria.
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany.
| | - Johannes Berger
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, 1090 Vienna, Austria.
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
- Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.
| |
Collapse
|
36
|
Zhang B, Lu Y, Li P, Wen X, Yang J. Study on the absorption of corosolic acid in the gastrointestinal tract and its metabolites in rats. Toxicol Appl Pharmacol 2019; 378:114600. [PMID: 31150656 DOI: 10.1016/j.taap.2019.114600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022]
Abstract
Corosolic acid (CRA) has been widely used as a food supplement. However, its pharmacokinetic behavior still needs to be explored. In this study, the absorption of CRA in stomach and intestine were investigated by in situ gastric absorption and in situ single-pass perfusion, respectively. Furthermore, the metabolites of CRA in rat plasma, bile, and urine were identified by UPLC-QTOF-MS. The enzymes responsible for its metabolism were explored by rat liver microsome (RLMs). The effects of plasma containing metabolites on cancer cell growth and glucose consumption were evaluated by HT29 and HepG2 cells receptively. The results showed that CRA absorption rate is approximately 20% to 40% in stomach. It has similar absorption rate constant (Ka) in duodenum/jejunum/ileum/colon. However, its effective permeability (Peff) in ileum at 9 μg/mL is significantly higher than the Peff in colon. Moreover, five possible metabolites were identified in plasma and bile, suggesting CRA could be metabolized through methyl carboxylation, hydroxylation, methyl aldehyde substitution, glucuronidation, and acetylation in vivo. Meanwhile, CYP1A2 and CYP3A4 were found to participate in its metabolism. The plasma containing metabolites of CRA significantly inhibited the growth of HT29 colon cancer cells and stimulated glucose consumption of HepG2 cells. Taken together, these results demonstrated that CRA has good absorption in both stomach and small intestine, but it could be metabolized partly due to CYP1A2 and CYP3A4 in vivo. Its metabolites might be responsible for the excellent anti-cancer and anti-diabetes activities of CRA. This study will provide evidence for further CRA development.
Collapse
Affiliation(s)
- Biying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Yawen Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Jie Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
37
|
Bhuvaneshwar K, Harris M, Gusev Y, Madhavan S, Iyer R, Vilboux T, Deeken J, Yang E, Shankar S. Genome sequencing analysis of blood cells identifies germline haplotypes strongly associated with drug resistance in osteosarcoma patients. BMC Cancer 2019; 19:357. [PMID: 30991985 PMCID: PMC6466653 DOI: 10.1186/s12885-019-5474-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor in children. Survival remains poor among histologically poor responders, and there is a need to identify them at diagnosis to avoid delivering ineffective therapy. Genetic variation contributes to a wide range of response and toxicity related to chemotherapy. The aim of this study is to use sequencing of blood cells to identify germline haplotypes strongly associated with drug resistance in osteosarcoma patients. METHODS We used sequencing data from two patient datasets, from Inova Hospital and the NCI TARGET. We explored the effect of mutation hotspots, in the form of haplotypes, associated with relapse outcome. We then mapped the single nucleotide polymorphisms (SNPs) in these haplotypes to genes and pathways. We also performed a targeted analysis of mutations in Drug Metabolizing Enzymes and Transporter (DMET) genes associated with tumor necrosis and survival. RESULTS We found intronic and intergenic hotspot regions from 26 genes common to both the TARGET and INOVA datasets significantly associated with relapse outcome. Among significant results were mutations in genes belonging to AKR enzyme family, cell-cell adhesion biological process and the PI3K pathways; as well as variants in SLC22 family associated with both tumor necrosis and overall survival. The SNPs from our results were confirmed using Sanger sequencing. Our results included known as well as novel SNPs and haplotypes in genes associated with drug resistance. CONCLUSION We show that combining next generation sequencing data from multiple datasets and defined clinical data can better identify relevant pathway associations and clinically actionable variants, as well as provide insights into drug response mechanisms.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Michael Harris
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | | | | | - John Deeken
- Inova Translational Medicine Institute, Fairfax, VA USA
| | - Elizabeth Yang
- Inova Children’s Hospital, Falls Church, VA USA
- Center for Cancer and Blood Disorders of Northern Virginia, Pediatric Specialists of Virginia, Falls Church, VA USA
- George Washington University School of Medicine, Washington DC, USA
- Virginia Commonwealth University School of Medicine, Inova Campus, Falls Church, VA USA
| | - Sadhna Shankar
- Inova Children’s Hospital, Falls Church, VA USA
- Center for Cancer and Blood Disorders of Northern Virginia, Pediatric Specialists of Virginia, Falls Church, VA USA
| |
Collapse
|
38
|
Potęga A, Garwolińska D, Nowicka AM, Fau M, Kot-Wasik A, Mazerska Z. Phase I and phase II metabolism simulation of antitumor-active 2-hydroxyacridinone with electrochemistry coupled on-line with mass spectrometry. Xenobiotica 2019; 49:922-934. [PMID: 30301406 DOI: 10.1080/00498254.2018.1524946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we report the metabolic profile and the results of associated metabolic studies of 2-hydroxy-acridinone (2-OH-AC), the reference compound for antitumor-active imidazo- and triazoloacridinones. Electrochemistry coupled with mass spectrometry was applied to simulate the general oxidative metabolism of 2-OH-AC for the first time. The reactivity of 2-OH-AC products to biomolecules was also examined. The usefulness of the electrochemistry for studying the reactive drug metabolite trapping (conjugation reactions) was evaluated by the comparison with conventional electrochemical (controlled-potential electrolysis) and enzymatic (microsomal incubation) approaches. 2-OH-AC oxidation products were generated in an electrochemical thin-layer cell. Their tentative structures were assigned based on tandem mass spectrometry in combination with accurate mass measurements. Moreover, the electrochemical conversion of 2-OH-AC in the presence of reduced glutathione and/or N-acetylcysteine unveiled the formation of reactive metabolite-nucleophilic trapping agent conjugates (m/z 517 and m/z 373, respectively) through the thiol group. This glutathione S-conjugate was also identified after electrolysis experiment as well as was detected in liver microsomes. Summing up, the present work illustrates that the electrochemical simulation of metabolic reactions successfully supports the results of classical electrochemical and enzymatic studies. Therefore, it can be a useful tool for synthesis of drug metabolites, including reactive metabolites.
Collapse
Affiliation(s)
- Agnieszka Potęga
- a Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| | - Dorota Garwolińska
- b Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| | - Anna M Nowicka
- c Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry , University of Warsaw , Warsaw , Poland
| | - Michał Fau
- c Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry , University of Warsaw , Warsaw , Poland
| | - Agata Kot-Wasik
- b Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| | - Zofia Mazerska
- a Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| |
Collapse
|
39
|
Wang Y, Yan L, Liu J, Chen S, Liu G, Nie Y, Wang P, Yang W, Chen L, Zhong X, Han S, Zhang L. The HNF1 α-Regulated LncRNA HNF1 α-AS1 Is Involved in the Regulation of Cytochrome P450 Expression in Human Liver Tissues and Huh7 Cells. J Pharmacol Exp Ther 2019; 368:353-362. [PMID: 30602592 DOI: 10.1124/jpet.118.252940] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Expression of cytochrome P450s (P450s) is regulated by epigenetic factors, such as DNA methylation, histone modifications, and noncoding RNAs through different mechanisms. Among these factors, long noncoding RNAs (lncRNAs) have been shown to play important roles in the regulation of gene expression; however, little is known about the effects of lncRNAs on the regulation of P450 expression. The aim of this study was to explore the role of lncRNAs in the regulation of P450 expression by using human liver tissues and hepatoma Huh7 cells. Through lncRNA microarray analysis and quantitative polymerase chain reaction in human liver tissues, we found that the lncRNA hepatocyte nuclear factor 1 alpha antisense 1 (HNF1α-AS1), an antisense RNA of HNF1α, is positively correlated with the mRNA expression of CYP2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 as well as pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Gain- and loss-of-function studies in Huh7 cells transfected with small interfering RNAs or overexpression plasmids showed that HNF1α not only regulated the expression of HNF1α-AS1 and P450s, but also regulated the expression of CAR, PXR, and aryl hydrocarbon receptor (AhR). In turn, HNF1α-AS1 regulated the expression of PXR and most P450s without affecting the expression of HNF1α, AhR, and CAR. Moreover, the rifampicin-induced expression of P450s was also affected by HNF1α and HNF1α-AS1. In summary, the results of this study suggested that HNF1α-AS1 is involved in the HNF1α-mediated regulation of P450s in the liver at both basal and drug-induced levels.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Liang Yan
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Jingyang Liu
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Shitong Chen
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Guangming Liu
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Yali Nie
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Pei Wang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Weihong Yang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Liming Chen
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Xiaobo Zhong
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Shengna Han
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Lirong Zhang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| |
Collapse
|
40
|
Shuleta-Qehaja S, Kapedanovska Nestorovska A, Naumovska Z, Stefanovski P, Dimovski A, Sterjev Z, Shuturkova L. CYP2D6 polymorphisms and the therapeutic outcome with Tamoxifen therapy in breast cancer patients from Kosovo. MAKEDONSKO FARMACEVTSKI BILTEN 2019. [DOI: 10.33320/maced.pharm.bull.2018.64.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen is a selective estrogen receptor modulator (SERM) used for the prevention of breast cancer and for the treatment of metastatic and early stage receptor positive breast cancer. It has been shown than tamoxifen is metabolized by the cytochrome P450 2D6 (CYP2D6) enzymes, especially with the CYP26 isoform. The aim of this study was to examine the prevalence of CYP2D6*4, CYP2D6*9 and CYP2D6*10 variants in patients with breast cancer in Kosovo as well as the association between CYP2D6 polymorphisms and the therapeutic outcome in tamoxifen treated patients. The study included 111 patients who were at the age of 25 to 70 years (45.75 ± 9.50). The overall variant allele frequency of CYP2D6*4 was 0.16. The genotypic frequencies of the CYP2D6*4 polymorphism in all patients were 0.02 for *4/*4, 0.28 for *1/*4 and 0.70 for the *1/*1 genotype. The overall CYP2D6*10 variant allele frequency was 0.30 and the frequency of *10/*10, *1/*10 and *1/*1 genotypes was 0.11, 0.37 and 0.52, respectively. In our study, a population of the CYP2D6∗9 variant allele was not detected. In addition, we did not find any correlation between the evaluated genotypes for CYP2D6 polymorphisms and the therapeutic outcome with tamoxifen therapy. Although our study is a rather small- scale compared to large multicentre studies, we believe that it will contribute to determining the impact of CYP2D6 polymorphisms on the success of tamoxifen therapy in patients with a diagnosed breast cancer. Our results are pointing to the direction of the growing number of claims that there is still no strong evidence of any therapeutic connection between the polymorphisms examined and the outcome of the therapy.
Keywords: Tamoxifen, breast cancer, CY2D6*4, CYP2D6*9, CYP2D6*10
Collapse
Affiliation(s)
| | | | - Zorica Naumovska
- Ss Cyril and Methodius University, Faculty of Pharmacy, Majka Tereza 47, Skopje, Republic of Macedonia
| | - Petar Stefanovski
- Clinical Hospital Dr. Trifun Panovski, Department of Oncology, ASNOM n.n., Bitola, Republic of Macedonia
| | - Aleksandar Dimovski
- Ss Cyril and Methodius University, Faculty of Pharmacy, Majka Tereza 47, Skopje, Republic of Macedonia
| | - Zoran Sterjev
- Ss Cyril and Methodius University, Faculty of Pharmacy, Majka Tereza 47, Skopje, Republic of Macedonia
| | - Ljubica Shuturkova
- Ss Cyril and Methodius University, Faculty of Pharmacy, Majka Tereza 47, Skopje, Republic of Macedonia
| |
Collapse
|
41
|
Gendoo DMA, Denroche RE, Zhang A, Radulovich N, Jang GH, Lemire M, Fischer S, Chadwick D, Lungu IM, Ibrahimov E, Cao PJ, Stein LD, Wilson JM, Bartlett JMS, Tsao MS, Dhani N, Hedley D, Gallinger S, Haibe-Kains B. Whole genomes define concordance of matched primary, xenograft, and organoid models of pancreas cancer. PLoS Comput Biol 2019; 15:e1006596. [PMID: 30629588 PMCID: PMC6328084 DOI: 10.1371/journal.pcbi.1006596] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/28/2018] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among solid malignancies and improved therapeutic strategies are needed to improve outcomes. Patient-derived xenografts (PDX) and patient-derived organoids (PDO) serve as promising tools to identify new drugs with therapeutic potential in PDAC. For these preclinical disease models to be effective, they should both recapitulate the molecular heterogeneity of PDAC and validate patient-specific therapeutic sensitivities. To date however, deep characterization of the molecular heterogeneity of PDAC PDX and PDO models and comparison with matched human tumour remains largely unaddressed at the whole genome level. We conducted a comprehensive assessment of the genetic landscape of 16 whole-genome pairs of tumours and matched PDX, from primary PDAC and liver metastasis, including a unique cohort of 5 'trios' of matched primary tumour, PDX, and PDO. We developed a pipeline to score concordance between PDAC models and their paired human tumours for genomic events, including mutations, structural variations, and copy number variations. Tumour-model comparisons of mutations displayed single-gene concordance across major PDAC driver genes, but relatively poor agreement across the greater mutational load. Genome-wide and chromosome-centric analysis of structural variation (SV) events highlights previously unrecognized concordance across chromosomes that demonstrate clustered SV events. We found that polyploidy presented a major challenge when assessing copy number changes; however, ploidy-corrected copy number states suggest good agreement between donor-model pairs. Collectively, our investigations highlight that while PDXs and PDOs may serve as tractable and transplantable systems for probing the molecular properties of PDAC, these models may best serve selective analyses across different levels of genomic complexity.
Collapse
Affiliation(s)
- Deena M. A. Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research (OICR), Toronto, Ontario, Canada
| | - Robert E. Denroche
- PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research (OICR), Toronto, Ontario, Canada
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research (OICR), Toronto, Ontario, Canada
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Living Biobank Core, University Health Network, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research (OICR), Toronto, Ontario, Canada
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Statistical Science, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lemire
- PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research (OICR), Toronto, Ontario, Canada
| | - Sandra Fischer
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Dianne Chadwick
- UHN Program in BioSpecimen Sciences, Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Ilinca M. Lungu
- Transformative Pathology, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Emin Ibrahimov
- Princess Margaret Living Biobank Core, University Health Network, Toronto, Ontario, Canada
| | - Ping-Jiang Cao
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Lincoln D. Stein
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Molecular Genetics Department, University of Toronto, Toronto, Ontario, Canada
| | - Julie M. Wilson
- PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research (OICR), Toronto, Ontario, Canada
| | - John M. S. Bartlett
- Transformative Pathology, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Living Biobank Core, University Health Network, Toronto, Ontario, Canada
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Neesha Dhani
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Hedley
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research (OICR), Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research (OICR), Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Palbociclib in combination with letrozole in patients with estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: PALOMA-2 subgroup analysis of Japanese patients. Int J Clin Oncol 2018; 24:274-287. [PMID: 30515674 PMCID: PMC6399183 DOI: 10.1007/s10147-018-1353-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022]
Abstract
Background In PALOMA-2, palbociclib–letrozole significantly improved progression-free survival (PFS) vs placebo–letrozole in women with estrogen receptor–positive, human epidermal growth factor receptor 2–negative (ER+/HER2–) advanced breast cancer (ABC) in the first-line setting. We evaluated the efficacy, safety, and pharmacokinetics of palbociclib in Japanese women in PALOMA-2. Methods In this phase 3 study, 666 postmenopausal women with ER+/HER2– ABC were randomized 2:1 to palbociclib (125 mg/day [3 weeks on/1 week off]) plus letrozole (2.5 mg daily) or placebo plus letrozole. A prespecified, exploratory, subgroup analysis of Japanese patients (n = 46) was conducted to compare results with those of the overall population. Results At the February 26, 2016 cutoff, median PFS among the 46 Japanese patients was 22.2 months (95%CI, 13.6‒not estimable) with palbociclib–letrozole vs 13.8 months (5.6‒22.2) with placebo–letrozole (hazard ratio, 0.59 [95%CI, 0.26−1.34]). The most common adverse events (AEs) were hematologic and more frequent among Japanese patients than the overall population (neutropenia: 93.8% [87.5% grade 3/4] vs 79.5% [66.4%]; leukopenia: 62.5% [43.8%] vs 39.0% [24.8%]); no Japanese patients had febrile neutropenia. Palbociclib dose reductions due to toxicity (mainly neutropenia) were more common in Japanese patients (62.5% vs 36.0%); few permanently discontinued due to AEs. Although mean palbociclib trough concentration was higher in Japanese patients vs non-Asians (95.4 vs 61.7 ng/mL), the range of individual values of the Japanese patients was within that of non-Asians. Conclusions These results from PALOMA-2 suggest that palbociclib–letrozole merits consideration as a first-line treatment option for postmenopausal Japanese patients with ER+/HER2‒ ABC. ClinicalTrials.gov: NCT01740427. Electronic supplementary material The online version of this article (10.1007/s10147-018-1353-9) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Howard M, Barber J, Alizai N, Rostami-Hodjegan A. Dose adjustment in orphan disease populations: the quest to fulfill the requirements of physiologically based pharmacokinetics. Expert Opin Drug Metab Toxicol 2018; 14:1315-1330. [PMID: 30465453 DOI: 10.1080/17425255.2018.1546288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION While the media is engaged and fascinated by the idea of 'Precision Medicine', the nuances related to 'Precision Dosing' seem to be largely ignored. Assuming the 'right drug' is selected, clinicians still need to decide on the 'right dose' for individuals. Ideally, optimal dosing should be studied in clinical trials; however, many drugs on the market lack evidence-based dosing recommendations, and small groups of patients (orphan disease populations) are dependent on local guidance and clinician experience to determine drug dosage adjustments. Areas Covered: This report explores the current understanding of dosing adjustment in special populations and examines the requirements for developing 'in silico' models for pediatric, elderly and pregnant patients. The report also highlights current use of modeling to provide evidence-based recommendations for drug labeling in the absence of complete clinical trials in orphan disease populations. Expert Opinion: Physiologically based pharmacokinetics (PBPK) is an attractive prospect for determining the best drug dosage adjustments in special populations. However, it is not sufficient for individualized, or even stratified dosing, unless the systems (drug-independent) data required to build robust PBPK models are obtained. Such models are not a substitute for clinical trials, but they are an alternative to undocumented and inconsistent guesswork.
Collapse
Affiliation(s)
- Martyn Howard
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| | - Jill Barber
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| | - Naved Alizai
- b Leeds General Infirmary , Leeds Children's Hospital , Leeds , UK
| | - Amin Rostami-Hodjegan
- a Centre for Applied Pharmacokinetic Research , University of Manchester , Manchester , UK
| |
Collapse
|
44
|
Shore D. Exclusive Drug Labeling Rights as a New Incentive for Contribution to a Communal Biomarker Resource. AMERICAN JOURNAL OF LAW & MEDICINE 2018; 44:607-626. [PMID: 30802165 DOI: 10.1177/0098858818821138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomarkers are an important tool in modern drug development. The FDA has posited that increased use of biomarkers in clinical trials can accelerate pharmaceutical industry productivity, ushering new drugs to market. Accordingly, the FDA has created two pathways for evaluation of biomarker utility. Biomarkers incorporated into clinical trials, the traditional pathway, are effectively private to a therapeutic sponsor and to the scope of the trial. By contrast, in Biomarker Qualification ("BQ"), the second pathway, a biomarker is certified as a publicly available tool. The FDA has hoped that academic, non-profit, and industry stakeholders would work together in consortia to qualify biomarkers, cumulatively generating a common resource of broad utility. In practice, utilization of Biomarker Qualification has been paltry. Incentives for BQ that align with the interests of industry resource holders are necessary to fuel increased utilization of biomarkers in clinical trials and create the communal biomarker toolkit envisioned by the FDA. A blanket extension of exclusivity for any drug successfully paired with a companion biomarker would diminish public access to medicine by encouraging spurious biomarkers and correspondingly narrowed clinical trials. As a measured alternative, an exclusive right to include a qualified companion biomarker on an FDA drug label would balance public access externalities. This exclusivity would waylay label approval, and thus marketability, of later drugs relying on the qualified biomarker for clinical safety or efficacy. Accordingly, sponsors would find no incentive to portage an ineffective or unnecessary biomarker through clinical trials, as there would be no benefit to securing exclusive rights in a tool others saw no value in using.
Collapse
Affiliation(s)
- David Shore
- Patent Agent, Choate Hall & Stewart; Boston University School of Law, J.D. anticipated 2019; Harvard University Graduate School of Arts and Sciences, Ph.D. in Biological and Biomedical Sciences, 2012; University of Illinois at Urbana-Champaign, B.S. in Biotechnology and Molecular Biology, 2005. Special thanks to Frances H. Miller, Professor of Law Emerita at Boston University School of Law, for her extraordinary mentorship
| |
Collapse
|
45
|
Sanghera DK, Bejar C, Sapkota B, Wander GS, Ralhan S. Frequencies of poor metabolizer alleles of 12 pharmacogenomic actionable genes in Punjabi Sikhs of Indian Origin. Sci Rep 2018; 8:15742. [PMID: 30356105 PMCID: PMC6200732 DOI: 10.1038/s41598-018-33981-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
Diversity in drug response is attributed to both genetic and non-genetic factors. However, there is paucity of pharmacogenetics information across ethnically and genetically diverse populations of India. Here, we have analyzed 21 SNPs from 12 pharmacogenomics genes in Punjabi Sikhs of Indian origin (N = 1,616), as part of the Sikh Diabetes Study (SDS). We compared the allele frequency of poor metabolism (PM) phenotype among Sikhs across other major global populations from the Exome Aggregation Consortium and 1000 Genomes. The PM phenotype of CYP1A2*1 F for slow metabolism of caffeine and carcinogens was significantly higher in Indians (SDS 42%, GIH [Gujarati] 51%, SAS [Pakistani] 45%) compared to Europeans 29% (pgenotype = 5.3E-05). Similarly, South Asians had a significantly higher frequency of CYP2C9*3 (12% SDS, 13% GIH, 11% SAS) vs. 7% in Europeans (pgenotype = <1.0E-05) and 'T' allele of CYP4F2 (36%) SDS, (43%) GIH, 40% (SAS) vs. (29%) in Europeans (pgenotype = <1.0E-05); both associated with a higher risk of bleeding with warfarin. All South Asians -the Sikhs (0.36), GIH (0.34), and SAS (0.36) had a higher frequency of the NAT2*6 allele (linked with slow acetylation of isoniazid) compared to Europeans (0.29). Additionally, the prevalence of the low activity 'C' allele of MTHFR (rs1801131) was highest in Sikhs compared to all other ethnic groups [SDS (44%), GIH (39%), SAS (42%) and European (32%) (pgenotype = <1.0E-05)]. SNPs in MTHFR affect metabolism of statins, 5-fluorouracil and methotrexate-based cancer drugs. These findings underscore the need for evaluation of other endogamous ethnic groups of India and beyond for establishing a global benchmark for pre-emptive genotyping in drug metabolizing genes before beginning therapeutic intervention.
Collapse
Affiliation(s)
- Dharambir K Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Cynthia Bejar
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bishwa Sapkota
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Sarju Ralhan
- Hero DMC Heart Institute, Ludhiana, Punjab, India
| |
Collapse
|
46
|
Piñero J, Gonzalez-Perez A, Guney E, Aguirre-Plans J, Sanz F, Oliva B, Furlong LI. Network, Transcriptomic and Genomic Features Differentiate Genes Relevant for Drug Response. Front Genet 2018; 9:412. [PMID: 30319692 PMCID: PMC6168038 DOI: 10.3389/fgene.2018.00412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Understanding the mechanisms underlying drug therapeutic action and toxicity is crucial for the prevention and management of drug adverse reactions, and paves the way for a more efficient and rational drug design. The characterization of drug targets, drug metabolism proteins, and proteins associated to side effects according to their expression patterns, their tolerance to genomic variation and their role in cellular networks, is a necessary step in this direction. In this contribution, we hypothesize that different classes of proteins involved in the therapeutic effect of drugs and in their adverse effects have distinctive transcriptomics, genomics and network features. We explored the properties of these proteins within global and organ-specific interactomes, using multi-scale network features, evaluated their gene expression profiles in different organs and tissues, and assessed their tolerance to loss-of-function variants leveraging data from 60K subjects. We found that drug targets that mediate side effects are more central in cellular networks, more intolerant to loss-of-function variation, and show a wider breadth of tissue expression than targets not mediating side effects. In contrast, drug metabolizing enzymes and transporters are less central in the interactome, more tolerant to deleterious variants, and are more constrained in their tissue expression pattern. Our findings highlight distinctive features of proteins related to drug action, which could be applied to prioritize drugs with fewer probabilities of causing side effects.
Collapse
Affiliation(s)
- Janet Piñero
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Emre Guney
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joaquim Aguirre-Plans
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ferran Sanz
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldo Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura I Furlong
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
47
|
Sychev DA, Ashraf GM, Svistunov AA, Maksimov ML, Tarasov VV, Chubarev VN, Otdelenov VA, Denisenko NP, Barreto GE, Aliev G. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1147-1156. [PMID: 29780235 PMCID: PMC5951216 DOI: 10.2147/dddt.s149069] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome (CYP) 450 isoenzymes are the basic enzymes involved in Phase I biotransformation. The most important role in biotransformation belongs to CYP3A4, CYP2D6, CYP2C9, CYP2C19 and CYP1A2. Inhibition and induction of CYP isoenzymes caused by drugs are important and clinically relevant pharmacokinetic mechanisms of drug interaction. Investigation of the activity of CYP isoenzymes by using phenotyping methods (such as the determination of the concentration of specific substrates and metabolites in biological fluids) during drug administration provides the prediction of negative side effects caused by drug interaction. In clinical practice, the process of phenotyping of CYP isoenzymes and some endogenous substrates in the ratio of cortisol to 6β-hydroxycortisol in urine for the evaluation of CYP3A4 activity has been deemed to be a quite promising, safe and minimally invasive method for patients nowadays.
Collapse
Affiliation(s)
- Dmitrij A Sychev
- Russian Medical Academy of Postgraduate Education Studies, Moscow, Russia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Maksim L Maksimov
- Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education «Russian Medical Academy of Continuous Professional Education» of the Ministry of Healthcare of the Russian Federation, Kazan State Medical Academy, Volga Region, Kazan, Russia
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gjumrakch Aliev
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, USA.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, USA.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
48
|
Abstract
The CRISPR-CRISPR-associated (Cas) nuclease system offers the ability to perform unprecedented functional genetic experiments and the promise of therapy for a variety of genetic disorders. The understanding of factors contributing to CRISPR targeting efficacy and specificity continues to evolve. As CRISPR systems rely on Watson-Crick base pairing to ultimately mediate genomic cleavage, it logically follows that genetic variation would affect CRISPR targeting by increasing or decreasing sequence homology at on-target and off-target sites or by altering protospacer adjacent motifs. Numerous efforts have been made to document the extent of human genetic variation, which can serve as resources to understand and mitigate the effect of genetic variation on CRISPR targeting. Here, we review efforts to elucidate the effect of human genetic variation on CRISPR targeting at on-target and off-target sites with considerations for laboratory experiments and clinical translation of CRISPR-based therapies.
Collapse
Affiliation(s)
- Matthew C. Canver
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
49
|
Ariffin NM, Islahudin F, Makmor-Bakry M, Kumolosasi E, Hamid MHA. Factors Affecting Primaquine Combination Treatment in Malaria Patients in Selangor, Malaysia. J Pharm Bioallied Sci 2018; 9:239-245. [PMID: 29456374 PMCID: PMC5810073 DOI: 10.4103/jpbs.jpbs_48_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Primaquine is vital for the management of liver-stage Plasmodium vivax and Plasmodium ovale malaria. However, primaquine effectiveness is dependent on various factors and differs between populations. Therefore, this study was conducted to identify factors that affect the length of stay and relapse during primaquine combination treatment in malaria-infected patients in the local setting. Materials and Methods: A retrospective study on the use of primaquine combination among P. vivax and P. ovale infected patients in Selangor, Malaysia within a 5-year period from 2011 to 2015 was obtained from the National Malaria Case Registry, Malaysia. Data collected were patient characteristics (age, gender, nationality, glucose-6-phosphate dehydrogenase, pregnancy); disease characteristics (survival, past malaria infection, parasite type, presence of gametocyte, parasite count, week onset, severity, transmission type); and treatment characteristics (type of antimalarial, treatment completion). Outcome measures were length of stay and relapse during a 1-year follow-up. Results: A total of 635 patients were included in the study. Based on a multivariate logistic regression analysis, the significant predictors for length of stay were gender (P = 0.009) and indigenous transmission (P < 0.001). Male patients had a shorter length of stay than females by 0.868 days (P = 0.009), and indigenous transmission took 1.82 days more compared to nonindigenous transmission (P < 0.001). Predictors for relapse were indigenous transmission of malaria (P = 0.019), which was 15.83 times more likely to relapse than nonindigenous transmission (P < 0.01). Conclusions: This study reveals that the effectiveness of primaquine was clinically associated with gender and indigenous transmission. To that end, vigilant monitoring of primaquine use is required to reduce relapse and future transmission.
Collapse
Affiliation(s)
- Norliza Mat Ariffin
- Quality Use of Medicine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Farida Islahudin
- Quality Use of Medicine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohd Makmor-Bakry
- Quality Use of Medicine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Endang Kumolosasi
- Quality Use of Medicine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohd Hafizi A Hamid
- Vector Borne Disease Sector, Disease Control Division, Ministry of Health, Putrajaya 62590, Malaysia
| |
Collapse
|
50
|
Cardiovascular Outcome Trials of Diabetes and Obesity Drugs: Implications for Conditional Approval and Early Phase Clinical Development. Pharmaceut Med 2017. [DOI: 10.1007/s40290-017-0209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|