1
|
Biel TG, Faison T, Matthews AM, Ortega‐Rodriguez U, Falkowski VM, Meek E, Bush X, Flores M, Johnson S, Wu WW, Lehtimaki M, Shen R, Agarabi C, Rao VA, Chambers JE, Ju T. Model acetylcholinesterase-Fc fusion glycoprotein biotechnology system for the manufacture of an organophosphorus toxicant bioscavenging countermeasure. Bioeng Transl Med 2024; 9:e10666. [PMID: 39553427 PMCID: PMC11561780 DOI: 10.1002/btm2.10666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 11/19/2024] Open
Abstract
Organophosphate (OP) toxicants remain an active threat to public health and to warfighters in the military. Current countermeasures require near immediate administration following OP exposure and are reported to have controversial efficacies. Acetylcholinesterase (AChE) fused to the human immunoglobulin 1 (IgG1) Fc domain (AChE-Fc) is a potential bioscavenger for OP toxicants, but a reproducible AChE-Fc biomanufacturing strategy remains elusive. This report is the first to establish a comprehensive laboratory-scale bioprocessing strategy that can reproducibly produce AChE-Fc and AChE(W86A)-Fc which is a mutated AChE protein with reduced enzymatic activity. Characterization studies revealed that AChE-Fc and AChE(W86A)-Fc are N-glycosylated dimeric fusion glycoproteins but only AChE-Fc had the capability to bind to paraoxon (a model OP). This AChE-Fc fusion glycoprotein bioprocessing strategy can be leveraged during industrial biomanufacturing development, while the research-grade AChE-Fc proteins can be used to determine the potential clinical relevance of the countermeasure against OP toxicants.
Collapse
Affiliation(s)
- Thomas G. Biel
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Talia Faison
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Alicia M. Matthews
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Uriel Ortega‐Rodriguez
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Vincent M. Falkowski
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Edward Meek
- Department of Comparative Biomedical Sciences, Center for Environmental Health SciencesCollege of Veterinary Medicine, Mississippi State UniversityMississippi StateMississippiUSA
| | - Xin Bush
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
- Department of Biomedical and Pharmaceutical SciencesCollege of Pharmacy, University of Rhode IslandKingstonRhode IslandUSA
| | - Matthew Flores
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Sarah Johnson
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Wells W. Wu
- Facility for Biotechnology ResourcesCenter for Biologics Evaluation and Research, United States Food and Drug AdministrationSilver SpringMarylandUSA
| | - Mari Lehtimaki
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Rong‐Fong Shen
- Facility for Biotechnology ResourcesCenter for Biologics Evaluation and Research, United States Food and Drug AdministrationSilver SpringMarylandUSA
| | - Cyrus Agarabi
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - V. Ashutosh Rao
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Janice E. Chambers
- Department of Comparative Biomedical Sciences, Center for Environmental Health SciencesCollege of Veterinary Medicine, Mississippi State UniversityMississippi StateMississippiUSA
| | - Tongzhong Ju
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Altangerel N, Neuman BW, Hemmer PR, Yakovlev VV, Sokolov AV, Scully MO. A Novel Non-Destructive Rapid Tool for Estimating Amino Acid Composition and Secondary Structures of Proteins in Solution. SMALL METHODS 2024; 8:e2301191. [PMID: 38485686 PMCID: PMC11260246 DOI: 10.1002/smtd.202301191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/14/2024] [Indexed: 05/04/2024]
Abstract
Amino-acid protein composition plays an important role in biology, medicine, and nutrition. Here, a groundbreaking protein analysis technique that quickly estimates amino acid composition and secondary structure across various protein sizes, while maintaining their natural states is introduced and validated. This method combines multivariate statistics and the thermostable Raman interaction profiling (TRIP) technique, eliminating the need for complex preparations. In order to validate the approach, the Raman spectra are constructed of seven proteins of varying sizes by utilizing their amino acid frequencies and the Raman spectra of individual amino acids. These constructed spectra exhibit a close resemblance to the actual measured Raman spectra. Specific vibrational modes tied to free amino and carboxyl termini of the amino acids disappear as signals linked to secondary structures emerged under TRIP conditions. Furthermore, the technique is used inversely to successfully estimate amino acid compositions and secondary structures of unknown proteins across a range of sizes, achieving impressive accuracy ranging between 1.47% and 5.77% of root mean square errors (RMSE). These results extend the uses for TRIP beyond interaction profiling, to probe amino acid composition and structure.
Collapse
Affiliation(s)
| | | | | | | | | | - Marlan O Scully
- Texas A&M University, College Station, TX, 77843, USA
- Baylor University, Waco, TX, 76798, USA
- Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
4
|
Ndochinwa GO, Wang QY, Okoro NO, Amadi OC, Nwagu TN, Nnamchi CI, Moneke AN, Odiba AS. New advances in protein engineering for industrial applications: Key takeaways. Open Life Sci 2024; 19:20220856. [PMID: 38911927 PMCID: PMC11193397 DOI: 10.1515/biol-2022-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 06/25/2024] Open
Abstract
Recent advancements in protein/enzyme engineering have enabled the production of a diverse array of high-value compounds in microbial systems with the potential for industrial applications. The goal of this review is to articulate some of the most recent protein engineering advances in bacteria, yeast, and other microbial systems to produce valuable substances. These high-value substances include α-farnesene, vitamin B12, fumaric acid, linalool, glucaric acid, carminic acid, mycosporine-like amino acids, patchoulol, orcinol glucoside, d-lactic acid, keratinase, α-glucanotransferases, β-glucosidase, seleno-methylselenocysteine, fatty acids, high-efficiency β-glucosidase enzymes, cellulase, β-carotene, physcion, and glucoamylase. Additionally, recent advances in enzyme engineering for enhancing thermostability will be discussed. These findings have the potential to revolutionize various industries, including biotechnology, food, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Giles Obinna Ndochinwa
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
- State Key Laboratory of Biomass Enzyme Technology, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
| | - Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
| | - Nkwachukwu Oziamara Okoro
- Department of Pharmaceutical and medicinal chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Oyetugo Chioma Amadi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chukwudi Innocent Nnamchi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Anene Nwabu Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Arome Solomon Odiba
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| |
Collapse
|
5
|
Oliva B, Zervas A, Stougaard P, Westh P, Thøgersen MS. Metagenomic exploration of cold-active enzymes for detergent applications: Characterization of a novel, cold-active and alkali-stable GH8 endoglucanase from ikaite columns in SW Greenland. Microb Biotechnol 2024; 17:e14466. [PMID: 38829370 PMCID: PMC11146146 DOI: 10.1111/1751-7915.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 06/05/2024] Open
Abstract
Microbial communities from extreme environments are largely understudied, but are essential as producers of metabolites, including enzymes, for industrial processes. As cultivation of most microorganisms remains a challenge, culture-independent approaches for enzyme discovery in the form of metagenomics to analyse the genetic potential of a community are rapidly becoming the way forward. This study focused on analysing a metagenome from the cold and alkaline ikaite columns in Greenland, identifying 282 open reading frames (ORFs) that encoded putative carbohydrate-modifying enzymes with potential applications in, for example detergents and other processes where activity at low temperature and high pH is desired. Seventeen selected ORFs, representing eight enzyme families were synthesized and expressed in two host organisms, Escherichia coli and Aliivibrio wodanis. Aliivibrio wodanis demonstrated expression of a more diverse range of enzyme classes compared to E. coli, emphasizing the importance of alternative expression systems for enzymes from extremophilic microorganisms. To demonstrate the validity of the screening strategy, we chose a recombinantly expressed cellulolytic enzyme from the metagenome for further characterization. The enzyme, Cel240, exhibited close to 40% of its relative activity at low temperatures (4°C) and demonstrated endoglucanase characteristics, with a preference for cellulose substrates. Despite low sequence similarity with known enzymes, computational analysis and structural modelling confirmed its cellulase-family affiliation. Cel240 displayed activity at low temperatures and good stability at 25°C, activity at alkaline pH and increased activity in the presence of CaCl2, making it a promising candidate for detergent and washing industry applications.
Collapse
Affiliation(s)
- Bianca Oliva
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
- Present address:
Synthetic and Molecular Biology Laboratory, Department of Biotechnology, Lorena School of EngineeringUniversity of São PauloLorenaSPBrazil
| | - Athanasios Zervas
- Section for Environmental Microbiology, Department of Environmental ScienceAarhus UniversityRoskildeDenmark
| | - Peter Stougaard
- Section for Environmental Microbiology, Department of Environmental ScienceAarhus UniversityRoskildeDenmark
| | - Peter Westh
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Mariane Schmidt Thøgersen
- Section for Environmental Microbiology, Department of Environmental ScienceAarhus UniversityRoskildeDenmark
| |
Collapse
|
6
|
Wu KE, Yang KK, van den Berg R, Alamdari S, Zou JY, Lu AX, Amini AP. Protein structure generation via folding diffusion. Nat Commun 2024; 15:1059. [PMID: 38316764 PMCID: PMC10844308 DOI: 10.1038/s41467-024-45051-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The ability to computationally generate novel yet physically foldable protein structures could lead to new biological discoveries and new treatments targeting yet incurable diseases. Despite recent advances in protein structure prediction, directly generating diverse, novel protein structures from neural networks remains difficult. In this work, we present a diffusion-based generative model that generates protein backbone structures via a procedure inspired by the natural folding process. We describe a protein backbone structure as a sequence of angles capturing the relative orientation of the constituent backbone atoms, and generate structures by denoising from a random, unfolded state towards a stable folded structure. Not only does this mirror how proteins natively twist into energetically favorable conformations, the inherent shift and rotational invariance of this representation crucially alleviates the need for more complex equivariant networks. We train a denoising diffusion probabilistic model with a simple transformer backbone and demonstrate that our resulting model unconditionally generates highly realistic protein structures with complexity and structural patterns akin to those of naturally-occurring proteins. As a useful resource, we release an open-source codebase and trained models for protein structure diffusion.
Collapse
Affiliation(s)
- Kevin E Wu
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - James Y Zou
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex X Lu
- Microsoft Research, Cambridge, MA, USA
| | | |
Collapse
|
7
|
Rahban M, Ahmad F, Piatyszek MA, Haertlé T, Saso L, Saboury AA. Stabilization challenges and aggregation in protein-based therapeutics in the pharmaceutical industry. RSC Adv 2023; 13:35947-35963. [PMID: 38090079 PMCID: PMC10711991 DOI: 10.1039/d3ra06476j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 04/26/2024] Open
Abstract
Protein-based therapeutics have revolutionized the pharmaceutical industry and become vital components in the development of future therapeutics. They offer several advantages over traditional small molecule drugs, including high affinity, potency and specificity, while demonstrating low toxicity and minimal adverse effects. However, the development and manufacturing processes of protein-based therapeutics presents challenges related to protein folding, purification, stability and immunogenicity that should be addressed. These proteins, like other biological molecules, are prone to chemical and physical instabilities. The stability of protein-based drugs throughout the entire manufacturing, storage and delivery process is essential. The occurrence of structural instability resulting from misfolding, unfolding, and modifications, as well as aggregation, poses a significant risk to the efficacy of these drugs, overshadowing their promising attributes. Gaining insight into structural alterations caused by aggregation and their impact on immunogenicity is vital for the advancement and refinement of protein therapeutics. Hence, in this review, we have discussed some features of protein aggregation during production, formulation and storage as well as stabilization strategies in protein engineering and computational methods to prevent aggregation.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Faizan Ahmad
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard New Delhi-110062 India
| | | | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University Rome Italy
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran Tehran 1417614335 Iran +9821 66404680 +9821 66956984
| |
Collapse
|
8
|
Quaye J, Ouedraogo D, Gadda G. Targeted Mutation of a Non-catalytic Gating Residue Increases the Rate of Pseudomonas aeruginosa d-Arginine Dehydrogenase Catalytic Turnover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71. [PMID: 37933126 PMCID: PMC10655190 DOI: 10.1021/acs.jafc.3c05328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Commercial food and l-amino acid industries rely on bioengineered d-amino acid oxidizing enzymes to detect and remove d-amino acid contaminants. However, the bioengineering of enzymes to generate faster biological catalysts has proven difficult as a result of the failure to target specific kinetic steps that limit enzyme turnover, kcat, and the poor understanding of loop dynamics critical for catalysis. Pseudomonas aeruginosa d-arginine dehydrogenase (PaDADH) oxidizes most d-amino acids and is a good candidate for application in the l-amino acid and food industries. The side chain of the loop L2 E246 residue located at the entrance of the PaDADH active site pocket potentially favors the closed active site conformation and secures the substrate upon binding. This study used site-directed mutagenesis, steady-state, and rapid reaction kinetics to generate the glutamine, glycine, and leucine variants and investigate whether increasing the rate of product release could translate to an increased enzyme turnover rate. Upon E246 mutation to glycine, there was an increased rate of d-arginine turnover kcat from 122 to 500 s-1. Likewise, the kcat values increased 2-fold for the glutamine or leucine variants. Thus, we have engineered a faster biocatalyst for industrial applications by selectively increasing the rate of the PaDADH product release.
Collapse
Affiliation(s)
- Joanna
Afokai Quaye
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Daniel Ouedraogo
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Giovanni Gadda
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Department
of Biology, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Center
for Diagnostics and Therapeutics, Georgia
State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
9
|
Teruel N, Borges VM, Najmanovich R. Surfaces: a software to quantify and visualize interactions within and between proteins and ligands. Bioinformatics 2023; 39:btad608. [PMID: 37788107 PMCID: PMC10568369 DOI: 10.1093/bioinformatics/btad608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
SUMMARY Computational methods for the quantification and visualization of the relative contribution of molecular interactions to the stability of biomolecular structures and complexes are fundamental to understand, modulate and engineer biological processes. Here, we present Surfaces, an easy to use, fast and customizable software for quantification and visualization of molecular interactions based on the calculation of surface areas in contact. Surfaces calculations shows equivalent or better correlations with experimental data as computationally expensive methods based on molecular dynamics. AVAILABILITY AND IMPLEMENTATION All scripts are available at https://github.com/NRGLab/Surfaces. Surface's documentation is available at https://surfaces-tutorial.readthedocs.io/en/latest/index.html.
Collapse
Affiliation(s)
- Natália Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
| | - Vinicius Magalhães Borges
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rafael Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
| |
Collapse
|
10
|
Nyholm N, Danø A, Schnack H, Colombo GL. The Cost-Effectiveness of Anti-IL17 Biologic Therapies for Moderate-to-Severe Plaque Psoriasis Treatment in Italy and Germany: A Sequential Treatment Analysis. CLINICOECONOMICS AND OUTCOMES RESEARCH 2023; 15:607-619. [PMID: 37533798 PMCID: PMC10392902 DOI: 10.2147/ceor.s417922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023] Open
Abstract
Objective The objective of this study was to optimise the cost-effectiveness of different anti-IL17 treatment sequences used in the treatment of moderate-to-severe plaque psoriasis in Italy and Germany over a five-year time horizon. Methods We adjusted a previously published treatment sequence model for biologic drugs used in psoriasis treatment to an Italian and German setting, respectively. The model included all anti-IL17 biologics currently available in the treatment of moderate-to-severe plaque psoriasis in the markets of scope (secukinumab, ixekizumab, brodalumab and bimekizumab). Real-world discontinuation rates were used to model switches between the four anti-IL17 biologics included in the study. The treatment costs were based on label dosing recommendations for each drug, including induction and maintenance therapy, and the manufacturer prices of each drug in Italy and Germany, respectively. We used long-term Psoriasis Area and Severity Index 100 (PASI100) measures to inform the model on the efficacy for each treatment. The cost-effectiveness in the analysis was evaluated based on the cost per PASI100-responder. Results We found that the most cost-effective treatment sequence was achieved by using brodalumab as first-line treatment, bimekizumab as second-line treatment, ixekizumab as third-line treatment and secukinumab as fourth-line treatment in both Italy and Germany, which resulted in a total cost per responder of €128,200 and €138,212, respectively, over a five-year period. Several scenario analyses were also conducted and ensured that the results were robust to changes in key input parameters. Conclusion Our study showed that using brodalumab as a first-line therapy to treat moderate-to-severe psoriasis in both Italy and Germany leads to the most cost-effective treatment sequence, when compared to all possible combinations of anti-IL17s over a five-year time horizon. In addition, we found that treatment discontinuation and switching are important factors when assessing the cost-effectiveness of biologic therapies.
Collapse
Affiliation(s)
| | | | | | - Giorgio Lorenzo Colombo
- CEFAT Center of Pharmaceuticals Economics and Medical Technologies Evaluation, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Farasati Far B, Safaei M, Mokhtari F, Fallahi MS, Naimi-Jamal MR. Fundamental concepts of protein therapeutics and spacing in oncology: an updated comprehensive review. Med Oncol 2023; 40:166. [PMID: 37147486 DOI: 10.1007/s12032-023-02026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Current treatment regimens in cancer cases cause significant side effects and cannot effectively eradicate the advanced disease. Hence, much effort has been expended over the past years to understand how cancer grows and responds to therapies. Meanwhile, proteins as a type of biopolymers have been under commercial development for over three decades and have been proven to improve the healthcare system as effective medicines for treating many types of progressive disease, such as cancer. Following approving the first recombinant protein therapeutics by FDA (Humulin), there have been a revolution for drawing attention toward protein-based therapeutics (PTs). Since then, the ability to tailor proteins with ideal pharmacokinetics has provided the pharmaceutical industry with an important noble path to discuss the clinical potential of proteins in oncology research. Unlike traditional chemotherapy molecules, PTs actively target cancerous cells by binding to their surface receptors and the other biomarkers particularly associated with tumorous or healthy tissue. This review analyzes the potential and limitations of protein therapeutics (PTs) in the treatment of cancer as well as highlighting the evolving strategies by addressing all possible factors, including pharmacology profile and targeted therapy approaches. This review provides a comprehensive overview of the current state of PTs in oncology, including their pharmacology profile, targeted therapy approaches, and prospects. The reviewed data show that several current and future challenges remain to make PTs a promising and effective anticancer drug, such as safety, immunogenicity, protein stability/degradation, and protein-adjuvant interactions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Via Mersin 10, TR. North Cyprus, Famagusta, Turkey
| | - Fatemeh Mokhtari
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani (ASMU), Tabriz, 53751-71379, Iran
| | | | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran.
| |
Collapse
|
12
|
Wegner CH, Hubbuch J. Calibration-free PAT: Locating selective crystallization or precipitation sweet spot in screenings with multi-way PARAFAC models. Front Bioeng Biotechnol 2022; 10:1051129. [PMID: 36588941 PMCID: PMC9797130 DOI: 10.3389/fbioe.2022.1051129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
When developping selective crystallization or precipitation processes, biopharmaceutical modalities require empirical screenings and analytics tailored to the specific needs of the target molecule. The multi-way chemometric approach called parallel factor analysis (PARAFAC) coupled with ultraviolet visible light (UV/Vis) spectroscopy is able to predict specific concentrations and spectra from highly structured data sets without the need for calibration samples and reference analytics. These calculated models can provide exploratory information on pure species spectra and concentrations in all analyzed samples by representing one model component with one species. In this work, protein mixtures, monoclonal antibodies, and virus-like particles in chemically defined and complex solutions were investigated in three high-throughput crystallization or precipitation screenings with the aim to construct one PARAFAC model per case. Spectroscopic data sets of samples after the selective crystallization or precipitation, washing, and redissolution were recorded and arranged into a four-dimensional data set per case study. Different reference analytics and pure species spectra served as validation. Appropriate spectral preprocessing parameters were found for all case studies allowing even the application of this approach to the third case study in which quantitative concentration analytics are missing. Regardless of the modality or the number of species present in complex solutions, all models were able to estimate the specific concentration and find the optimal process condition regarding yield and product purity. It was shown that in complex solutions, species demonstrating similar phase behavior can be clustered as one component and described in the model. PARAFAC as a calibration-free approach coupled with UV/Vis spectroscopy provides a fast overview of species present in complex solution and of their concentration during selective crystallization or precipitation, washing, and redissolution.
Collapse
|
13
|
Kloczewiak M, Banks JM, Jin L, Brader ML. A Biopharmaceutical Perspective on Higher-Order Structure and Thermal Stability of mRNA Vaccines. Mol Pharm 2022; 19:2022-2031. [PMID: 35715255 PMCID: PMC9257798 DOI: 10.1021/acs.molpharmaceut.2c00092] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/27/2022]
Abstract
Preservation of the integrity of macromolecular higher-order structure is a tenet central to achieving biologic drug and vaccine product stability toward manufacturing, distribution, storage, handling, and administration. Given that mRNA lipid nanoparticles (mRNA-LNPs) are held together by an intricate ensemble of weak forces, there are some intriguing parallels to biologic drugs, at least at first glance. However, mRNA vaccines are not without unique formulation and stabilization challenges derived from the instability of unmodified mRNA and its limited history as a drug or vaccine. Since certain learning gained from biologic drug development may be applicable for the improvement of mRNA vaccines, we present a perspective on parallels and contrasts between the emerging role of higher-order structure pertaining to mRNA-LNPs compared to pharmaceutical proteins. In a recent publication, the location of mRNA encapsulated within lipid nanoparticles was identified, revealing new insights into the LNP structure, nanoheterogeneity, and microenvironment of the encapsulated mRNA molecules [Brader et al. Biophys. J. 2021, 120, 2766]. We extend those findings by considering the effect of encapsulation on mRNA thermal unfolding with the observation that encapsulation in LNPs increases mRNA unfolding temperatures.
Collapse
Affiliation(s)
- Marek Kloczewiak
- Moderna, Inc., 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Jessica M. Banks
- Moderna, Inc., 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Lin Jin
- Moderna, Inc., 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Mark L. Brader
- Moderna, Inc., 200 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Kyu Ko S, Berner C, Kulakova A, Schneider M, Antes I, Winter G, Harris P, Peters GH. Investigation of the pH-dependent aggregation mechanisms of GCSF using low resolution protein characterization techniques and advanced molecular dynamics simulations. Comput Struct Biotechnol J 2022; 20:1439-1455. [PMID: 35386098 PMCID: PMC8956964 DOI: 10.1016/j.csbj.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Granulocyte-colony stimulating factor (GCSF) is a widely used therapeutic protein to treat neutropenia. GCSF has an increased propensity to aggregate if the pH is increased above 5.0. Although GCSF is very well experimentally characterized, the exact pH-dependent aggregation mechanism of GCSF is still under debate. This study aimed to model the complex pH-dependent aggregation behavior of GCSF using state-of-the-art simulation techniques. The conformational stability of GCSF was investigated by performing metadynamics simulations, while the protein-protein interactions were investigated using coarse-grained (CG) simulations of multiple GCSF monomers. The CG simulations were directly compared with small-angle X-ray (SAXS) data. The metadynamics simulations demonstrated that the orientations of Trp residues in GCSF are dependent on pH. The conformational change of Trp residues is due to the loss of Trp-His interactions at the physiological pH, which in turn may increase protein flexibility. The helical structure of GCSF was not affected by the pH conditions of the simulations. Our CG simulations indicate that at pH 4.0, the colloidal stability may be more important than the conformational stability of GCSF. The electrostatic potential surface and CG simulations suggested that the basic residues are mainly responsible for colloidal stability as deprotonation of these residues causes a reduction of the highly positively charged electrostatic barrier close to the aggregation-prone long loop regions.
Collapse
|
15
|
Giessel A, Dousis A, Ravichandran K, Smith K, Sur S, McFadyen I, Zheng W, Licht S. Therapeutic enzyme engineering using a generative neural network. Sci Rep 2022; 12:1536. [PMID: 35087131 PMCID: PMC8795449 DOI: 10.1038/s41598-022-05195-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Enhancing the potency of mRNA therapeutics is an important objective for treating rare diseases, since it may enable lower and less-frequent dosing. Enzyme engineering can increase potency of mRNA therapeutics by improving the expression, half-life, and catalytic efficiency of the mRNA-encoded enzymes. However, sequence space is incomprehensibly vast, and methods to map sequence to function (computationally or experimentally) are inaccurate or time-/labor-intensive. Here, we present a novel, broadly applicable engineering method that combines deep latent variable modelling of sequence co-evolution with automated protein library design and construction to rapidly identify metabolic enzyme variants that are both more thermally stable and more catalytically active. We apply this approach to improve the potency of ornithine transcarbamylase (OTC), a urea cycle enzyme for which loss of catalytic activity causes a rare but serious metabolic disease.
Collapse
Affiliation(s)
- Andrew Giessel
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA.
| | - Athanasios Dousis
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Kevin Smith
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Sreyoshi Sur
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Iain McFadyen
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Wei Zheng
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Stuart Licht
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Shibuya R, Miyafusa T, Imamura H, Ooishi A, Honda S. Effect of backbone circularization on colloidal stability: Compaction of unfolded structures improves aggregation resistance of granulocyte colony-stimulating factor. Int J Pharm 2021; 605:120774. [PMID: 34116181 DOI: 10.1016/j.ijpharm.2021.120774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Aggregation of protein therapeutics can lead to immunogenicity and loss of function in vivo. Its effective prevention requires an understanding of the conformational and colloidal stability of protein and the improvement of both. Granulocyte colony-stimulating factor (G-CSF), which is one of the most widely used protein therapeutics, was previously shown to be conformationally stabilized by connecting its N- and C-termini with amide bonds (backbone circularization). In this study, we investigated whether circularization affects the colloidal stability of proteins. Colloidal stability was indirectly assessed by analyzing the aggregation behavior of G-CSF variants using analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS). Consequently, we found that the unfolded structure of circularized G-CSF was more compact than non-circularized G-CSF, and that backbone circularization improved its aggregation resistance against chemical denaturation by guanidine hydrochloride (GdnHCl). The improved aggregation resistance suggests that the expansion tolerance of circularized G-CSF in the unfolded state increased its colloidal stability. Thus, backbone circularization is an excellent method for enhancing the colloidal and the conformational stability of protein with minimal sequence changes. It is therefore expected to be effective in extending the storage stability of protein therapeutics, enhancing their biological stability.
Collapse
Affiliation(s)
- Risa Shibuya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takamitsu Miyafusa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroshi Imamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Ayako Ooishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
17
|
Sequeiros-Borja CE, Surpeta B, Brezovsky J. Recent advances in user-friendly computational tools to engineer protein function. Brief Bioinform 2021; 22:bbaa150. [PMID: 32743637 PMCID: PMC8138880 DOI: 10.1093/bib/bbaa150] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Progress in technology and algorithms throughout the past decade has transformed the field of protein design and engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze the effects of mutations for a variety of properties, comprising ligand binding, protein-protein and protein-nucleic acid interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools face and provide our perspectives on the further development of readily applicable methods to guide protein engineering efforts.
Collapse
Affiliation(s)
- Carlos Eduardo Sequeiros-Borja
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Bartłomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw
| |
Collapse
|
18
|
Groseclose TM, Rondon RE, Hersey AN, Milner PT, Kim D, Zhang F, Realff MJ, Wilson CJ. Biomolecular Systems Engineering: Unlocking the Potential of Engineered Allostery via the Lactose Repressor Topology. Annu Rev Biophys 2021; 50:303-321. [PMID: 33606944 DOI: 10.1146/annurev-biophys-090820-101708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allosteric function is a critical component of many of the parts used to construct gene networks throughout synthetic biology. In this review, we discuss an emerging field of research and education, biomolecular systems engineering, that expands on the synthetic biology edifice-integrating workflows and strategies from protein engineering, chemical engineering, electrical engineering, and computer science principles. We focus on the role of engineered allosteric communication as it relates to transcriptional gene regulators-i.e., transcription factors and corresponding unit operations. In this review, we (a) explore allosteric communication in the lactose repressor LacI topology, (b) demonstrate how to leverage this understanding of allostery in the LacI system to engineer non-natural BUFFER and NOT logical operations, (c) illustrate how engineering workflows can be used to confer alternate allosteric functions in disparate systems that share the LacI topology, and (d) demonstrate how fundamental unit operations can be directed to form combinational logical operations.
Collapse
Affiliation(s)
- Thomas M Groseclose
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Ronald E Rondon
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Ashley N Hersey
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Prasaad T Milner
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Dowan Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Fumin Zhang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Matthew J Realff
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Corey J Wilson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
19
|
Kim K, Araujo P, Hebbar N, Zhou Z, Zheng X, Zheng F, Rangnekar VM, Zhan CG. Development of a novel prostate apoptosis response-4 (Par-4) protein entity with an extended duration of action for therapeutic treatment of cancer. Protein Eng Des Sel 2019; 32:159-166. [PMID: 31711233 DOI: 10.1093/protein/gzz034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 01/20/2023] Open
Abstract
Prostate apoptosis response-4 (Par-4) is a tumor suppressor which protects against neoplastic transformation. Remarkably, Par-4 is capable of inducing apoptosis selectively in cancer cells without affecting the normal cells. In this study, we found that recombinant Par-4 protein had limited serum persistence in mice that may diminish its anti-tumor activity in vivo. To improve the in vivo performance of the short-lived Par-4 protein, we aimed to develop a novel, long-lasting form of Par-4 with extended sequence, denoted as Par-4Ex, without affecting the desirable molecular function of the natural Par-4. We demonstrate that the Par-4Ex protein entity, produced by using the Escherichia coli expression system suitable for large-scale production, fully retains the desirable pro-apoptotic activity of Par-4 protein, but with ~7-fold improved biological half-life. Further in vivo tests confirmed that, due to the prolonged biological half-life, the Par-4Ex protein is indeed more potent in suppressing metastatic tumor growth in mice.
Collapse
Affiliation(s)
- Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Pereira Araujo
- Graduate Center for Toxicology and Cancer Biology, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA
| | - Nikhil Hebbar
- Graduate Center for Toxicology and Cancer Biology, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA
| | - Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Vivek M Rangnekar
- Graduate Center for Toxicology and Cancer Biology, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA.,Department of Radiation Medicine, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA.,Lucille Parker Markey Cancer Center, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY 40356, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Rosini E, Pollegioni L. A comprehensive practical laboratory course on protein engineering: Evolution of a glycine oxidase variant active on the herbicide glyphosate. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:689-699. [PMID: 31444933 DOI: 10.1002/bmb.21291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/01/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Protein engineering represents a modern approach to generate novel proteins for the different fields of biotechnology. Here, we report about an 8-day laboratory activity in which students generate enzyme variants to degrade the herbicide glyphosate. The students conduct a true research experiment in an important field (bioremediation by novel, engineered enzymes) and are introduced to widely used techniques in molecular biology and protein biochemistry laboratories. Based on a docking analysis of glycine (the original substrate) and of glyphosate into the active site of glycine oxidase, residues putatively involved in substrate selectivity are identified that will become the target of site-saturation mutagenesis. Each group of students focuses on the library generated at one position and selects the most active variant based on colorimetric screening. Following protein overexpression in Escherichia coli, the selected glycine oxidase variants are purified and their kinetic properties on glycine and glyphosate assessed. The best variant identified by the whole class is then used for detecting the herbicide in water. With the help of the professor, students can improve technical skills, ability to evaluate results, team work activity, and critical thinking. © 2019 International Union of Biochemistry and Molecular Biology, 47(6):689-699, 2019.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
21
|
Shibuya R, Miyafusa T, Honda S. Stabilization of backbone-circularized protein is attained by synergistic gains in enthalpy of folded structure and entropy of unfolded structure. FEBS J 2019; 287:1554-1575. [PMID: 31605655 DOI: 10.1111/febs.15092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022]
Abstract
Backbone circularization is an effective technique for protein stabilization. Here, we investigated the effect of a connector, an engineered segment that connects two protein termini, on the conformational stability of previously designed circularized variants of granulocyte colony-stimulating factor (G-CSF). Heat tolerance and chemical denaturation analyses revealed that aggregation resistance and thermodynamic stability of the circularized variants were superior to those of linear G-CSF. Crystal structure and molecular dynamics (MD) simulation of the most thermodynamically stable variant (C166) revealed a high number of intramolecular hydrogen bonds in both the connector region and Helix D adjacent to the connector region in the folded structure. MD simulations and theoretical calculations involving different force fields indicated a reduction in the main chain entropy of C166 in the unfolded state and increase in the intramolecular hydrogen bond energy of C166 in the folded structure. Although backbone circularization is usually considered to alter chain entropy of the unfolded state, the data indicated that it could also improve the conformational enthalpy of the folded state. Further structural examination of the connector region confirmed that protein design based on a statistical analysis of local structures is an effective approach for predicting an optimum connector length to improve the conformational stability of backbone-circularized proteins. Protein design using backbone circularization with an optimum connector length will be useful for the development of effective and safe protein therapeutics. DATABASE: Structural data are available in Protein Data Bank under the accession number 5ZO6.
Collapse
Affiliation(s)
- Risa Shibuya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takamitsu Miyafusa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shinya Honda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Navarro S, Ventura S. Computational re-design of protein structures to improve solubility. Expert Opin Drug Discov 2019; 14:1077-1088. [DOI: 10.1080/17460441.2019.1637413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Peng F, Cheng X, Wang H, Song S, Chen T, Li X, He Y, Huang Y, Liu S, Yang F, Su Z. Structure-based reconstruction of a Mycobacterium hypothetical protein into an active Δ 5-3-ketosteroid isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:821-830. [PMID: 31226491 DOI: 10.1016/j.bbapap.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Protein engineering based on structure homology holds the potential to engineer steroid-transforming enzymes on demand. Based on the genome sequencing analysis of industrial Mycobacterium strain HGMS2 to produce 4-androstene-3,17-dione (4-AD), three hypothetical proteins were predicted as putative Δ5-3-ketosteroid isomerases (KSIs) to catalyze an intramolecular proton transfer involving the transformation of 5-androstene-3,17-dione (5-AD) into 4-AD, which were defined as mKSI228, mKSI291 and mKSI753. Activity assays indicated that mKSI228 and mKSI291 exhibited weak activity, as low as 0.7% and 1.5%, respectively, of a well-studied and highly active KSI from Pseudomonas putida KSI (pKSI), while mKSI753 had no activity similar to Mycobacterium tuberculosis KSI (mtKSI). Although the 3D structures of the putative mKSIs were homologous to pKSI, their amino acid sequences were significantly different from those of pKSI and tKSI. Thus, by use of these two KSIs as homology models, we were able to convert the low-active mKSI291 into a high-active active KSI by site-directed mutagenesis. On the other hand, an X-ray crystallographic structure of mKSI291 identified a water molecule in its active site. This unique water molecule might function as a bridge to connect Ser-OH, Tyr57-OH and C3O of the intermediate form a hydrogen-bonding network that was responsible for its weak activity, compared with that of mtKSI. Our results not only demonstrated the use of a protein engineering approach to understanding KSI catalytic mechanism, but also provided an example for engineering the catalytic active sites and gaining a functional enzyme based on homologous structures.
Collapse
Affiliation(s)
- Fei Peng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiyao Cheng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Amersino Biodevelop Inc, B1-Building, Biolake Park, Wuhan 430075, China
| | - Hongwei Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shikui Song
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Tian Chen
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yijun He
- Hubei Goto Biotech Inc, No. 1 Baiguoshu Road, Shuidu Industrial Park, Danjiangkou, Hubei 442700, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Amersino Biodevelop Inc, B1-Building, Biolake Park, Wuhan 430075, China.
| |
Collapse
|
24
|
Production and Purification of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:1-24. [DOI: 10.1007/978-981-13-7709-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Fonfria E, Elliott M, Beard M, Chaddock JA, Krupp J. Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins (Basel) 2018; 10:toxins10070278. [PMID: 29973505 PMCID: PMC6071219 DOI: 10.3390/toxins10070278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - John A Chaddock
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
26
|
|
27
|
Transient AID expression for in situ mutagenesis with improved cellular fitness. Sci Rep 2018; 8:9413. [PMID: 29925928 PMCID: PMC6010430 DOI: 10.1038/s41598-018-27717-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Activation induced cytidine deaminase (AID) in germinal center B cells introduces somatic DNA mutations in transcribed immunoglobulin genes to increase antibody diversity. Ectopic expression of AID coupled with selection has been successfully employed to develop proteins with desirable properties. However, this process is laborious and time consuming because many rounds of selection are typically required to isolate the target proteins. AID expression can also adversely affect cell viability due to off target mutagenesis. Here we compared stable and transient expression of AID mutants with different catalytic activities to determine conditions for maximum accumulation of mutations with minimal toxicity. We find that transient (3–5 days) expression of an AID upmutant in the presence of selection pressure could induce a high rate of mutagenesis in reporter genes without affecting cells growth and expansion. Our findings may help improve protein evolution by ectopic expression of AID and other enzymes that can induce DNA mutations.
Collapse
|
28
|
Setiawan D, Brender J, Zhang Y. Recent advances in automated protein design and its future challenges. Expert Opin Drug Discov 2018; 13:587-604. [PMID: 29695210 DOI: 10.1080/17460441.2018.1465922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.
Collapse
Affiliation(s)
- Dani Setiawan
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA
| | - Jeffrey Brender
- b Radiation Biology Branch , Center for Cancer Research, National Cancer Institute - NIH , Bethesda , MD , USA
| | - Yang Zhang
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA.,c Department of Biological Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
29
|
Zarei M, Nezafat N, Rahbar MR, Negahdaripour M, Sabetian S, Morowvat MH, Ghasemi Y. Decreasing the immunogenicity of arginine deiminase enzyme via structure-based computational analysis. J Biomol Struct Dyn 2018; 37:523-536. [PMID: 29363409 DOI: 10.1080/07391102.2018.1431151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The clinical applications of therapeutic enzymes are often limited due to their immunogenicity. B-cell epitope removal is an effective approach to solve this obstacle. The identification of hot spot epitopic residues is a critical step in the removal of protein B-cell epitope. Hereof, computational approaches are a suitable alternative to costly and labor-intensive experimental approaches. Arginine deiminase, a Mycoplasma arginine-catabolizing enzyme, is in the clinical trial for treating arginine auxotrophic cancers, especially hepatocellular carcinomas and melanomas through depleting plasma arginine and causing cell starvation. In this study, arginine deiminase from Mycoplasma hominis (MhADI) was computationally analyzed for recognizing and locating its immune-reactive regions. The 3D structure of the bioactive form of MhADI was modeled. The B-cell epitope mapping of protein was performed using various servers with different algorithms. Six segments: 31-40, 48-55, 131-140, 196-206, 294-314, and 331-344 were predicted to be the consensus immunogenic regions. The modification of epitopic hot spot residue was performed to reduce immune-reactiveness. The hot spot residue was selected considering a high B-cell epitope score, convexity index, surface accessibility, flexibility, and hydrophilicity. The structure stability of native and mutant proteins was evaluated through molecular dynamics simulation. The E304L mutein was suggested as a lower antigenic and stable enzyme derivative.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Navid Nezafat
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammad Reza Rahbar
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Manica Negahdaripour
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Soudabeh Sabetian
- b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | | | - Younes Ghasemi
- a Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
30
|
Lagassé HAD, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, Kimchi-Sarfaty C. Recent advances in (therapeutic protein) drug development. F1000Res 2017; 6:113. [PMID: 28232867 PMCID: PMC5302153 DOI: 10.12688/f1000research.9970.1] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2017] [Indexed: 01/11/2023] Open
Abstract
Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing) product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016).
Collapse
Affiliation(s)
- H A Daniel Lagassé
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Aikaterini Alexaki
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya L Simhadri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Nobuko H Katagiri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Wojciech Jankowski
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|