1
|
Dave S, Patel BM. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting. Fundam Clin Pharmacol 2023; 37:1079-1091. [PMID: 37474262 DOI: 10.1111/fcp.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles. OBJECTIVES This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years. METHODS This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords. RESULTS Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done. CONCLUSION Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Srusti Dave
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Bhoomika M Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
2
|
Arumugam MK, Gopal T, Kalari Kandy RR, Boopathy LK, Perumal SK, Ganesan M, Rasineni K, Donohue TM, Osna NA, Kharbanda KK. Mitochondrial Dysfunction-Associated Mechanisms in the Development of Chronic Liver Diseases. BIOLOGY 2023; 12:1311. [PMID: 37887021 PMCID: PMC10604291 DOI: 10.3390/biology12101311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The liver is a major metabolic organ that performs many essential biological functions such as detoxification and the synthesis of proteins and biochemicals necessary for digestion and growth. Any disruption in normal liver function can lead to the development of more severe liver disorders. Overall, about 3 million Americans have some type of liver disease and 5.5 million people have progressive liver disease or cirrhosis, in which scar tissue replaces the healthy liver tissue. An estimated 20% to 30% of adults have excess fat in their livers, a condition called steatosis. The most common etiologies for steatosis development are (1) high caloric intake that causes non-alcoholic fatty liver disease (NAFLD) and (2) excessive alcohol consumption, which results in alcohol-associated liver disease (ALD). NAFLD is now termed "metabolic-dysfunction-associated steatotic liver disease" (MASLD), which reflects its association with the metabolic syndrome and conditions including diabetes, high blood pressure, high cholesterol and obesity. ALD represents a spectrum of liver injury that ranges from hepatic steatosis to more advanced liver pathologies, including alcoholic hepatitis (AH), alcohol-associated cirrhosis (AC) and acute AH, presenting as acute-on-chronic liver failure. The predominant liver cells, hepatocytes, comprise more than 70% of the total liver mass in human adults and are the basic metabolic cells. Mitochondria are intracellular organelles that are the principal sources of energy in hepatocytes and play a major role in oxidative metabolism and sustaining liver cell energy needs. In addition to regulating cellular energy homeostasis, mitochondria perform other key physiologic and metabolic activities, including ion homeostasis, reactive oxygen species (ROS) generation, redox signaling and participation in cell injury/death. Here, we discuss the main mechanism of mitochondrial dysfunction in chronic liver disease and some treatment strategies available for targeting mitochondria.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | | | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
3
|
Zhang S, Gong F, Liu J, Liu T, Yang J, Hu J. A novel PHD2 inhibitor acteoside from Cistanche tubulosa induces skeletal muscle mitophagy to improve cancer-related fatigue. Biomed Pharmacother 2022; 150:113004. [PMID: 35658245 DOI: 10.1016/j.biopha.2022.113004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE To study whether ACT exerts anti-fatigue activity against CRF by inducing skeletal muscle mitophagy via suppressing PHD2 to upregulate the HIF-1α/BNIP3 signaling pathway. METHODS In this study, the molecular docking virtual screening technique was used to screen active components in Cistanche tubulosa that act as potential PHD2 inhibitors; the preliminary verification was carried out by Surface plasmon resonance (SPR) technology. BALB/c mice were treated with Paclitaxel (PTX, 10 mg/kg) and ACT (50, 100 mg/kg) alone or in combination for 20 days. Fatigue-related behaviors, energy metabolism and skeletal muscle mitochondria were assessed. Murine C2C12 myoblast was cultured and differentiated; then, a C26 tumor cell-conditioned medium was added to induce cachexia. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential, mitochondrial microstructure and function, autophagy, PHD2/HIF-1 and PINK1/Parkin signal pathway proteins were analyzed. Then, interfering RNA technology was used to silence PHD2 and observe the efficacy of ACT. RESULTS We demonstrated that ACT exerted good binding activity with PHD2; ACT administration ameliorated PTX-induced muscle fatigue-like behavior via improving muscle quality and mitochondria function, increasing mitophagy, upregulating COXIV, CytoC, PINK1, Parkin, HIF-1α and BNIP3 expression and inhibiting p62, LC3B, PHD2 and Beclin-1 expression. The protective effect of ACT disappeared after transfection with the PHD2 gene knockdown plasmid Egln-1-RNAi. CONCLUSIONS These results suggest that ACT can improve CRF by promoting mitophagy via suppression of PHD2 to remove dysfunctional mitochondria, demonstrating that ACT has huge prospects for clinical application in CRF treatment.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Department of Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, China.
| | - Fukai Gong
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.
| | - Jiali Liu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| | - Tao Liu
- Department of Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, China.
| | - Jianhua Yang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Department of Pharmacy, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| | - Junping Hu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
4
|
Di Felice V, Barone R, Trovato E, D’Amico D, Macaluso F, Campanella C, Marino Gammazza A, Muccilli V, Cunsolo V, Cancemi P, Multhoff G, Coletti D, Adamo S, Farina F, Cappello F. Physiactisome: A New Nanovesicle Drug Containing Heat Shock Protein 60 for Treating Muscle Wasting and Cachexia. Cells 2022; 11:cells11091406. [PMID: 35563712 PMCID: PMC9100106 DOI: 10.3390/cells11091406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome—a conditioned medium released by heat shock protein 60 (Hsp60)—overexpressing C2C12 cell lines enriched with small and large extracellular vesicles. We also present evidence supporting its use in the treatment of cachexia. Briefly, we obtain a nanovesicle-based secretion by genetically modifying C2C12 cell lines with an Hsp60-overexpressing plasmid. The secretion is used to treat naïve C2C12 cell lines. Physiactisome activates the expression of PGC-1α isoform 1, which is directly involved in mitochondrial biogenesis and muscle atrophy suppression, in naïve C2C12 cell lines. Proteomic analyses show Hsp60 localisation inside isolated nanovesicles and the localisation of several apocrine and merocrine molecules, with potential benefits for severe forms of muscle atrophy. Considering that Physiactisome can be easily obtained following tissue biopsy and can be applied to autologous muscle stem cells, we propose a potential nanovesicle-based anti-cachexia drug that could mimic the beneficial effects of exercise. Thus, Physiactisome may improve patient survival and quality of life. Furthermore, the method used to add Hsp60 into nanovesicles can be used to deliver other drugs or active proteins to vesicles.
Collapse
Affiliation(s)
- Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
- Correspondence:
| | - Rosario Barone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Eleonora Trovato
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Daniela D’Amico
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77573, USA
| | - Filippo Macaluso
- SMART Engineering Solutions & Technologies Research Center, eCampus University, 22160 Novedrate, Italy;
- Euro-Mediterranean Institutes of Science and Technology, 90139 Palermo, Italy
| | - Claudia Campanella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, 95129 Catania, Italy; (V.M.); (V.C.)
| | - Vincenzo Cunsolo
- Department of Chemical Sciences, University of Catania, 95129 Catania, Italy; (V.M.); (V.C.)
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90127 Palermo, Italy;
| | - Gabriele Multhoff
- Department of Radiation Oncology, School of Medicine, Central Institute for Translational Cancer Research, Technical University of Munich, TranslaTUM, 80333 Munich, Germany;
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00185 Rome, Italy; (D.C.); (S.A.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm ERL U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00185 Rome, Italy; (D.C.); (S.A.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm ERL U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Felicia Farina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
- Euro-Mediterranean Institutes of Science and Technology, 90139 Palermo, Italy
| |
Collapse
|
5
|
Bora V, Patel D, Johar K, Goyal RK, Patel BM. Systemic study of selected histone deacetylase inhibitors in cardiac complications associated with cancer cachexia. Can J Physiol Pharmacol 2022; 100:240-251. [PMID: 34614370 DOI: 10.1139/cjpp-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer cachexia is mainly characterized by wasting of skeletal muscles and fat and body weight loss, along with severe complications of major organs like liver, heart, brain and bone. There can be diminishing performance of these major organs as cancer cachexia progresses, one such drastic effect on the cardiac system. In the present study, differential effect of histone deacetylase inhibitors (HDACi) on cardiac complications associated with cancer cachexia is studied. Two models were used to induce cancer cachexia: B16F1 induced metastatic cancer cachexia and Lewis lung carcinoma cell - induced cancer cachexia. Potential of Class I HDACi entinostat, Class II HDACi MC1568, and nonspecific HDACi sodium butyrate on cardiac complications were evaluated using the cardiac hypertrophy markers, hemodynamic markers, and cardiac markers along with histopathological evaluation of heart sections by Periodic acid-Schiff staining, Masson's trichrome staining, Picro-sirius red staining, and haematoxylin and eosin staining. Immunohistochemistry evaluation by vimentin and caspase 3 protein expression was evaluated. Entinostat showed promising results by attenuating the cardiac complications, and MC1568 treatment further exacerbated the cardiac complications, while non-conclusive effect were recorded after treatment with sodium butyrate. This study will be helpful in evaluating other HDACi for potential in cardiac complications associated with cancer cachexia.
Collapse
Affiliation(s)
- Vivek Bora
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Dhwani Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences Research University, Delhi, 110017, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| |
Collapse
|
6
|
Cardiac Complications: The Understudied Aspect of Cancer Cachexia. Cardiovasc Toxicol 2022; 22:254-267. [PMID: 35171467 DOI: 10.1007/s12012-022-09727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
The global burden of cancer cachexia is increasing along with drastic increase in cancer patients. Cancer itself leads to cachexia, and cachexia development is associated with events like altered hemodynamics, and reduced functional capacity of the heart among others which lead to failure of the heart and are called cardiovascular complications associated with cancer cachexia. In some patients, the anti-cancer therapy also leads to this cardiovascular complications. So, in this review, an attempt is made to understand the mechanisms, pathophysiology of cardiovascular events in cachectic patients. Important processes which cause cardiovascular complications include alterations in the structure of the heart, loss of cardiac mass and functioning, cardiac fibrosis and cardiac remodeling, apoptosis, cardiac muscle atrophy, and mitochondrial alterations. Previously, the available treatment options were limited to nutraceuticals and physical exercise. Recently, studies with some prospective agents that can improve cardiac health have been reported, but whether their action is effective in cardiovascular complications associated with cancer cachexia is not known or are under trial.
Collapse
|
7
|
Masi T, Patel BM. Altered glucose metabolism and insulin resistance in cancer-induced cachexia: a sweet poison. Pharmacol Rep 2020; 73:17-30. [PMID: 33141425 DOI: 10.1007/s43440-020-00179-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a wasting disorder characterised by specific skeletal muscle and adipose tissue loss. Cancer cachexia is also driven by inflammation, altered metabolic changes such as increased energy expenditure, elevated plasma glucose, insulin resistance and excess catabolism. In cachexia, host-tumor interaction causes release of the lactate and inflammatory cytokines. Lactate released by tumor cells takes part in hepatic glucose production with the help of gluconeogenic enzymes. Thus, Cori cycle between organs and cancerous cells contributes to increased glucose production and energy expenditure. A high amount of blood glucose leads to increased production of insulin. Overproduction of insulin causes inactivation of PI3K/Akt/m-TOR pathway and finally results in insulin resistance. Insulin is involved in maintaining the vitality of organs and regulate the metabolism of glucose, protein and lipids. Insulin insensitivity decreases the uptake of glucose in the organs and results in loss of skeletal muscles and adipose tissues. However, looking into the complexity of this metabolic syndrome, it is impossible to rely on a single variable to treat patients having cancer cachexia. Hence, it becomes greater a challenge to produce a clinically effective treatment for this metabolic syndrome. Thus, the present paper aims to provide an understanding of pathogenesis and mechanism underlining the altered glucose metabolism and insulin resistance and its contribution to the progression of skeletal muscle wasting and lipolysis, providing future direction of research to develop new pharmacological treatment in cancer cachexia.
Collapse
Affiliation(s)
- Tamhida Masi
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
8
|
Wang D, Chen W, Bi Q, Zong X, Ruan J, Yin X, Wang J, Zhang H, Ji X. Baoyuan Jiedu Decoction Alleviates Cancer-Induced Myotube Atrophy by Regulating Mitochondrial Dynamics Through p38 MAPK/PGC-1α Signaling Pathway. Front Oncol 2020; 10:523577. [PMID: 33102208 PMCID: PMC7556243 DOI: 10.3389/fonc.2020.523577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/11/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by continuous body wasting and loss of skeletal muscle. Impaired mitochondria function is closely associated with muscle atrophy in cancer cachexia. Our previous study confirmed the effectiveness of Baoyuan Jiedu decoction (BJD) in inhibiting cancer-induced muscle atrophy in an in vivo model. However, little is known about its mechanisms in regulating mitochondria dysfunction. In this study, we evaluated the therapeutic effect and action mechanisms of BJD against atrophy both in the Lewis-conditioned medium induced C2C12 myotube atrophy model and in a BALB/c mice xenograft model using mouse colon cancer C26 cells. The mitochondrial content was tested by 10-Non-ylacridine orange staining. Expressions of related proteins and mRNAs were detected by western blotting (WB) and qPCR, respectively. As a result, 18 major components were identified in BJD by ultra-high performance liquid chromatography-quadrupole (UHPLC-Q) Exactive analysis. As shown in the in vitro results, BJD treatment prevented prominent myotube atrophy and increased the myotube diameter of C2C12 cells. Besides, BJD treatment increased mitochondrial content and ATPase activity. Furthermore, the protein and mRNA expressions that were related to mitochondrial functions and generation such as cytochrome-c oxidase IV, Cytochrome C, nuclear respiratory factor 1, and mitochondrial transcription factor A were significantly increased in BJD treatment compared to the control group. The in vivo results showed that BJD treatment prevented body weight loss and improved the gastrocnemius index in cachexia mice. Moreover, the expressions of Atrogin-1 and muscle RING-finger protein-1 were decreased by BJD treatment. Mechanically, BJD increased the expression of peroxisome proliferator-activated receptor-gamma coactivator 1, and consistently, inhibited the expression of p38 MAPK and its phosphorylation both in vivo and in vitro. Taken together, this study identified that BJD effectively relieved cancer-induced myotube atrophy and provided a potential mechanism for BJD in regulating mitochondrial dynamics through p38 MAPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Delong Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Weiqiao Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qianyu Bi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xin Zong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jiazhao Ruan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiangjun Yin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jixin Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang, China
| | - Honghua Zhang
- Medical College, Hangzhou Normal University, Zhejiang, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
9
|
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q, Gao W. Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 2020; 22:4967-4980. [PMID: 33174001 PMCID: PMC7646947 DOI: 10.3892/mmr.2020.11608] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a severe clinical problem involving the loss of muscle mass and strength that frequently accompanies the development of numerous types of cancer, including pancreatic, lung and gastric cancers. Cancer cachexia is a multifactorial syndrome characterized by a continuous decline in skeletal muscle mass that cannot be reversed by conventional nutritional therapy. The pathophysiological characteristic of cancer cachexia is a negative protein and energy balance caused by a combination of factors, including reduced food intake and metabolic abnormalities. Numerous necessary cellular processes are disrupted by the presence of abnormal metabolites, which mediate several intracellular signaling pathways and result in the net loss of cytoplasm and organelles in atrophic skeletal muscle during various states of cancer cachexia. Currently, the clinical morbidity and mortality rates of patients with cancer cachexia are high. Once a patient enters the cachexia phase, the consequences are difficult to reverse and the treatment methods for cancer cachexia are very limited. The present review aimed to summarize the recent discoveries regarding the pathogenesis of cancer cachexia-induced muscle atrophy and provided novel ideas for the comprehensive treatment to improve the prognosis of affected patients.
Collapse
Affiliation(s)
- Wei Yang
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Hui Wu
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuqing Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Zhiyin Du
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuanbo Ling
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Weizhuo Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Qian Wu
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
10
|
Sr KJ. Dynamics of Drug in Biological System. Curr Drug Metab 2019; 20:1084. [PMID: 32116183 DOI: 10.2174/138920022014200129122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kaid Johar Sr
- Department of Zoology, Biomedical Technology and Human Genetics University School of Sciences Gujarat University Ahmedabad 380009, India
| |
Collapse
|