1
|
Li X, Chen W, Ren J, Gao X, Zhao Y, Song T, Fu K, Zheng Y, Yang J. Effects of curcumin on non-alcoholic fatty liver disease: A scientific metrogy study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155241. [PMID: 38128395 DOI: 10.1016/j.phymed.2023.155241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases encountered in clinical practice. Curcumin can alleviate insulin resistance, inhibit oxidative stress response, reduce inflammation, reduce liver fat deposition, and effectively improve NAFLD through various modalities, inhibiting the progression into cirrhosis and fibrosis. PURPOSE To explore the current status, hot spots, and developing trends of curcumin in NAFLD treatment through quantitative scientific analysis to serve as a reference for subsequent studies. STUDY DESIGN A comprehensive analysis of the mechanism of action of curcumin in the treatment of NAFLD and methods to increase curcumin bioavailability using bibliometric analysis and literature review. METHODS This study used VOSviewer software to analyze the literature related to curcumin treatment of NAFLD in the Web of Science (WOS) core set database. A comprehensive and in-depth review was conducted based on the results of scientific econometric research and literature review. RESULTS The review observed that curcumin can activate various signaling pathways such as AMPK and NF-κB to inhibit oxidative stress and apoptosis, thereby reflecting its pharmacological effects: lowering lipid, anti-inflammatory, reducing insulin resistance, and anti-fibrosis. These mechanisms improve or even reverse the complex pathological features of lipid metabolism disorders associated with NAFLD. Curcumin also can potentially serve as a primary regulatory target for treating hepatic steatosis using gut microbiota. However, these pharmacological effects of curcumin were limited owing to its low bioavailability. CONCLUSION This review discusses NAFLD treatment with curcumin, analyzes the reasons for its low bioavailability, and introduces models for studying and methods for improving curcumin bioavailability. As research on NAFLD grows, future research should capture the trend of basic research, pay attention to clinical research, and continuously explore the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchen Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianbao Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kun Fu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300120, China
| | - Yanchao Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jinlong Yang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Aslam B, Hussain A, Faisal MN, Sindhu ZUD, Khan RU, Alhidary IA, Naz S, Tufarelli V. Curcumin Co-Encapsulation Potentiates Anti-Arthritic Efficacy of Meloxicam Biodegradable Nanoparticles in Adjuvant-Induced Arthritis Animal Model. Biomedicines 2023; 11:2662. [PMID: 37893036 PMCID: PMC10604063 DOI: 10.3390/biomedicines11102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to evaluate the anti-arthritic activity of curcumin and meloxicam co-loaded PLGA nanoparticles in adjuvant-induced arthritic rats. PLGA nanoparticles encapsulating curcumin (nCur) and meloxicam (nMlx) alone and in combination (nCur/Mlx) were used to characterize zeta size and potential, polydispersity index, encapsulation efficiency (%), compound-polymer interactions (FT-IR analysis), and surface morphology (SEM imaging). In vivo, Complete Freund's adjuvant-induced arthritic rats were intraperitoneally (i.p.) administered with curcumin, meloxicam, curcumin plus meloxicam, nCur, nMlx, and nCur/Mlx for 28 consecutive days. Results showed that nCur, nMlx, and nCur/Mlx significantly (p ≤ 0.05) reduced paw swelling and arthritic score, restored body weight and the immune organ index (thymus and spleen), as well as attenuated serum inflammatory markers (RF, CRP, and PGE2) and oxidative stress parameters (MDA, SOD, and CAT) in adjuvant-induced arthritic rats compared to free compounds. In addition, mono- and dual-compound-loaded nanoparticles significantly (p ≤ 0.05) down-regulated pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), up-regulated anti-inflammatory cytokines (IL-4, IL-10, and IFN-γ), and modulated OPG and RANKL expressions in paw tissue. The aforementioned results were further confirmed through radiological and histopathological examinations. Furthermore, the anti-arthritic effect of nCur/Mlx was notably (p ≤ 0.05) enhanced compared to nCur or nMlx alone. In conclusion, the co-nanoencapsulation of curcumin could potentiate the anti-arthritic activity of meloxicam and could provide a novel therapeutic approach for the formulation of nanocarrier pharmaceutical products for the management of arthritis.
Collapse
Affiliation(s)
- Bilal Aslam
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.H.); (M.N.F.)
| | - Asif Hussain
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.H.); (M.N.F.)
- Department of Pharmacy, Riphah International University, Faisalabad 38000, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.H.); (M.N.F.)
| | - Zia-ud-Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad 54000, Pakistan;
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, s.p. Casamassima km 3, 70010 Valenzano, Italy;
| |
Collapse
|
3
|
Balakumar P, Venkatesan K, Abdulla Khan N, Raghavendra NM, Venugopal V, Bharathi DR, Fuloria NK. Mechanistic insights into the beneficial effects of curcumin on insulin resistance: opportunities and challenges. Drug Discov Today 2023:103627. [PMID: 37224995 DOI: 10.1016/j.drudis.2023.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The past couple of decades in particular have seen a rapid increase in the prevalence of type 2 diabetes mellitus (T2DM), a debilitating metabolic disorder characterised by insulin resistance. The insufficient efficacy of current management strategies for insulin resistance calls for additional therapeutic options. The preponderance of evidence suggests potential beneficial effects of curcumin on insulin resistance, while modern science provides a scientific basis for its potential applications against the disease. Curcumin combats insulin resistance by increasing the levels of circulating irisin and adiponectin, activating PPARγ, suppressing Notch1 signalling, and regulating SREBP target genes, among others. In this review, we bring together the diverse areas pertaining to our current understanding of the potential benefits of curcumin on insulin resistance, associated mechanistic insights, and new therapeutic possibilities. Teaser: Current approaches to manage insulin resistance are not highly efficacious, which necessitates additional therapeutic options; curcumin combats insulin resistance by improving the levels of circulating irisin and adiponectin, upregulating and activating PPARγ, and suppressing Notch‑1 signalling.
Collapse
Affiliation(s)
- Pitchai Balakumar
- The Office of Research and Development, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur 613 403, Tamil Nadu, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - Noohu Abdulla Khan
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - N M Raghavendra
- Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru 560 111, India
| | - Vijayan Venugopal
- School of Pharmacy, Sri Balaji Vidyapeeth Deemed-to-be University, Puducherry 607 402, India
| | - D R Bharathi
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B G Nagara, Nagamangala 571 448, India
| | - Neeraj K Fuloria
- Pharmaceutical Chemistry Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| |
Collapse
|
4
|
Brockmueller A, Samuel SM, Mazurakova A, Büsselberg D, Kubatka P, Shakibaei M. Curcumin, calebin A and chemosensitization: How are they linked to colorectal cancer? Life Sci 2023; 318:121504. [PMID: 36813082 DOI: 10.1016/j.lfs.2023.121504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Colorectal cancer (CRC) is one of the leading malignant diseases worldwide with a high rate of metastasis and poor prognosis. Treatment options include surgery, which is usually followed by chemotherapy in advanced CRC. With treatment, cancer cells could become resistant to classical cytostatic drugs such as 5-fluorouracil (5-FU), oxaliplatin, cisplatin, and irinotecan, resulting in chemotherapeutic failure. For this reason, there is a high demand for health-preserving re-sensitization mechanisms including the complementary use of natural plant compounds. Calebin A and curcumin, two polyphenolic turmeric ingredients derived from the Asian Curcuma longa plant, demonstrate versatile anti-inflammatory and cancer-reducing abilities, including CRC-combating capacity. After an insight into their epigenetics-modifying holistic health-promoting effects, this review compares functional anti-CRC mechanisms of multi-targeting turmeric-derived compounds with mono-target classical chemotherapeutic agents. Furthermore, the reversal of resistance to chemotherapeutic drugs was presented by focusing on calebin A's and curcumin's capabilities to chemosensitize or re-sensitize CRC cells to 5-FU, oxaliplatin, cisplatin, and irinotecan. Both polyphenols enhance the receptiveness of CRC cells to standard cytostatic drugs converting them from chemoresistant into non-chemoresistant CRC cells by modulating inflammation, proliferation, cell cycle, cancer stem cells, and apoptotic signaling. Therefore, calebin A and curcumin can be tested for their ability to overcome cancer chemoresistance in preclinical and clinical trials. The future perspective of involving turmeric-ingredients curcumin or calebin A as an additive treatment to chemotherapy for patients with advanced metastasized CRC is explained.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar.
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia.
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| |
Collapse
|
5
|
Servida S, Panzeri E, Tomaino L, Marfia G, Garzia E, Appiani GC, Moroncini G, Colonna VDG, Vecchia CL, Vigna L. Overview of Curcumin and Piperine Effects on Glucose Metabolism: The Case of an Insulinoma Patient’s Loss of Consciousness. Int J Mol Sci 2023; 24:ijms24076621. [PMID: 37047589 PMCID: PMC10095254 DOI: 10.3390/ijms24076621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
The hypoglycemic properties of curcumin supplements in therapeutic doses are well-known and may represent a useful tool for the treatment of chronic diseases such as metabolic syndrome, insulin resistance and type 2 diabetes. The poor bioavailability of curcumin can be improved with the concomitant administration of piperine, with no severe adverse effects on glycemia reported so far in the literature. In this article, we further discuss a previously reported case of a helicopter pilot, affected by grade I obesity who, under curcumin and piperine treatment, experienced a transient loss of consciousness (TLOC), during a low-altitude flight. This episode led to a diagnosis of insulinoma, previously asymptomatic. We hypothesized that the combined effects of curcumin and piperine might have caused a severe hypoglycemic episode and subsequent TLOC. Therefore, further studies should be conducted to evaluate the safety of curcumin and piperine supplementation in subjects with impaired glucose metabolism and insulin secretion.
Collapse
Affiliation(s)
- Simona Servida
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Panzeri
- Independent Researcher, Nutrigenetics Consultant, DA14 5JR London, UK
| | - Laura Tomaino
- Postgraduate School of Emergency Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60020 Ancona, Italy
| | - Giovanni Marfia
- Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare Italiana, 20129 Milan, Italy
| | - Emanuele Garzia
- Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare Italiana, 20129 Milan, Italy
| | | | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60020 Ancona, Italy
| | - Vito De Gennaro Colonna
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Science and Community Health, DISSCO, Università degli Studi di Milano, 20122 Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Science and Community Health, DISSCO, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luisella Vigna
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|