1
|
Yilmazer A, Zevla DM, Malmkvist R, Rodríguez CAB, Undurraga P, Kirgin E, Boernert M, Voehringer D, Kershaw O, Schlenner S, Kretschmer K. Selective ablation of thymic and peripheral Foxp3 + regulatory T cell development. Front Immunol 2023; 14:1298938. [PMID: 38164128 PMCID: PMC10757929 DOI: 10.3389/fimmu.2023.1298938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Foxp3+ regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg) developmental origin are thought to synergistically act to ensure immune homeostasis, with self-reactive tTreg cells primarily constraining autoimmune responses. Here we exploited a Foxp3-dependent reporter with thymus-specific GFP/Cre activity to selectively ablate either tTreg (ΔtTreg) or pTreg (ΔpTreg) cell development, while sparing the respective sister populations. We found that, in contrast to the tTreg cell behavior in ΔpTreg mice, pTreg cells acquired a highly activated suppressor phenotype and replenished the Treg cell pool of ΔtTreg mice on a non-autoimmune C57BL/6 background. Despite the absence of tTreg cells, pTreg cells prevented early mortality and fatal autoimmunity commonly observed in Foxp3-deficient models of complete Treg cell deficiency, and largely maintained immune tolerance even as the ΔtTreg mice aged. However, only two generations of backcrossing to the autoimmune-prone non-obese diabetic (NOD) background were sufficient to cause severe disease lethality associated with different, partially overlapping patterns of organ-specific autoimmunity. This included a particularly severe form of autoimmune diabetes characterized by an early onset and abrogation of the sex bias usually observed in the NOD mouse model of human type 1 diabetes. Genetic association studies further allowed us to define a small set of autoimmune risk loci sufficient to promote β cell autoimmunity, including genes known to impinge on Treg cell biology. Overall, these studies show an unexpectedly high functional adaptability of pTreg cells, emphasizing their important role as mediators of bystander effects to ensure self-tolerance.
Collapse
Affiliation(s)
- Acelya Yilmazer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Dimitra Maria Zevla
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rikke Malmkvist
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carlos Alejandro Bello Rodríguez
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Pablo Undurraga
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Emre Kirgin
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marie Boernert
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Susan Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
2
|
A Distinctive γδ T Cell Repertoire in NOD Mice Weakens Immune Regulation and Favors Diabetic Disease. Biomolecules 2022; 12:biom12101406. [PMID: 36291615 PMCID: PMC9599391 DOI: 10.3390/biom12101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Previous studies in mice and humans suggesting that γδ T cells play a role in the development of type 1 diabetes have been inconsistent and contradictory. We attempted to resolve this for the type 1 diabetes-prone NOD mice by characterizing their γδ T cell populations, and by investigating the functional contributions of particular γδ T cells subsets, using Vγ-gene targeted NOD mice. We found evidence that NOD Vγ4+ γδ T cells inhibit the development of diabetes, and that the process by which they do so involves IL-17 production and/or promotion of regulatory CD4+ αβ T cells (Tregs) in the pancreatic lymph nodes. In contrast, the NOD Vγ1+ cells promote diabetes development. Enhanced Vγ1+ cell numbers in NOD mice, in particular those biased to produce IFNγ, appear to favor diabetic disease. Within NOD mice deficient in particular γδ T cell subsets, we noted that changes in the abundance of non-targeted T cell types also occurred, which varied depending upon the γδ T cells that were missing. Our results indicate that while certain γδ T cell subsets inhibit the development of spontaneous type 1 diabetes, others exacerbate it, and they may do so via mechanisms that include altering the levels of other T cells.
Collapse
|
3
|
Liu R, Fu Z, Zhao M, Gao X, Li H, Mi Q, Liu P, Yang J, Yao Z, Gao Q. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates. Oncotarget 2018; 8:39476-39496. [PMID: 28467806 PMCID: PMC5503626 DOI: 10.18632/oncotarget.17073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/22/2017] [Indexed: 02/07/2023] Open
Abstract
Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.
Collapse
Affiliation(s)
- Ran Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zheng Fu
- Department of Immunology, Laboratory of Immune Micro-environment, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Meng Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300040, P. R. China
| | - Xiangqian Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Hong Li
- Affiliated Hospital, Logistics University of the Chinese People's Armed Police Force, Tianjin 300162, P. R. China
| | - Qian Mi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Pengxing Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jinna Yang
- Department of Medicinal Chemistry, Gudui BioPharma Technology Inc.,Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Zhi Yao
- Department of Immunology, Laboratory of Immune Micro-environment, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Growth differentiation factor 15 induces growth and metastasis of human liver cancer stem-like cells via AKT/GSK-3β/β-catenin signaling. Oncotarget 2017; 8:16972-16987. [PMID: 28199981 PMCID: PMC5370015 DOI: 10.18632/oncotarget.15216] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/27/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells in liver cancer are thought to be responsible for tumor recurrence and metastasis. However, the factors that mediate this mechanism have yet to be completely elucidated. In this study, we isolated CD13+CD44+ sphere cells (SCs) derived from liver cancer tissues and SK-Hep-1 cells, which possessed cancer stem cell-like properties. Through cytokine array analysis, growth differentiation factor 15 (GDF15) was significantly increased in SCs. Clinical data showed GDF15 was overexpressed in liver cancer tissues and was positively related to pathological grading. GDF15 knockdown significantly inhibited the growth and metastasis of SCs through AKT/GSK-3β/β-catenin pathway suppression. Moreover, a PI3K inhibitor LY294002 inhibited AKT/GSK-3β/β-catenin pathway activated by GDF15 and attenuated GDF15-induced proliferation, colony formation and invasion of SCs. Conclusion: Our studies suggest that CD13+CD44+ SCs may represent a subset of LCSCs. GDF15 promotes the growth and metastasis of SCs by activating AKT/GSK-3β/β-catenin signaling pathway. Promisingly, GDF15 could be considered as a potential therapeutic target in liver cancer.
Collapse
|
5
|
Kawasaki K, Yamada S, Ogata K, Saito Y, Takahama A, Yamada T, Matsumoto K, Kose H. Use of Drosophila as an evaluation method reveals imp as a candidate gene for type 2 diabetes in rat locus Niddm22. J Diabetes Res 2015; 2015:758564. [PMID: 25821834 PMCID: PMC4363715 DOI: 10.1155/2015/758564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/03/2015] [Accepted: 01/03/2015] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the most common human diseases. QTL analysis of the diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats has identified numerous hyperglycemic loci. However, molecular characterization and/or gene identification largely remains to be elucidated due mostly to the weak genetic variances contributed by each locus. Here we utilized Drosophila melanogaster as a secondary model organism for functional evaluation of the candidate gene. We demonstrate that the tissue specific knockdown of a homologue of igf2bp2 RNA binding protein leads to increased sugar levels similar to that found in the OLETF rat. In the mutant, the expression of two of the insulin-like peptides encoded in the fly genome, dilp2 and dilp3, were found to be downregulated. Consistent with previous reports of dilp mutants, the imp mutant flies exhibited an extension of life span; in contrast, starvation tolerance was reduced. These results further reinforce the possibility that imp is involved in sugar metabolism by modulating insulin expression.
Collapse
Affiliation(s)
- Kurenai Kawasaki
- Division of Natural Sciences, Department of Life Science, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | - Sawaka Yamada
- Division of Natural Sciences, Department of Life Science, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | - Koki Ogata
- Division of Natural Sciences, Department of Life Science, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | - Yumiko Saito
- Division of Natural Sciences, Department of Life Science, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | - Aiko Takahama
- Division of Natural Sciences, Department of Life Science, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | - Takahisa Yamada
- Laboratory of Animal Genetics, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kozo Matsumoto
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Hiroyuki Kose
- Division of Natural Sciences, Department of Life Science, International Christian University, Mitaka, Tokyo 181-8585, Japan
- *Hiroyuki Kose:
| |
Collapse
|
6
|
Kakoola DN, Curcio-Brint A, Lenchik NI, Gerling IC. Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes. RESULTS IN IMMUNOLOGY 2014; 4:30-45. [PMID: 24918037 PMCID: PMC4050318 DOI: 10.1016/j.rinim.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/05/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes (T1D) is a multigenic disease caused by T-cell mediated destruction of the insulin producing pancreatic islet ß-cells. The earliest sign of islet autoimmunity in NOD mice, islet leukocytic infiltration or insulitis, is obvious at around 5 weeks of age. The molecular alterations that occur in T cells prior to insulitis and that may contribute to T1D development are poorly understood. Since CD4 T-cells are essential to T1D development, we tested the hypothesis that multiple genes/molecular pathways are altered in these cells prior to insulitis. We performed a genome-wide transcriptome and pathway analysis of whole, untreated CD4 T-cells from 2, 3, and 4 week-old NOD mice in comparison to two control strains (NOR and C57BL/6). We identified many differentially expressed genes in the NOD mice at each time point. Many of these genes (herein referred to as NOD altered genes) lie within known diabetes susceptibility (insulin-dependent diabetes, Idd) regions, e.g. two diabetes resistant loci, Idd27 (tripartite motif-containing family genes) and Idd13 (several genes), and the CD4 T-cell diabetogenic activity locus, Idd9/11 (2 genes, KH domain containing, RNA binding, signal transduction associated 1 and protein tyrosine phosphatase 4a2). The biological processes associated with these altered genes included, apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks); inflammation and cell signaling/activation (predominant at 3 weeks); and innate and adaptive immune responses (predominant at 4 weeks). Pathway analysis identified several factors that may regulate these abnormalities: eight, common to all 3 ages (interferon regulatory factor 1, hepatic nuclear factor 4, alpha, transformation related protein 53, BCL2-like 1 (lies within Idd13), interferon gamma, interleukin 4, interleukin 15, and prostaglandin E2); and two each, common to 2 and 4 weeks (androgen receptor and interleukin 6); and to 3 and 4 weeks (interferon alpha and interferon regulatory factor 7). Others were unique to the various ages, e.g. myelocytomatosis oncogene, jun oncogene, and amyloid beta (A4) to 2 weeks; tumor necrosis factor, transforming growth factor, beta 1, NF?B, ERK, and p38MAPK to 3 weeks; and interleukin 12 and signal transducer and activator of transcription 4 to 4 weeks. Thus, our study demonstrated that expression of many genes that lie within several Idds (e.g. Idd27, Idd13 and Idd9/11) was altered in CD4 T-cells in the early induction phase of autoimmune diabetes and identified their associated molecular pathways. These data offer the opportunity to test hypotheses on the roles played by the altered genes/molecular pathways, to understand better the mechanisms of CD4 T-cell diabetogenesis, and to develop new therapeutic strategies for T1D.
Collapse
Affiliation(s)
- Dorothy N Kakoola
- Department of Medicine, Division of Endocrinology, University of Tennessee Health Science Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA ; Research Service, Veterans Affairs Medical Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| | - Anita Curcio-Brint
- Department of Medicine, Division of Endocrinology, University of Tennessee Health Science Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA ; Research Service, Veterans Affairs Medical Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| | - Nataliya I Lenchik
- Department of Medicine, Division of Endocrinology, University of Tennessee Health Science Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA ; Research Service, Veterans Affairs Medical Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| | - Ivan C Gerling
- Department of Medicine, Division of Endocrinology, University of Tennessee Health Science Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA ; Research Service, Veterans Affairs Medical Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| |
Collapse
|
7
|
Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes. PLoS One 2012; 7:e46941. [PMID: 23071669 PMCID: PMC3469658 DOI: 10.1371/journal.pone.0046941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 09/10/2012] [Indexed: 12/14/2022] Open
Abstract
Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse – a model for human type 1 diabetes (T1D). The molecular events that lead to insulitis and initiate autoimmune diabetes are poorly understood. Since TID is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease. We evaluated the molecular phenotype (mRNA and protein expression) and molecular networks of ex vivo unfractionated spleen leukocytes from 2 and 4 week-old NOD mice in comparison to two control strains. Analysis of the global gene expression profiles and hierarchical clustering revealed that the majority (∼90%) of the differentially expressed genes in NOD mice were repressed. Furthermore, analysis using a modern suite of multiple bioinformatics approaches identified abnormal molecular pathways that can be divided broadly into 2 categories: metabolic pathways, which were predominant at 2 weeks, and immune response pathways, which were predominant at 4 weeks. Network analysis by Ingenuity pathway analysis identified key genes/molecules that may play a role in regulating these pathways. These included five that were common to both ages (TNF, HNF4A, IL15, Progesterone, and YWHAZ), and others that were unique to 2 weeks (e.g. MYC/MYCN, TGFB1, and IL2) and to 4 weeks (e.g. IFNG, beta-estradiol, p53, NFKB, AKT, PRKCA, IL12, and HLA-C). Based on the literature, genes that may play a role in regulating metabolic pathways at 2 weeks include Myc and HNF4A, and at 4 weeks, beta-estradiol, p53, Akt, HNF4A and AR. Our data suggest that abnormalities in regulation of metabolic pathways in the immune cells of young NOD mice lead to abnormalities in the immune response pathways and as such may play a role in the initiation of autoimmune diabetes. Thus, targeting metabolism may provide novel approaches to preventing and/or treating autoimmune diabetes.
Collapse
|
8
|
Islet cell autoantibodies in patients younger than 20 years of age with recently diagnosed diabetes in Northwest of Iran. Int J Diabetes Dev Ctries 2011. [DOI: 10.1007/s13410-011-0015-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Mirasierra M, Fernández-Pérez A, Díaz-Prieto N, Vallejo M. Alx3-deficient mice exhibit decreased insulin in beta cells, altered glucose homeostasis and increased apoptosis in pancreatic islets. Diabetologia 2011; 54:403-14. [PMID: 21104068 DOI: 10.1007/s00125-010-1975-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 10/20/2010] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Homeodomain transcription factors play an important role in the regulation of pancreatic islet function. In previous studies we determined that aristaless-like homeobox 3 (ALX3) is produced in islet cells, binds to the promoter of the insulin gene and regulates its expression. The purpose of the present study was to investigate the functional role of ALX3 in pancreatic islets and its possible involvement in the regulation of glucose homeostasis in vivo. METHODS Alx3-knockout mice were used. Glucose and insulin tolerance tests were carried out, and serum insulin concentrations were determined. Isolated islets were used to test insulin secretion and gene expression. The pancreatic islets were also studied using both confocal and conventional microscopy. RESULTS ALX3 deficiency resulted in increased blood glucose levels and impaired glucose tolerance in the presence of normal serum insulin concentrations. Insulin, glucagon and glucokinase expression were reduced in Alx3-null pancreatic islets. Reduced insulin content was reflected by decreased insulin secretion from isolated islets. Alx3-deficient islets also showed increased apoptosis, and morphometric analyses indicated that they were, on average, of smaller size than islets from control mice. ALX3 deficiency resulted in reduced beta cell mass. Finally, mature Alx3-null mice developed age-dependent insulin resistance due to impaired peripheral insulin receptor signalling. CONCLUSIONS/INTERPRETATION ALX3 participates in the regulation of the expression of essential genes for the function of pancreatic islets, and its deficiency alters the regulation of glucose homeostasis in vivo. We suggest that ALX3 constitutes a potential candidate to consider in the aetiopathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- M Mirasierra
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas /Universidad Autónoma de Madrid, Calle Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|