1
|
Zhu X, Luo X, Song Z, Jiang S, Long X, Gao X, Xie X, Zheng L, Wang H. miR-188-5p promotes oxaliplatin resistance by targeting RASA1 in colon cancer cells. Oncol Lett 2021; 21:481. [PMID: 33968197 DOI: 10.3892/ol.2021.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
The efficacy of chemotherapy for colon cancer is limited due to the development of chemoresistance. MicroRNA (miR)-188-5p is downregulated in various types of cancer. The aim of the present study was to explore the molecular role of miR-188 in oxaliplatin (OXA) resistance. An OXA-resistant colon cancer cell line, SW480/OXA, was used to examine the effects of miR-188-5p on the sensitivity of colon cancer cells to OXA. The target of miR-188-5p was identified using a luciferase assay. Cell cycle distribution was also assessed using flow cytometry. The measurement of p21 protein expression, Hoechst 33342 staining and Annexin V/propidium iodide staining was used to evaluate apoptosis. The expression of miR-188-5p significantly increased in SW480/OXA compared with wild-type SW480 cells. The luciferase assay demonstrated that miR-188-5p inhibited Ras GTPase-activating protein 1 (RASA1; also known as p120/RasGAP) luciferase activity by binding to the 3'-untranslated region of RASA1 mRNA, suggesting that miR-188-5p could target RASA1. In addition, miR-188-5p downregulation or RASA1 overexpression promoted the chemosensitivity of SW480/OXA, as evidenced by increased apoptosis and G1/S cell cycle arrest. Moreover, RASA1 silencing abrogated the increase in cell apoptosis induced by the miR-188-5p inhibitor. The findings of the present study suggested that miR-188-5p could enhance colon cancer cell chemosensitivity by promoting the expression of RASA1.
Collapse
Affiliation(s)
- Xijia Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xishun Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Zhike Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Shiyu Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xiangkai Long
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xueyuan Gao
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Xinyang Xie
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Laijian Zheng
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Haipeng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| |
Collapse
|
2
|
Choi JM, Kim SG, Yang HJ, Lim JH, Cho NY, Kim WH, Kim JS, Jung HC. Helicobacter pylori Eradication Can Reverse the Methylation-Associated Regulation of miR-200a/b in Gastric Carcinogenesis. Gut Liver 2020; 14:571-580. [PMID: 31887809 PMCID: PMC7492500 DOI: 10.5009/gnl19299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Background/Aims Epigenetic change is one of the mechanisms that regulates the expression of microRNAs (miRNAs) and is known to play a role in Helicobacter pylori-associated gastric carcinogenesis. We aimed to evaluate the epigenetic changes of miR-200a/b in H. pylori-associated gastric carcinogenesis and restoration after eradication. Methods The expression and methylation levels of miR-200a/b were evaluated in gastric cancer (GC) cell lines, human gastric mucosa of H. pylori-negative and -positive controls, and H. pylori-positive GC patients. Next, the changes in the expression and methylation levels of miR-200a/b were compared between H. pylori-eradication and H. pylori-persistence groups at 6 months. Real-time reverse transcription-polymerase chain reaction was conducted to investigate the miRNA expression levels, and MethyLight was performed to assess the methylation levels. Results In the GC cell lines, the level of miR-200a/b methylation decreased and the level of expression increased after demethylation. In the human gastric mucosa, the miR-200a/b methylation levels increased in the following group order: H. pylori-negative control group, H. pylori-positive control group, and H. pylori-positive GC group. Conversely, the miR-200a/b expression levels decreased in the same order. In the H. pylori-persistence group, no significant changes were observed in the methylation and expression levels of miR-200a/b after 6 months, whereas the level of methylation decreased and the level of expression of miR-200a/b increased significantly 6 months in the H. pylori-eradication group. Conclusions Epigenetic alterations of miR-200a/b may be implicated in H. pylori-induced gastric carcinogenesis. This field defect for cancerization is suggested to be improved by H. pylori eradication.
Collapse
Affiliation(s)
- Ji Min Choi
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Sang Gyun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo-Joon Yang
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Hyun Lim
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Chae Jung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Fassan M, Realdon S, Cascione L, Hahne JC, Munari G, Guzzardo V, Arcidiacono D, Lampis A, Brignola S, Dal Santo L, Agostini M, Bracon C, Maddalo G, Scarpa M, Farinati F, Zaninotto G, Valeri N, Rugge M. Circulating microRNA expression profiling revealed miR-92a-3p as a novel biomarker of Barrett's carcinogenesis. Pathol Res Pract 2020; 216:152907. [PMID: 32131978 DOI: 10.1016/j.prp.2020.152907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
The main intent of secondary prevention strategies for Barrett's esophagus (BE) patients relies in the prompt identification of patients with dysplasia (or intra-epithelial neoplasia; IEN) and early-stage adenocarcinoma (Barrett's adenocarcinoma; BAc). Despite the adequate characterization of the molecular landscape characterizing Barrett's carcinogenesis, no tissue and/or circulating biomarker has been approved for clinical use. A series of 25 serum samples (12 BE, 5 HG-IEN and 8 BAc) were analyzed for comprehensive miRNA profiling and ten miRNAs were found to be significantly dysregulated. In particular seven were upregulated (i.e. miR-92a-3p, miR-151a-5p, miR-362-3p, miR-345-3p, miR-619-3p, miR-1260b, and miR-1276) and three downregulated (i.e. miR-381-3p, miR-502-3p, and miR-3615) in HG-IEN/BAc samples in comparison to non-dysplastic BE. All the identified miRNAs showed significant ROC curves in discriminating among groups with AUC values range of 0.75-0.83. Validation of the results were performed by droplet digital PCR in two out of three tested miRNAs. To understand the cellular source of circulating miR-92a-3p, we analyzed its expression in endoscopy biopsy samples by both qRT-PCR and ISH analyses. As observed in serum samples, miR-92a-3p was over-expressed in HG-IEN/BAc samples in comparison to naïve esophageal squamous mucosa and BE and was mainly localized within the epithelial cells, supporting neoplastic cells as the main source of the circulating miRNA. Our data further demonstrated that circulating miRNAs are a promising mini-invasive diagnostic tool in the secondary follow-up and management of BE patients. Larger multi-Institutional studies should validate and investigate the most adequate miRNAs profile in discriminating BE patients in specific risk classes.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| | | | - Luciano Cascione
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), Bellinzona, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens C Hahne
- Division of Molecular Pathology, Institute of Cancer Research, London, UK; Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
| | - Giada Munari
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy; Istituto Oncologico Veneto - IOV-IRCCS, Padua, Italy
| | - Vincenza Guzzardo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | - Andrea Lampis
- Division of Molecular Pathology, Institute of Cancer Research, London, UK; Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
| | - Stefano Brignola
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Luca Dal Santo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Marco Agostini
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Surgery Unit, University of Padua, Padua, Italy
| | - Chiara Bracon
- Beatson West of Scotland Cancer Centre, Glasgow, UK; University of Glasgow, Glasgow, UK
| | - Gemma Maddalo
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Marco Scarpa
- General Surgery Unit, University Hospital of Padua, Padua, Italy
| | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | | | - Nicola Valeri
- Division of Molecular Pathology, Institute of Cancer Research, London, UK; Centre for Molecular Pathology, Royal Marsden Hospital, London, UK.
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy; Veneto Cancer Registry, Padua, Italy
| |
Collapse
|
4
|
Bedin C, Crotti S, D'Angelo E, D'Aronco S, Pucciarelli S, Agostini M. Circulating Biomarkers for Response Prediction of Rectal Cancer to Neoadjuvant Chemoradiotherapy. Curr Med Chem 2019; 27:4274-4294. [PMID: 31060482 DOI: 10.2174/0929867326666190507084839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 03/05/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Rectal cancer response to neoadjuvant Chemoradiotherapy (pCRT) is highly variable. In fact, it has been estimated that only about 21 % of patients show pathologic Complete Response (pCR) after therapy, while in most of the patients a partial or incomplete tumour regression is observed. Consequently, patients with a priori chemoradioresistant tumour should not receive the treatment, which is associated with substantial adverse effects and does not guarantee any clinical benefit. For Locally Advanced Rectal Cancer Patients (LARC), a standardized neoadjuvant treatment protocol is applied, the identification and the usefulness of prognostic or predictive biomarkers can improve the antitumoural treatment strategy, modifying the sequence, dose, and combination of radiotherapy, chemotherapy and surgical resection. For these reasons, a growing number of studies are actually focussed on the discovery and investigation of new predictive biomarkers of response to pCRT. In this review, we have selected the most recent literature (2012-2017) regarding the employment of blood-based biomarkers potentially predicting pCR in LARC patients and we have critically discussed them to highlight their real clinical benefit and the current limitations of the proposed methodological approaches.
Collapse
Affiliation(s)
- Chiara Bedin
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy
| | - Sara Crotti
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy
| | - Edoardo D'Angelo
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy
| | - Sara D'Aronco
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Science, University of
Padua, Padua, Italy
| | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Science, University of
Padua, Padua, Italy
| | - Marco Agostini
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Science, University of
Padua, Padua, Italy
| |
Collapse
|
5
|
Fassan M, Cui R, Gasparini P, Mescoli C, Guzzardo V, Vicentini C, Munari G, Loupakis F, Lonardi S, Braconi C, Scarpa M, D'Angelo E, Pucciarelli S, Angriman I, Agostini M, D'Incá R, Farinati F, Gafà R, Lanza G, Frankel WL, Croce CM, Valeri N, Rugge M. miR-224 Is Significantly Upregulated and Targets Caspase-3 and Caspase-7 During Colorectal Carcinogenesis. Transl Oncol 2019; 12:282-291. [PMID: 30448733 PMCID: PMC6240712 DOI: 10.1016/j.tranon.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
miR-224 has recently emerged as a driver oncomiR in sporadic colorectal carcinogenesis, but its pathogenetic role is still controversial. A large phenotypical and molecularly characterized series of preinvasive and invasive colorectal lesions was investigated for miR-224 expression by qRT-PCR and in situ hybridization. The caspase-3 and caspase-7 status was also assessed and correlated to miR-224 dysregulation. miR-224 was significantly upregulated during the adenoma-carcinoma sequence and in the context of inflammatory bowel disease dysplastic lesions, whereas its expression was significantly downregulated among BRAF-mutated tumors and in the presence of a DNA mismatch repair deficiency. miR-224 targets caspase-3 and caspase-7 in colorectal cancer, and this inverse relation was already evident from the earliest phases of transformation in intestinal mucosa. The miR-224/caspases axis may represent an interesting field of study for innovative biomarkers/therapeutics for BRAF-mutated/DNA mismatch repair-deficient tumors.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Ri Cui
- Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Pierluigi Gasparini
- Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Claudia Mescoli
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | | | - Giada Munari
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Fotios Loupakis
- Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Sara Lonardi
- Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Chiara Braconi
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK; Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Marco Scarpa
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Edoardo D'Angelo
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Imerio Angriman
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Marco Agostini
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Renata D'Incá
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Roberta Gafà
- Department of Pathology, University of Ferrara, Ferrara, Italy
| | - Giovanni Lanza
- Department of Pathology, University of Ferrara, Ferrara, Italy
| | - Wendy L Frankel
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Carlo Maria Croce
- Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Nicola Valeri
- Department of Medicine, The Royal Marsden NHS Trust, London, UK; Molecular Pathology Division, Institute of Cancer Research, London and Sutton, UK.
| | - Massimo Rugge
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
6
|
D'Angelo E, Agostini M. Long non-coding RNA and extracellular matrix: the hidden players in cancer-stroma cross-talk. Noncoding RNA Res 2018; 3:174-177. [PMID: 30533566 PMCID: PMC6260485 DOI: 10.1016/j.ncrna.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 02/08/2023] Open
Abstract
Currently available high-throughput technologies combined with bioinformatics analyses revealed that nearly 80% of the genome is transcribed, whereas only 2% of the genetic code is translated in proteins. In the landscape of non-coding RNA, the long non-coding RNA (>200 nucleotides) is a newer class of ncRNAs, with a potential pivotal role in homeostatic and pathological mechanisms, confirmed by increasing emerging evidences in different diseases, especially in cancer. In parallel, recent studies have demonstrated that as cancer progresses, extracellular matrix co-evolves into an activated state through continuous biochemical and structural modifications. In this review, we synthesize these themes by exploring the functional cross-talk between lncRNAs and their involvement in ECM regulation and remodeling within the tumor microenvironment.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marco Agostini
- NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology - University of Padova, Padova, Italy
| |
Collapse
|
7
|
Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018; 399:821-836. [DOI: 10.1515/hsz-2017-0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Gastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression of KLKs in human malignancies is often regulated by KLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to target KLKs and therefore alter their expression levels. The biomarker utility of KLKs has been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels of KLKs in these types of cancer.
Collapse
Affiliation(s)
- Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| |
Collapse
|
8
|
Saraggi D, Galuppini F, Fanelli GN, Remo A, Urso ED, Bao RQ, Bacchin D, Guzzardo V, Luchini C, Braconi C, Farinati F, Rugge M, Fassan M. MiR-21 up-regulation in ampullary adenocarcinoma and its pre-invasive lesions. Pathol Res Pract 2018; 214:835-839. [DOI: 10.1016/j.prp.2018.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
|
9
|
Wu T, Lin Y, Xie Z. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma. Biol Res 2018; 51:13. [PMID: 29793538 PMCID: PMC5966945 DOI: 10.1186/s40659-018-0162-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most common extracranial solid tumor in children. Accumulating evidence shows that microRNAs (miRs) play an important role in the carcinogenesis of NB. Here, we investigated the biological function of miR-1247 in NB in vitro. METHODS/RESULTS We found miR-1247 was downregulated in NB tissues and cells using quantitative PCR analysis. Gain- and loss-of-function studies demonstrated that miR-1247 significantly suppressed cell proliferation and induced cell cycle G0/G1 phase arrest and cell apoptosis of NB cells in vitro by using MTT, colony formation assay and Flow cytometry analysis. Luciferase assay suggested ZNF346 was the target of miR-1247 and its expression could be downregulated by miR-1247 overexpression using Western blotting. Furthermore, downregulation of ZNF346 by siRNA performed similar effects with overexpression of miR-1247 in NB cells. CONCLUSIONS Our findings suggested miR-1247 directly targeted to repress ZNF346 expression, thus suppressing the progression of NB, which might be a novel therapeutic target against NB.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Neonatology, The First People's Hospital of Jingzhou, No. 8 Hangkong Road, Shashi District, Jingzhou, 434000, Hubei, China
| | - Yun Lin
- Department of Editor, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Zhongguo Xie
- Department of Neonatology, The First People's Hospital of Jingzhou, No. 8 Hangkong Road, Shashi District, Jingzhou, 434000, Hubei, China.
| |
Collapse
|
10
|
Cazacu IM, Luzuriaga Chavez AA, Saftoiu A, Vilmann P, Bhutani MS. A quarter century of EUS-FNA: Progress, milestones, and future directions. Endosc Ultrasound 2018; 7:141-160. [PMID: 29941723 PMCID: PMC6032705 DOI: 10.4103/eus.eus_19_18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Tissue acquisition using EUS has considerably evolved since the first EUS-FNA was reported 25 years ago. Its introduction was an important breakthrough in the endoscopic field. EUS-FNA has now become a part of the diagnostic and staging algorithm for the evaluation of benign and malignant diseases of the gastrointestinal tract and of the organs in its proximity, including lung diseases. This review aims to present the history of EUS-FNA development and to provide a perspective on the recent developments in procedural techniques and needle technologies that have significantly extended the role of EUS and its clinical applications. There is a bright future ahead for EUS-FNA in the years to come as extensive research is conducted in this field and various technologies are continuously implemented into clinical practice.
Collapse
Affiliation(s)
- Irina Mihaela Cazacu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy, Craiova, Romania
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas – MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Adrian Saftoiu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy, Craiova, Romania
| | - Peter Vilmann
- Gastrounit, Division of Surgery, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Manoop S. Bhutani
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas – MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Taveras LR, Cunningham HB, Imran JB. Can We Reliably Predict a Clinical Complete Response in Rectal Cancer? Current Trends and Future Strategies. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Fassan M, Facchin S, Munari G, Fanelli GN, Lorenzon G, Savarino E. Noncoding RNAs as drivers of the phenotypic plasticity of oesophageal mucosa. World J Gastroenterol 2017; 23:7653-7656. [PMID: 29209106 PMCID: PMC5703925 DOI: 10.3748/wjg.v23.i43.7653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
The histological commitment of the lower oesophageal mucosa largely depends on a complex molecular landscape. After extended inflammatory insult due to gastroesophageal reflux disease, squamous oesophageal mucosa may differentiate into columnar metaplastic mucosa. In this setting, the presence of intestinal metaplasia is considered the starting point of Barrett’s carcinogenetic cascade. Aside from secondary prevention strategies for Barrett’s mucosa (BM) patients, there are multiple endoscopic ablative therapies available for BM eradication and for the replacement of metaplastic epithelia with a neosquamous mucosa. However, BM frequently recurs in a few years, which supports the notable phenotypic plasticity of the oesophageal mucosa. In recent years, several reports pinpointed a class of small noncoding RNAs, the microRNAs (miRNAs), as principal effectors and regulators of oesophageal mucosa metaplastic (and neoplastic) transformation. Because of miRNAs notable stability in fixed archival diagnostic specimens, expression profiling of miRNAs represent an innovative diagnostic, prognostic and predictive tool in the stratification of phenotypic alterations in the oesophageal mucosa.
Collapse
Affiliation(s)
- Matteo Fassan
- Surgical Pathology Unit, Department of Medicine, University of Padua, Padua 35100, Italy
| | - Sonia Facchin
- Gastroenterology Unit, Department of Surgical Oncology and Gastroenterology, University of Padua, Padua 35100, Italy
| | - Giada Munari
- Surgical Pathology Unit, Department of Medicine, University of Padua, Padua 35100, Italy
| | | | - Greta Lorenzon
- Gastroenterology Unit, Department of Surgical Oncology and Gastroenterology, University of Padua, Padua 35100, Italy
| | - Edoardo Savarino
- Gastroenterology Unit, Department of Surgical Oncology and Gastroenterology, University of Padua, Padua 35100, Italy
| |
Collapse
|
13
|
Fabbri C, Gibiino G, Fornelli A, Cennamo V, Grifoni D, Visani M, Acquaviva G, Fassan M, Fiorino S, Giovanelli S, Bassi M, Ghersi S, Tallini G, Jovine E, Gasbarrini A, de Biase D. Team work and cytopathology molecular diagnosis of solid pancreatic lesions. Dig Endosc 2017; 29:657-666. [PMID: 28190274 DOI: 10.1111/den.12845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer-associated death in the next decade or so. It is widely accepted that tumorigenesis is linked to specific alterations in key genes and pancreatic neoplasms are some of the best characterized at the genomic level. Recent whole-exome and whole-genome sequencing analyses confirmed that PDAC is frequently characterized by mutations in a set of four genes among others: KRAS, TP53, CDKN2A/p16, and SMAD4. Sequencing, for example, is the preferable technique available for detecting KRAS mutations, whereas in situ immunochemistry is the main approach for detecting TP53 gene alteration. Nevertheless, the diagnosis of PDAC is still a clinical challenge, involving adequate acquisition of endoscopic ultrasound (EUS)-guided fine-needle aspiration (FNA) and specific pathological assessment from tissue architecture to specific biomolecular tests. The aim of the present review is to provide a complete overview of the current knowledge of the biology of pancreatic cancer as detected by the latest biomolecular techniques and, moreover, to propose a paradigm for strict teamwork collaboration in order to improve the correct use of diagnostic sources.
Collapse
Affiliation(s)
- Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Giulia Gibiino
- Medical Pathology, Department of Internal Medicine, Gastroenterology Division, Policlinico Universitario A. Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Adele Fornelli
- Anatomic Pathology Unit, AUSL of Bologna, Maggiore Hospital, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Italy
| | - Michela Visani
- Department of Medicine (DIMES), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna School of Medicine, Italy
| | - Giorgia Acquaviva
- Department of Medicine (DIMES), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna School of Medicine, Italy
| | - Matteo Fassan
- Department of Medicine, Anatomic Pathology, University of Padua, Padova, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Maggiore Hospital, Bologna, Italy
| | - Silvia Giovanelli
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Marco Bassi
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Stefania Ghersi
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Giovanni Tallini
- Department of Medicine (DIMES), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna School of Medicine, Italy
| | - Elio Jovine
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Antonio Gasbarrini
- Medical Pathology, Department of Internal Medicine, Gastroenterology Division, Policlinico Universitario A. Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Italy
| |
Collapse
|
14
|
Pettit C, Walston S, Wald P, Webb A, Williams TM. Molecular profiling of locally-advanced rectal adenocarcinoma using microRNA expression (Review). Int J Oncol 2017. [PMID: 28627602 DOI: 10.3892/ijo.2017.4045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Treatment for locally-advanced rectal cancer (LARC) typically consists of neoadjuvant chemoradiation followed by total mesorectal excision. Recently, there has been growing interest in non-operative management for patients who are medically-inoperable or wish to avoid surgical morbidity and permanent colostomy. Approximately 50% of patients who receive pre-operative neoadjuvant chemoradiation develop some degree of pathologic response. Approximately 10-20% of patients are found to have a complete pathologic response, a finding which has frequently been shown to predict better clinical outcomes, including local-regional control, distant metastasis and survival. Many recent studies have evaluated the role of molecular biomarkers in predicting response to neoadjuvant therapy. MicroRNAs (miRNAs) are an emerging class of biomarkers that have the potential to predict which patients are most likely to benefit from pre-operative therapy and from a selective surgical approach. Here, we review the published literature on microRNAs as prognostic and predictive biomarkers in rectal cancer after pre-operative therapy. In the future, the development of prospectively validated miRNA signatures will allow clinical implementation of miRNAs as prognostic and predictive signatures in LARC.
Collapse
Affiliation(s)
- Cory Pettit
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Steve Walston
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Patrick Wald
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Amy Webb
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Saraggi D, Fassan M, Mescoli C, Scarpa M, Valeri N, Michielan A, D'Incá R, Rugge M. The molecular landscape of colitis-associated carcinogenesis. Dig Liver Dis 2017; 49:326-330. [PMID: 28089111 DOI: 10.1016/j.dld.2016.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022]
Abstract
In spite of the well-established histopathological phenotyping of IBD-associated preneoplastic and neoplastic lesions, their molecular landscape remains to be fully elucidated. Several studies have pinpointed the initiating role of longstanding/relapsing inflammatory insult on the intestinal mucosa, with the activation of different pro-inflammatory cytokines (TNF-α, IL-6, IL-10, IFN-γ), chemokines and metabolites of arachidonic acid resulting in the activation of key transcription factors such as NF-κB. Longstanding inflammation may also modify the intestinal microbiota, prompting the overgrowth of genotoxic microorganisms, which may act as further cancer promoters. Most of the molecular dysregulation occurring in sporadic colorectal carcinogenesis is documented in colitis-associated adenocarcinoma too, but marked differences have been established in both their timing and prevalence. Unlike sporadic cancers, TP53 alterations occur early in IBD-related carcinogenesis, while APC dysregulation emerges mainly in the most advanced stages of the oncogenic cascade. From the therapeutic standpoint, colitis-associated cancers are associated with a lower prevalence of KRAS mutations than the sporadic variant. Epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs, are significantly involved in colitis-associated cancer development and progression. The focus now is on identifying diagnostic and prognostic biomarkers, with a view to ultimately designing patient-tailored therapies.
Collapse
Affiliation(s)
- Deborah Saraggi
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Claudia Mescoli
- Department of Surgical Oncology and Gastroenterology (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Marco Scarpa
- Istituto Oncologico Veneto, IOV-IRCCS, Surgical Oncology Unit, Padua, Italy
| | - Nicola Valeri
- Department of Molecular Pathology, The Institute of Cancer Research, London, UK; Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Andrea Michielan
- Department of Surgical Oncology and Gastroenterology (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Renata D'Incá
- Department of Surgical Oncology and Gastroenterology (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| |
Collapse
|
16
|
Millino C, Maretto I, Pacchioni B, Digito M, De Paoli A, Canzonieri V, D'Angelo E, Agostini M, Rizzolio F, Giordano A, Barina A, Rajendran S, Esposito G, Lanfranchi G, Nitti D, Pucciarelli S. Gene and MicroRNA Expression Are Predictive of Tumor Response in Rectal Adenocarcinoma Patients Treated With Preoperative Chemoradiotherapy. J Cell Physiol 2016; 232:426-435. [PMID: 27225591 DOI: 10.1002/jcp.25441] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023]
Abstract
Preoperative chemoradiotherapy (pCRT) followed by surgery is the standard treatment for locally advanced rectal cancer (LARC). However, tumor response to pCRT is not uniform, and there are no effective predictive methods. This study investigated whether specific gene and miRNA expression are associated with tumor response to pCRT. Tissue biopsies were obtained from patients before pCRT and resection. Gene and miRNA expression were analyzed using a one-color microarray technique that compares signatures between responders (R) and non-responders (NR), as measured based on tumor regression grade. Two groups composed of 38 "exploration cohort" and 21 "validation cohort" LARC patients were considered for a total of 32 NR and 27 R patients. In the first cohort, using SAM Two Class analysis, 256 genes and 29 miRNAs that were differentially expressed between the NR and R patients were identified. The anti-correlation analysis showed that the same 8 miRNA interacted with different networks of transcripts. The miR-630 appeared only with the NR patients and was anti-correlated with a single transcript: RAB5B. After PAM, the following eight transcripts were strong predictors of tumor response: TMEM188, ITGA2, NRG, TRAM1, BCL2L13, MYO1B, KLF7, and GTSE1. Using this gene set, an unsupervised cluster analysis was applied to the validation cohort and correctly assigned the patients to the NR or R group with 85.7% accuracy, 90% sensitivity, and 82% specificity. All three parameters reached 100% when both cohorts were considered together. In conclusion, gene and miRNA expression profiles may be helpful for predicting response to pCRT in LARC patients. J. Cell. Physiol. 232: 426-435, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caterina Millino
- Microarray Service, Department of Biology, CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - Isacco Maretto
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Beniamina Pacchioni
- Microarray Service, Department of Biology, CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - Maura Digito
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Antonino De Paoli
- Department of Radiation Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Vincenzo Canzonieri
- Department of Pathology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Edoardo D'Angelo
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy.,Nanoinspired Biomedicine Lab., Institute of Pediatric Research, Fondazione Città della Speranza, Padova, Italy
| | - Marco Agostini
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy.,Nanoinspired Biomedicine Lab., Institute of Pediatric Research, Fondazione Città della Speranza, Padova, Italy.,Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas
| | - Flavio Rizzolio
- Department of Translational Research, National Cancer Institute, CRO-IRCSS, Aviano, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Andrea Barina
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Senthilkumar Rajendran
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Giovanni Esposito
- Sperimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Gerolamo Lanfranchi
- Microarray Service, Department of Biology, CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - Donato Nitti
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
17
|
Fassan M, Saraggi D, Balsamo L, Cascione L, Castoro C, Coati I, De Bernard M, Farinati F, Guzzardo V, Valeri N, Zambon CF, Rugge M. Let-7c down-regulation in Helicobacter pylori-related gastric carcinogenesis. Oncotarget 2016; 7:4915-24. [PMID: 26701848 PMCID: PMC4826253 DOI: 10.18632/oncotarget.6642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/27/2015] [Indexed: 12/11/2022] Open
Abstract
Aberrant let-7c microRNA (miRNA) expression has been observed in Helicobacter pylori-related gastric cancer (GC) but fragmentary information is available on the let-7c dysregulation occurring with each phenotypic change involved in gastric carcinogenesis. Let-7c expression was assessed (qRT-PCR) in a series of 175 gastric biopsy samples representative of the whole spectrum of phenotypic changes involved in H. pylori-related gastric oncogenesis including: i) normal gastric mucosa, as obtained from dyspeptic controls (40 biopsy samples); ii) non-atrophic gastritis (40 samples); iii) atrophic-metaplastic gastritis (35 samples); iv) intra-epithelial neoplasia (30 samples); v) GC (30 samples). Let-7c expression was also tested in 20 biopsy samples obtained from 10 patients before and after H. pylori eradication therapy (median follow-up: 10 weeks; range: 7-14). The results obtained were further validated by in situ hybridization on multiple tissue specimens obtained from 5 surgically treated H. pylori-related GCs. The study also included 40 oxyntic biopsy samples obtained from serologically/histologically confirmed autoimmune gastritis (AIG: 20 corpus-restricted, non-atrophic; 20 corpus-restricted, atrophic-metaplastic). Let-7c expression dropped from non-atrophic gastritis to atrophic-metaplastic gastritis, intra-epithelial neoplasia, and invasive GC (p<0.001). It rose again significantly following H. pylori eradication (p=0.009). As in the H. pylori model, AIG also featured a significant let-7c down-regulation (p<0.001). The earliest phases of the two pathways to gastric oncogenesis (H. pylori-environmental and autoimmune host-related) are characterized by similar let-7c dysregulations. In H. pylori infection, let-7c down-regulation regresses after the bacterium's eradication, while it progresses significantly with the increasing severity of the histological lesions.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Deborah Saraggi
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Laura Balsamo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Luciano Cascione
- Institute of Oncology Research and Swiss Institute of Bioinformatics, Lymphoma & Genomics Group, Bellinzona, Switzerland
| | - Carlo Castoro
- Istituto Oncologico Veneto, IOV-IRCCS, Surgery Unit, Padua, Italy
| | - Irene Coati
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Vincenza Guzzardo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Nicola Valeri
- Molecular Pathology Division, Institute of Cancer Research, London and Sutton, UK
| | - Carlo Federico Zambon
- Department of Medicine (DIMED), Clinical Pathology Unit, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| |
Collapse
|