1
|
Li Y, Fan F, Liu Q. Cytisine-N-methylene-(5,7,4 '-trihydroxy)- isoflavone ameliorates ischemic stroke-induced brain injury in mouse by regulating the oxidative stress and BDNF-Trkb/Akt pathway. Eur J Pharmacol 2024; 974:176512. [PMID: 38493912 DOI: 10.1016/j.ejphar.2024.176512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND A novel compound Cytisine-N-methylene-(5,7,4'-trihydroxy)- isoflavone (LY01) found in the Sophora alopecuroides L is a neuroprotective agent. However, the effect and potential mechanism of LY01 treatment for ischemic stroke (IS) have not been fully elucidated. AIM OF THE STUDY The aim of this study is to demonstrate whether LY01 can rescue ischemic stroke-induced brain injury and oxygen-glucose deprivation/reperfusion (OGD/R). RESULTS Our results show that intragastric administration of LY01 improves ischemic stroke behaviors in mice, as demonstrated by neurological score, infarct volume, cerebral water content, rotarod test for activity. Compared with the model group, the ginkgo biloba extract (EGb) and LY01 reversed the neurological score, infarct volume, cerebral water content, rotarod test in model mice. Further analysis showed that the LY01 rescued oxidative stress in the model mice, which was reflected in the increased levels of catalase, superoxide dismutase, total antioxidant capacity and decreased levels of malondialdehyde in the serum of the model mice. Moreover, the expression of the brain-derived neurotrophic factor brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-Akt), Bax, Bcl-2, (p)-tropomysin related kinase B (p-Trkb) was restored and the expression of Bax, glial fibrillary acidic protein (GFAP) in the brains of the model mice was inhibited through LY01 treatment. In the polymerase chain reaction (PCR) data, after giving LY01, the expression in the brains of model mice was that, IL-10 increased and IL-1β, Bax, Bcl-2 decreased. Furthermore, the results indicated that LY01 improved cell viability, reactive oxygen species content, and mitochondrial membrane potential dissipation induced by OGD/R in primary culture of rat cortical neurons. Bax and caspase-3 activity was upregulated compared to the before after treatment with LY01. CONCLUSIONS Our study suggests that LY01 reversed ischemic stroke by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway and exerted a neuroprotective action against OGD/R injury via attenuation, a novel approach was suggested to treat ischemic stroke. Our observations justify the traditional use of LY01 for a treatment of IS in nervous system.
Collapse
Affiliation(s)
- Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China.
| |
Collapse
|
2
|
Li XS, Zhao J, Jiao ZH, Zhao XY, Hou SL, Zhao B. Portably and Visually Sensing Cytisine through Smartphone Scanning Based on a Post-Modified Luminescence Center Strategy in Zinc-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202401880. [PMID: 38407419 DOI: 10.1002/anie.202401880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Cytisine (CTS) is a useful medicine for treating nervous disorders and smoking addiction, and exploring a convenient method to detect CTS is of great significance for long-term/home medication to avoid the risk of poisoning, but it is full of challenges. Here, a modified metal-organic framework sensor Tb@Zn-TDA-80 with dual emission centers was prepared using a post-modified luminescence center strategy. The obtained Tb@Zn-TDA-80 can serve as a CTS sensor with high sensitivity and selectivity. To achieve portable detection, Tb@Zn-TDA-80 was further fabricated as a membrane sensor, M-Tb@Zn-TDA-80, which displayed an obvious CTS-responsive color change by simply dropping a CTS solution onto its surface. Benefiting from this unique functionality, M-Tb@Zn-TDA-80 successfully realized the visual detection and quantitative monitoring of CTS in the range of 5.26-52.6 mM by simply scanning the color with a smartphone. The results of nuclear magnetic resonance spectroscopy and theoretical computation illustrated that the high sensing efficiency of Tb@Zn-TDA-80 for CTS was attributed to the N-H⋅⋅⋅π and π⋅⋅⋅π interactions between the ligand and CTS. And luminescence quenching may result from the intramolecular charge transfer. This study provides a convenient method for ensuring long-term medication safety at home.
Collapse
Affiliation(s)
- Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Zhuo-Hao Jiao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Wang X, Yang J, Huang P, Wang D, Zhang Z, Zhou Z, Liang L, Yao R, Yang L. Cytisine: State of the art in pharmacological activities and pharmacokinetics. Biomed Pharmacother 2024; 171:116210. [PMID: 38271893 DOI: 10.1016/j.biopha.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Cytisine is a naturally occurring bioactive compound, an alkaloid mainly isolated from legume plants. In recent years, various biological activities of cytisine have been explored, showing certain effects in smoking cessation, reducing drinking behavior, anti-tumor, cardiovascular protection, blood sugar regulation, neuroprotection, osteoporosis prevention and treatment, etc. At the same time, cytisine has the advantages of high efficiency, safety, and low cost, has broad development prospects, and is a drug of great application value. However, a summary of cytisine's biological activities is currently lacking. Therefore, this paper summarizes the pharmacological action, mechanism, and pharmacokinetics of cytisine by referring to numerous databases, and analyzes the new and core targets of cytisine with the help of computer simulation technology, to provide reference for doctors.
Collapse
Affiliation(s)
- Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhibin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Leiqin Liang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Rongmei Yao
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Mrug G, Hodyna D, Metelytsia L, Kovalishyn V, Trokhimenko O, Bondarenko S, Kondratyuk K, Kozitskiy A, Frasinyuk M. Structure-Activity Relationship Prediction-Based Synthesis and Cytotoxicity Evaluation against the HEp-2 Laryngeal Carcinoma Cell of Isoflavone-Cytisine Mannich Bases. Chem Biodivers 2023; 20:e202300560. [PMID: 37477067 DOI: 10.1002/cbdv.202300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
QSAR analysis of previously synthesized and nature-inspired virtual isoflavone-cytisine hybrids against the HEp-2 laryngeal carcinoma cell lines was performed using the OCHEM web platform. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds such as 8-cytisinylmethyl derivatives of 5,7- and 6,7-dihydroxyisoflavones. The synthetic procedure for selective aminomethylation of 5,7-dihydroxyisoflavones with cytisine was developed. In vitro testing identified compound 7 f with cisplatin-level cytotoxicity against HEp-2 cell lines and compound 10 which was twice active than cisplatin after 72 h of incubation.
Collapse
Affiliation(s)
- Galyna Mrug
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Diana Hodyna
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Larysa Metelytsia
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Vasyl Kovalishyn
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Olena Trokhimenko
- Shupyk National Healthcare University of Ukraine, Kyiv, 04112, Ukraine
| | - Svitlana Bondarenko
- Department of Food Chemistry, National University of Food Technologies, Kyiv, 01601, Ukraine
| | - Kostyantyn Kondratyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | | | - Mykhaylo Frasinyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
- Enamine Ltd., Kyiv, 02094, Ukraine
| |
Collapse
|
5
|
Yuan W, Huang Z, Xiao S, Zhang Y, Chen W, Ye J, Xu X, Zu X, Shen Y. Systematic analysis of chemical profiles of Sophorae tonkinensis Radix et Rhizoma in vitro and in vivo by UPLC-Q-TOF-MS E. Biomed Chromatogr 2022; 36:e5357. [PMID: 35191054 DOI: 10.1002/bmc.5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/06/2022]
Abstract
Sophorae tonkinensis Radix et Rhizoma (S. tonkinensis) has been recorded as a "poisonous" Chinese herbal medicine in Chinese Pharmacopoeia 2020. The clinical reaction reports of S. tonkinensis indicated its neurotoxicity, there exists still dispute about its toxic substances. At present, there is no report on the blood and brain prototype research of S. tonkinensis. Most studies focused on alkaloids, and less on other compounds. Moreover, the constituents absorbed into the blood and brain were rarely investigated so far. In this study, a rapid and efficient qualitative analysis method was established by UPLC-Q-TOF-MSE to characterize S. tonkinensis ingredients and those entering into the rat body after oral administration. A total of 91 compounds were identified in S. tonkinensis, of which 28 were confirmed by the standards. 30 and 19 prototypes were also firstly identified in rat blood and brain, respectively. It was found that except for alkaloids, most flavonoids were detected in the rat body and distributed in the cerebrospinal fluid, suggesting that flavonoids may be one of the important toxic or effective substances of S. tonkinensis, which provides new clues and data for clarifying its toxicity or efficacy of the medical plant.
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhengrui Huang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, China
| | - Sijia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuhao Zhang
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ji Ye
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xike Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xianpeng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yunheng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
7
|
Sánchez-Velasco OA, Saavedra-Olavarría J, Araya-Santelices DAA, Hermosilla-Ibáñez P, Cassels BK, Pérez EG. Synthesis of N-Arylcytisine Derivatives Using the Copper-Catalyzed Chan-Lam Coupling. JOURNAL OF NATURAL PRODUCTS 2021; 84:1985-1992. [PMID: 34213336 DOI: 10.1021/acs.jnatprod.1c00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Arylcytisine derivatives are quite rare. We report here a practical methodology to obtain these compounds. Using the copper-catalyzed Chan-Lam coupling, we synthesized new N-arylcytisine derivatives at room temperature, in air and using inexpensive phenylboronic acids. Cytisine and 3,5-dihalocytisines can act as substrates, and among the products, the p-Br-derivative 2r was used as a substrate to obtain biaryl derivatives under Pd-coupling conditions; ester 2j was converted into its acid and amide derivatives using classical carbodiimide conditions. This shows that the Chan-Lam cross-coupling reaction can be included as a versatile synthetic tool in the derivatization of natural products.
Collapse
Affiliation(s)
- Oriel A Sánchez-Velasco
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | | | - Daniel A A Araya-Santelices
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Patricio Hermosilla-Ibáñez
- Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago de Chile (USACh), Santiago 9170022, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170022, Chile
| | - Bruce K Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
8
|
Zhang Y, Lv M, Xu H. Insecticidal activity of twin compounds from podophyllotoxin and cytisine. Bioorg Med Chem Lett 2021; 43:128104. [PMID: 33984477 DOI: 10.1016/j.bmcl.2021.128104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022]
Abstract
To explore natural-product-based insecticide candidates, and high value-added application of natural plants in agriculture, a series of twin compounds were prepared from two natural products podophyllotoxin and cytisine, which are isolated from the plants Podophyllum hexandrum and Thermopsis lanceolata, respectively. Compounds IIa (X = Cl, Y = R1 = R2 = H), IIIc (X = Y = R1 = R2 = Cl) and IVd (X = R1 = R2 = Br, Y = H) exhibited >2-fold potent insecticidal activity of podophyllotoxin against armyworm with FMRs greater than 60%. SARs were also observed. It is noteworthy that the idea of twin insecticides was addressed for the first time. We hope this idea will be conducive to design new twin insecticidal agents, and lay the foundation for future high value-added application of the plants P. hexandrum and T. lanceolata as potentially botanical pesticides in agriculture.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China
| | - Min Lv
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China.
| | - Hui Xu
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China.
| |
Collapse
|
9
|
Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacol Res 2021; 170:105700. [PMID: 34087351 DOI: 10.1016/j.phrs.2021.105700] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Cytisine, a natural bioactive compound that is mainly isolated from plants of the Leguminosae family (especially the seeds of Laburnum anagyroides), has been marketed in central and eastern Europe as an aid in the clinical management of smoking cessation for more than 50 years. Its main targets are neuronal nicotinic acetylcholine receptors (nAChRs), and pre-clinical studies have shown that its interactions with various nAChR subtypes located in different areas of the central and peripheral nervous systems are neuroprotective, have a wide range of biological effects on nicotine and alcohol addiction, regulate mood, food intake and motor activity, and influence the autonomic and cardiovascular systems. Its relatively rigid conformation makes it an attractive template for research of new derivatives. Recent studies of structurally modified cytisine have led to the development of new compounds and for some of them the biological activities are mediated by still unidentified targets other than nAChRs, whose mechanisms of action are still being investigated. The aim of this review is to describe and discuss: 1) the most recent pre-clinical results obtained with cytisine in the fields of neurological and non-neurological diseases; 2) the effects and possible mechanisms of action of the most recent cytisine derivatives; and 3) the main areas warranting further research.
Collapse
|
10
|
Koval'skaya AV, Petrova PR, Tsypyshev DO, Lobov AN, Tsypysheva IP. Thionation of quinolizidine alkaloids and their derivatives via Lawesson's reagent. Nat Prod Res 2021; 36:3538-3543. [PMID: 33397149 DOI: 10.1080/14786419.2020.1868460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Direct thionation of quinolizidine alkaloids (-)-cytisine, methylcytisine, thermopsine and some of their carbonyl derivatives was realized. It was established that carrying out of the reaction in the boiling toluene with 0.5 eq. of Lawesson's reagent (LR) is most effective for synthesis of thio analogues of methyl-, allyl-, benzylcytisine and thermopsine. It was found, that formation of thioamides is preferable in the case with starting 3-carboxamides of (-)-cytisine or 2-oxo and 4-oxo derivatives of methylcytisine; and an excess of LR is needed for their exhaustive thionation. It was shown, that thionation of 'cytisine substituted' urea and thiourea, as well as Diels-Alder adducts of methylcitisine with phenylmaleimide on basis of this approach was not quite successful: only thionation of the 2-pyridone core has occurred. It should be noted that transformation of urea and thiourea is complicated by side reactions leading to low yields of thio products, and the result of LR interaction with mentioned above diastereomeric Diels-Alder adducts depends on their stereochemistry and thermodynamic stability under reaction conditions.
Collapse
Affiliation(s)
- Alena V Koval'skaya
- Ufa Institute of Chemistry of the Ufa Federal Research Center of Russian Academy of Sciences, Ufa, Russian Federation
| | - Polina R Petrova
- Ufa Institute of Chemistry of the Ufa Federal Research Center of Russian Academy of Sciences, Ufa, Russian Federation
| | - Dmitry O Tsypyshev
- Ufa Institute of Chemistry of the Ufa Federal Research Center of Russian Academy of Sciences, Ufa, Russian Federation.,Bashkir State University, Ufa, Russian Federation
| | - Alexander N Lobov
- Ufa Institute of Chemistry of the Ufa Federal Research Center of Russian Academy of Sciences, Ufa, Russian Federation
| | - Inna P Tsypysheva
- Ufa Institute of Chemistry of the Ufa Federal Research Center of Russian Academy of Sciences, Ufa, Russian Federation
| |
Collapse
|
11
|
Bondarenko SP, Mrug GP, Vinogradova VI, Frasinyuk MS. Synthesis of New Conjugates of Coumarins with Anabasine and Cytisine. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Bondarenko SP, Makarenko OG, Vinogradova VI, Frasinyuk MS. Synthesis of 7-(N-12-Cytisinylpropoxy)Isoflavones. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|