1
|
Pennamuthiriyan A, Rengan R, Malecki JG. Sustainable Synthesis of Substituted 1,3,5-Triazines by [ONO]-Pincer-Supported Nickel(II) Complexes via an Acceptorless Dehydrogenative Coupling Strategy. J Org Chem 2025; 90:183-196. [PMID: 39695346 DOI: 10.1021/acs.joc.4c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A facile, cost-effective, and sustainable synthesis of substituted triazines from primary alcohols by newly synthesized nickel pincer-type complexes (1-3) has been described. Herein, we report the synthesis of a set of three well-defined Ni(II) O^N^O pincer-type complexes, structurally characterized by analytical, spectral, and X-ray diffraction techniques. Further, the nickel complexes are explored as efficient catalysts (4 mol %) for the construction of 2,4,6-substituted 1,3,5-triazines from readily available alcohols via an acceptorless dehydrogenative coupling (ADC) strategy. A wide range of substituted triazine derivatives (33 examples) has been synthesized from the coupling of alcohols and benzamidine/guanidine hydrochloride with a maximum isolated yield of 92% under mild conditions, with eco-friendly H2O and H2 gas as the only byproducts. A plausible mechanism has been proposed based on a sequence of control experiments. Interestingly, the short synthesis of the antiulcer drug irsogladine and the large-scale synthesis of 2,4-diphenyl-6-(p-tolyl)-1,3,5-triazine highlight the convenience of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| |
Collapse
|
2
|
Jahan H, Tufail P, Shamim S, Mohammed Khan K, Gennari M, Pizzi M, Iqbal Choudhary M. 1,2,4-Triazine derivatives as agents for the prevention of AGE-RAGE-mediated inflammatory cascade in THP-1 monocytes: An approach to prevent inflammation-induced late diabetic complications. Int Immunopharmacol 2024; 142:113145. [PMID: 39303537 DOI: 10.1016/j.intimp.2024.113145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/29/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Monocytes mainly contribute to the development and progression of vascular inflammatory conditions via the M1 polarization. The elevated levels of advanced glycation end products (AGEs) in diabetic environment lead to severe inflammation, and the release of pro-inflammatory mediators. This shifts the balance towards the pro-inflammatory state of monocytes. OBJECTIVE The current study was aimed to determine the antiglycation activity of 1,2,4-triazine derivatives, and study of their molecular basis in regulating the AGEs-mediated inflammatory responses in THP-1 monocytes. METHODS Primarily, the antiglycation activity of a series of 1,2,4-triazine derivatives was evaluated against MGO-AGEs in vitro. The toxicity of antiglycation compounds was determined by a metabolic assay, using human hepatocyte (HepG2) and monocyte (THP-1) cell lines. DCFH-DA probe was used to evaluate the antioxidant potential of the compounds. Immunocytochemistry, Western blotting, and ELISA techniques were employed to determine the levels of pro-inflammatory markers (NF-κB, RAGE, COX-1, COX-2, and PGE2) in THP-1 monocytes under in-vitro hyperglycemic conditions. RESULTS Results indicate that the triazine derivatives 22, and 23 were the most potent antiglycation agents among the entire series, while non-toxic to HepG2, and THP-1 cells. Both compounds inhibited the AGEs-induced upstream and downstream signaling of NADPH oxidase and inflammatory mediators p38 and NF-κβ, respectively, in THP-1 monocytes. They also inhibited the induction of COX-2 and its product PGE2 by suppressing AGE-RAGE interactions. Moreover, compounds 22, and 23 reversed the AGEs-mediated suppression of COX-1 in THP-1 monocytes. CONCLUSION In conclusion, 1,2,4-triazine derivatives 22, and 23 have the potential to suppress inflammatory responses under the diabetic environment through AGE-RAGE-NF-κβ/p38 nexus in THP-1 monocytes. These findings identify triazines 22, and 23 as compelling candidates for drug development, potentially beneficial for the diabetic patients with an elevated risk of vascular complications, such as atherosclerosis.
Collapse
Affiliation(s)
- Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Priya Tufail
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahbaz Shamim
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Michele Gennari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
3
|
Thaher BA, Al-Masri I, Wahedy K, Morjan R, Aliwaini S, Al Atter IM, Elmabhouh AA, Ibwaini AKA, Alkhaldi SL, Qeshta B, Jacob C, Deigner HP. Synthesis and bioassay of 3-Aryl -1-(pyridin-4-yl)benzo[4,5]imidazo[1,2-d][1,2,4]- triazin-4(3H)-ones as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1797-1810. [PMID: 36856800 DOI: 10.1007/s00210-023-02433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Four novel 3-Aryl -1-(pyridin-4-yl)benzo[4,5]imidazo[1,2-d][1,2,4]- triazin-4(3H)-ones derivatives (C1 to C4) have been designed, synthesized, and evaluated for their anticancer activity. The structure of compounds was characterized by IR,1H NMR, 13C NMR and high-resolution mass (HRMS). The crystal structures of C1, C2 and C4 were previously determined by single-crystal X-ray analysis.The results from docking experiments with EGFR suggested the binding of the compounds at the active site of EGFR. The new compounds exhibited different levels of cytotoxicity against HCC1937 and MCF7 breast cancer cells. Results of the MTT assay identified C3 as the most cytotoxic of the series against both MCF7 and HCC1937 breast cancer cell lines with IC50 values of 36.4 and 48.2 µM, respectively. In addition to its ability to inhibit cell growth and colony formation ability, C3 also inhibited breast cancer cell migration. Western blotting results showed that C3 treatment inhibited EGFR signaling and induced cell cycle arrest and apoptosis as indicated by the low level of p-EGFR and p-AKT and the increasing levels of p53, p21 and cleaved PARP. Our work represents a promising starting point for the development of a new series of compounds targeting cancer cells.
Collapse
Affiliation(s)
- Bassam Abu Thaher
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Ihab Al-Masri
- Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Kanan Wahedy
- Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Rami Morjan
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Saeb Aliwaini
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine.
| | - Iman Mahmoud Al Atter
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Aayat Ahmed Elmabhouh
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Areej Khaled Al Ibwaini
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Saba Luay Alkhaldi
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Basem Qeshta
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123, Saarbruecken, Germany
| | - Hans-Peter Deigner
- Faculty of Medical and Life Sciences, Hochschule Furtwangen (HFU), Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany.
- Fraunhofer IZI, Perlickstrasse 1, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Dong G, Jiang Y, Zhang F, Zhu F, Liu J, Xu Z. Recent updates on 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids (2017-present): The anticancer activity, structure-activity relationships, and mechanisms of action. Arch Pharm (Weinheim) 2023; 356:e2200479. [PMID: 36372519 DOI: 10.1002/ardp.202200479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
Cancer is one of the leading causes of death across the world, and the prevalence and mortality rates of cancer will continue to grow. Chemotherapeutics play a critical role in cancer therapy, but drug resistance and side effects are major hurdles to effective treatment, evoking an immediate need for the discovery of new anticancer agents. Triazines including 1,2,3-, 1,2,4-, and 1,3,5-triazine have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Mechanistically, triazine derivatives could interfere with various signaling pathways to induce cancer cell death. Hence, triazine derivatives possess potential in vitro and in vivo efficacy against diverse cancers. In particular, triazine hybrids are able to overcome drug resistance and reduce side effects. Moreover, several triazine hybrids such as brivanib (indole-containing pyrrolo[2,1-f][1,2,4]triazine), gedatolisib (1,3,5-triazine-urea hybrid), and enasidenib (1,3,5-triazine-pyridine hybrid) have already been available in the market. Accordingly, triazine hybrids are useful scaffolds for the discovery of novel anticancer chemotherapeutics. This review focuses on the anticancer activity of 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids, together with the structure-activity relationships and mechanisms of action developed from 2017 to the present. The enriched structure-activity relationships may be useful for further rational drug development of triazine hybrids as potential clinical candidates.
Collapse
Affiliation(s)
- Gaoli Dong
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Yingchun Jiang
- College of Medicine, Huanghuai University, Zhumadian, China
| | - Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Fengyun Zhu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Junna Liu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| | - Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| |
Collapse
|
5
|
Rani Kumar N, Agrawal AR. Advances in the Chemistry of 2,4,6-Tri(thiophen-2-yl)-1,3,5-triazine. ChemistryOpen 2023; 12:e202200203. [PMID: 36599693 PMCID: PMC9812756 DOI: 10.1002/open.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Heterocyclic systems are now considered to be an integral part of material chemistry. Thiophene, selenophene, furan, pyrrole, carbazole, triazine and others are some such examples worth mentioning. 2,4,6-Tri(thiophen-2-yl)-1,3,5-triazine is a C3h -symmetric system with thiophene as the donor unit and s-triazine as the acceptor unit. This review gives an insight into the advances made in the thienyl-triazine chemistry over the past two to three decades. The synthetic pathways for arriving at this system and all its important derivatives are provided. The major focus is on the materials synthesized using the thienyl-triazine system, including star molecules, linear and hyperbranched polymers, porous materials and their diverse applications. This review will play a catalytic role for new dimensions to be explored in thienyl-triazine chemistry.
Collapse
Affiliation(s)
- Neha Rani Kumar
- Department of Chemistry Dhemaji CollegeDhemaji787057, AssamIndia
| | - Abhijeet R. Agrawal
- Institute of ChemistryThe Hebrew University of Jerusalem Edmond J. Safra CampusJerusalem91904Israel
| |
Collapse
|
6
|
Controlling the preferred nitrogen site in 1,2,3-triazine to bind with stannylenes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Jain S, Kumawat J, Jain P, Shruti, Malik P, Dwivedi J, Kishore D. Metal-catalyzed synthesis of triazine derivatives. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Gharat R, Prabhu A, Khambete MP. Potential of triazines in Alzheimer's disease: A versatile privileged scaffold. Arch Pharm (Weinheim) 2022; 355:e2100388. [DOI: 10.1002/ardp.202100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Ruchita Gharat
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| | - Mihir. P. Khambete
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| |
Collapse
|
9
|
Goudarzi A, Ghassemzadeh M, Saeidifar M, Aghapoor K, Mohsenzadeh F, Neumüller B. In vitro cytotoxicity and antibacterial activity of [Pd(AMTTO)(PPh 3) 2]: a novel promising palladium( ii) complex. NEW J CHEM 2022. [DOI: 10.1039/d1nj05545c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and characterization of a novel palladium complex based on a bioactive 3-mercapto-1,2,4-triazine derivative have been investigated. The Pd(ii) complex showed excellent anticancer and antibacterial activity.
Collapse
Affiliation(s)
- Atousa Goudarzi
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Mitra Ghassemzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Kioumars Aghapoor
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Farshid Mohsenzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|