1
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Hu J, Dai C, Ding Z, Pan Y, Lu L, Bao J, Zheng J. IKBIP promotes tumor development via the akt signaling pathway in esophageal squamous cell carcinoma. BMC Cancer 2024; 24:759. [PMID: 38914958 PMCID: PMC11197280 DOI: 10.1186/s12885-024-12510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide. Inhibitor of kappa B kinase interacting protein (IKBIP) has been reported to promote glioma progression, but its role in other cancers remains unclear. This study aimed to investigate the role of IKBIP and its underlying molecular mechanisms in ESCC. METHODS The mRNA expression of IKBIP was analyzed using multiple cancer databases. Immunohistochemistry was performed to detect IKBIP protein expression in ESCC tissues and adjacent normal tissues, and Kaplan‒Meier survival and Cox regression analyses were carried out. The effects of IKBIP knockdown (or overexpression) on ESCC cells were detected by cell viability, cell migration, flow cytometry and Western blot assays. LY-294002 was used to validate the activation of the AKT signaling pathway by IKBIP. Finally, the role of IKBIP in ESCC was verified in a xenograft model. RESULTS Both bioinformatics analysis and immunohistochemistry indicated that IKBIP expression in ESCC tissues was significantly increased and was associated with the prognosis of ESCC patients. In vitro experiments revealed that IKBIP knockdown significantly inhibited the proliferation and migration of ESCC cells, and induced cell apoptosis and G1/S phase arrest. Molecular mechanism results showed that the AKT signaling pathway was further activated after IKBIP overexpression, thereby increasing the proliferation and migration abilities of ESCC cells. In vivo study confirmed that IKBIP promoted the initiation and development of ESCC tumors in mice. CONCLUSIONS IKBIP plays a tumor-promoting role in ESCC and may serve as a predictive biomarker and a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jiannan Hu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Chuanjing Dai
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Zhaoji Ding
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Yixiao Pan
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Lingxiao Lu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Jiaqian Bao
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Jingmin Zheng
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China.
| |
Collapse
|
3
|
Wei C, Shi M, Wang Z, Lan W, Feng N, Zhang F, Liu J, Lang JY, Lin W, Ma W. Epiberberine inhibits bone metastatic breast cancer-induced osteolysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118039. [PMID: 38479545 DOI: 10.1016/j.jep.2024.118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The anti-tumor related diseases of Coptidis Rhizoma (Huanglian) were correlated with its traditional use of removing damp-heat, clearing internal fire, and counteracting toxicity. In the recent years, Coptidis Rhizoma and its components have drawn extensive attention toward their anti-tumor related diseases. Besides, Coptidis Rhizoma is traditionally used as an anti-inflammatory herb. Epiberberine (EPI) is a significant alkaloid isolated from Coptidis Rhizoma, and exhibits multiple pharmacological activities including anti-inflammatory. However, the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis has not been demonstrated clearly. AIM OF THE STUDY Bone metastatic breast cancer can lead to osteolysis via inflammatory factors-induced osteoclast differentiation and function. In this study, we try to analyze the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis. METHODS To evaluate whether epiberberine could suppress bone metastatic breast cancer-induced osteolytic damage, healthy female Balb/c mice were intratibially injected with murine triple-negative breast cancer 4T1 cells. Then, we examined the inhibitory effect and underlying mechanism of epiberberine on breast cancer-induced osteoclastogenesis in vitro. Xenograft assay was used to study the effect of epiberberine on breast cancer cells in vivo. Moreover, we also studied the inhibitory effects and underlying mechanisms of epiberberine on RANKL-induced osteoclast differentiation and function in vitro. RESULTS The results show that epiberberine displayed potential therapeutic effects on breast cancer-induced osteolytic damage. Besides, our results show that epiberberine inhibited breast cancer cells-induced osteoclast differentiation and function by inhibiting secreted inflammatory cytokines such as IL-8. Importantly, we found that epiberberine directly inhibited RANKL-induced differentiation and function of osteoclast without cytotoxicity. Mechanistically, epiberberine inhibited RANKL-induced osteoclastogensis via Akt/c-Fos signaling pathway. Furthermore, epiberberine combined with docetaxel effectively protected against bone loss induced by metastatic breast cancer cells. CONCLUSIONS Our findings suggested that epiberberine may be a promising natural compound for treating bone metastatic breast cancer-induced osteolytic damage by inhibiting IL-8 and is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Chengming Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Meina Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Wenjian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Jiachen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Jing-Yu Lang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau.
| |
Collapse
|
4
|
Ghasemi F, Nili-Ahmadabadi A, Omidifar N, Nili-Ahmadabadi M. Protective potential of thymoquinone against cadmium, arsenic, and lead toxicity: A short review with emphasis on oxidative pathways. J Appl Toxicol 2023; 43:1764-1777. [PMID: 36872630 DOI: 10.1002/jat.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Heavy metals are among the most important environmental pollutions used in various industries. Their extensive use has increased human susceptibility to different chronic diseases. Toxic metal exposure, especially cadmium, arsenic, and lead, causes oxidative damages, mitochondrial dysfunction, and genetic and epigenetic modifications. Meanwhile, thymoquinone (TQ) is an effective component of Nigella sativa oil that plays an important role in preventing the destructive effects of heavy metals. The present review discusses how TQ can protect various tissues against oxidative damage of heavy metals. This review is based on the research reported about the protective effects of TQ in the toxicity of heavy metals, approximately the last 10 years (2010-2021). Scientific databases, including Scopus, Web of Science, and PubMed, were searched using the following keywords either alone or in combination: cadmium, arsenic, lead, TQ, and oxidative stress. TQ, as a potent antioxidant, can distribute to cellular compartments and prevent oxidative damage of toxic metals. However, depending on the type of toxic metal and the carrier system used to release TQ in biological systems, its therapeutic dosage range may be varied.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nili-Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Nguyen V, Zhang Q, Pan F, Jin Q, Sun M, Tangthianchaichana J, Du S, Lu Y. Zi-Su-Zi decoction improves airway hyperresponsiveness in cough-variant asthma rat model through PI3K/AKT1/mTOR, JAK2/STAT3 and HIF-1α/NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116637. [PMID: 37187363 DOI: 10.1016/j.jep.2023.116637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cough-variant asthma (CVA) is one of the most common causes of chronic cough. Its pathogenesis is closely related to chronic airway inflammation and airway hyperresponsiveness. CVA belongs to the category of "wind cough" in Traditional Chinese medicine (TCM). Zi-Su-Zi decoction (ZSD) is a Chinese herbal formula that is clinically used for the treatment of cough and asthma, especially CVA. However, the mechanism of action remains unclear. AIM OF THE STUDY In this study, we aimed to explore the potential mechanism by which ZSD improves CVA airway hyperresponsiveness. MATERIALS AND METHODS The targets of ZSD in CVA were studied using a Network pharmacology. The main chemical components of ZSD were detected and analyzed using ultra-high-pressure liquid chromatography (UHPLC-MS/MS). In animal experiments, the rat model of CVA was established using Ovalbumin (OVA)/Aluminum hydroxide (AL(OH)3) sensitization. Moreover, the experiment also evaluated cough symptoms, percentage of eosinophils (EOS%), pulmonary function tests, histopathological sections, blood cytokine levels, mRNA and protein levels. RESULTS The results showed that Network pharmacology suggested 276 targets of ZSD and CVA and found that ZSD treatment with CVA was closely related to the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. UHPLC-MS/MS revealed that ZSD contained 52 main chemical components. Compared with the model group, the cough symptoms of the rats in the different ZSD concentration groups were relieved, the EOS% index was lowered, and body weight was increased. HE staining showed that ZSD reduced airway inflammation, edema and hyperplasia, thereby improving the pathological structure of lung tissue, and the effect of high-dose ZSD was especially significant. Our most important finding was that ZSD blocked the entry of hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription-3 (STAT3) and nuclear factor kappa-B (NF-κB) into the nucleus by interfering with PI3K/AKT1/mechanistic target of rapamycin (mTOR), and janus kinase 2 (JAK2) signaling factors. Consequently, inhibiting the release of cytokines and immunoglobulin-E, thereby reducing airway hyperresponsiveness (AHR) and partially reverses airway remodeling. CONCLUSIONS This study showed that ZSD can improve airway hyperresponsiveness and partially reverse airway remodeling by inhibiting the PI3K/AKT1/mTOR, JAK2/STAT3 and HIF-1α/NF-κB signaling pathways. Therefore, ZSD is an effective prescription for the treatment of CVA.
Collapse
Affiliation(s)
- Vietdung Nguyen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Qing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Fei Pan
- School of Clinical Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Qi Jin
- School of Clinical Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Meng Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Jakkree Tangthianchaichana
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China; Chulabhorn International College of Medicine, Thammasat University, 12121, Pathum Thani, Thailand
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
6
|
Melloni M, Sergi D, Simioni C, Passaro A, Neri LM. Microalgae as a Nutraceutical Tool to Antagonize the Impairment of Redox Status Induced by SNPs: Implications on Insulin Resistance. BIOLOGY 2023; 12:449. [PMID: 36979141 PMCID: PMC10044993 DOI: 10.3390/biology12030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Microalgae represent a growing innovative source of nutraceuticals such as carotenoids and phenolic compound which are naturally present within these single-celled organisms or can be induced in response to specific growth conditions. The presence of the unfavourable allelic variant in genes involved in the control of oxidative stress, due to one or more SNPs in gene encoding protein involved in the regulation of redox balance, can lead to pathological conditions such as insulin resistance, which, in turn, is directly involved in the pathogenesis of type 2 diabetes mellitus. In this review we provide an overview of the main SNPs in antioxidant genes involved in the promotion of insulin resistance with a focus on the potential role of microalgae-derived antioxidant molecules as novel nutritional tools to mitigate oxidative stress and improve insulin sensitivity.
Collapse
Affiliation(s)
- Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Yang X, Ren H, Xu Y, Peng X, Yu W, Shen Z. Combination of radiotherapy and targeted therapy for HER2-positive breast cancer brain metastases. Eur J Med Res 2023; 28:27. [PMID: 36642742 PMCID: PMC9841677 DOI: 10.1186/s40001-022-00894-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/09/2022] [Indexed: 01/17/2023] Open
Abstract
Radiotherapy and targeted therapy are essential treatments for patients with brain metastases from human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, the combination of radiotherapy and targeted therapy still needs to be investigated, and neurotoxicity induced by radiotherapy for brain metastases has also become an important issue of clinical concern. It remained unclear how to achieve the balance of efficacy and toxicity with the application of new radiotherapy techniques and new targeted therapy drugs. This article reviews the benefits and potential risk of combining radiotherapy and targeted therapy for HER2-positive breast cancer with brain metastases.
Collapse
Affiliation(s)
- Xiaojing Yang
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China ,grid.16821.3c0000 0004 0368 8293Department of Radiation Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanru Ren
- grid.8547.e0000 0001 0125 2443Department of Orthopedics, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yi Xu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| | - Xue Peng
- grid.16821.3c0000 0004 0368 8293Department of Breast Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxi Yu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| | - Zan Shen
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| |
Collapse
|
8
|
A Whole New Comprehension about ncRNA-Encoded Peptides/Proteins in Cancers. Cancers (Basel) 2022; 14:cancers14215196. [PMID: 36358616 PMCID: PMC9654040 DOI: 10.3390/cancers14215196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The advent of bioinformatics and high-throughput sequencing have disclosed the complexity of ORFs in ncRNAs. Thus, there is a dire need to deep into the real role of ncRNA-encoded proteins/peptides. Considerable progress has been achieved in several fields, ranging from the mechanism translation of ORFs in ncRNAs to various reliable detection means and experimental approaches. Several studies have been stressing functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, which are helpful for us to understand the specific biological regulating procedure. Innovative research on animal models confirms the potential of clinical applications, such as being tumor biomarkers, antitumor drugs and cancer vaccines. In this review, we conclude the latest discoveries of ncRNA-encoded peptides/proteins, we are looking forwards to accelerating the pace of detection and diagnosis development in cancers. Abstract It is generally considered that non-coding RNAs do not encode proteins; however, more recently, studies have shown that lncRNAs and circRNAs have ORFs which are regions that code for peptides/protein. On account of the lack of 5′cap structure, translation of circRNAs is driven by IRESs, m6A modification or through rolling amplification. An increasing body of evidence have revealed different functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, including regulation of signal transduction (Wnt/β-catenin signaling, AKT-related signaling, MAPK signaling and other signaling), cellular metabolism (Glucose metabolism and Lipid metabolism), protein stability, transcriptional regulation, posttranscriptional regulation (regulation of RNA stability, mRNA splicing and translation initiation). In addition, we conclude the existing detection technologies and the potential of clinical applications in cancer therapy.
Collapse
|
9
|
Fang H, Li H, Zhang H, Wang S, Xu S, Chang L, Yang Y, Cui R. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: A novel vital oncogene or tumor suppressor gene in cancers. Front Pharmacol 2022; 13:1019312. [PMID: 36313354 PMCID: PMC9614034 DOI: 10.3389/fphar.2022.1019312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 08/22/2023] Open
Abstract
The reprogramming of cellular metabolism is frequently linked to tumorigenesis. Glucose, fatty acids, and amino acids are the specific substrates involved in how an organism maintains metabolic equilibrium. The HADH gene codes for the short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADH), a crucial enzyme in fatty acid oxidation that catalyzes the third phase of fatty acid oxidation in mitochondria. Increasing data suggest that HADH is differentially expressed in various types of malignancies and is linked to cancer development and progression. The significance of HADH expression in tumors and its potential mechanisms of action in the onset and progression of certain cancers are summarized in this article. The possible roles of HADH as a target and/or biomarker for the detection and treatment of various malignancies is also described here.
Collapse
Affiliation(s)
- He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hanyang Li
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Xu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Sanapour N, Malakoti F, Shanebandi D, Targhazeh N, Yousefi B, Soleimanpour J, Majidinia M. Thymoquinone Augments Methotrexate-Induced Apoptosis on Osteosarcoma Cells. Drug Res (Stuttg) 2022; 72:220-225. [PMID: 35385883 DOI: 10.1055/a-1775-7908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Osteosarcoma (OS) as the most frequent primary bone malignancy in children and adolescents has a short survival rate in advanced stages. Alternative herbal medicines with fewer side effects or the potency to protect common therapy's side effects can be helpful in combinational therapies. Herein, we aim to explore the effects of Thymoquinone (TQ) combined with Methotrexate (MTX) on Saos-2 cells apoptosis. METHODS The effects of TQ and MTX alone or in combination on Saos-2 cell viability were measured by MTT assay. Real-time PCR was applied for the measurement of Bax, BCL-2, and caspase-9 mRNA expression. Apoptosis evaluation was conducted by flow cytometry. RESULTS TQ improves the cytotoxic effects of MTX on Saos-2 cells proliferation at lower doses. Indeed, the IC50 of MTX decreased from 26 μM to 15 μM when it combined with TQ. TQ and MTX can induce the expression level of pro-apoptotic factors, Bax and caspase-9 while inhibiting anti-apoptotic protein BCL-2. Moreover, the combination of TQ and MTX potentiates apoptosis to 73%, compared to either TQ (48%) or MTX (53%) treated cells. CONCLUSION The co-treatment of TQ and MTX is associated with the up-regulation of apoptotic factors and down-regulation of anti-apoptotic factors, conducting apoptosis aggravation and OS cell death.
Collapse
Affiliation(s)
- Narjes Sanapour
- Department of Clinical Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Darioush Shanebandi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Iran
| | - Niloufar Targhazeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Iran
| | - Jafar Soleimanpour
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Iran.,Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, Alshehri M, Mishra S, Alhajri N. Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15040408. [PMID: 35455405 PMCID: PMC9026861 DOI: 10.3390/ph15040408] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone (TQ) possesses anticonvulsant, antianxiety, antidepressant, and antipsychotic properties. It could be utilized to treat drug misuse or dependence, and those with memory and cognitive impairment. TQ protects brain cells from oxidative stress, which is especially pronounced in memory-related regions. TQ exhibits antineurotoxin characteristics, implying its role in preventing neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. TQ’s antioxidant and anti-inflammatory properties protect brain cells from damage and inflammation. Glutamate can trigger cell death by causing mitochondrial malfunction and the formation of reactive oxygen species (ROS). Reduction in ROS production can explain TQ effects in neuroinflammation. TQ can help prevent glutamate-induced apoptosis by suppressing mitochondrial malfunction. Several studies have demonstrated TQ’s role in inhibiting Toll-like receptors (TLRs) and some inflammatory mediators, leading to reduced inflammation and neurotoxicity. Several studies did not show any signs of dopaminergic neuron loss after TQ treatment in various animals. TQ has been shown in clinical studies to block acetylcholinesterase (AChE) activity, which increases acetylcholine (ACh). As a result, fresh memories are programmed to preserve the effects. Treatment with TQ has been linked to better outcomes and decreased side effects than other drugs.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
- Correspondence: (F.H.P.); (A.M.I.)
| | - Abdallah Mohammad Ibrahim
- Department of Fundamentals of Nursing, College of Nursing, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (F.H.P.); (A.M.I.)
| | - Ali Alammar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Rida Alsinan
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Mahdi Aleid
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Ali Alshehhi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Muruj Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Supriya Mishra
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad 201204, UP, India;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
12
|
Afroz R, Tanvir EM, Tania M, Fu J, Kamal MA, Khan MA. LPS/TLR4 pathways in breast cancer: insights into cell signalling. Curr Med Chem 2021; 29:2274-2289. [PMID: 34382520 DOI: 10.2174/0929867328666210811145043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer cells are usually recognized as foreign particles by the immune cells. Mounting evidences suggest important link between toll like receptors (TLRs) and carcinogenesis. This review article focused on the role of TLRs, especially TLR4 in breast cancer. <p> Methods: Research data on TLRs and cancer was explored in PubMed, Scopus, Google Scholar, and reviewed. Although some pioneer works are referenced, papers published in last ten years were mostly cited. <p> Results: TLRs are widely investigated pattern recognition receptors (PRR), and TLR4 is the most studied TLRs, implicated with occurrence of several types of cancers including breast cancer. TLR4 activation occurs via the binding of its ligand lipopolysaccharide (LPS), a component of the outer membrane of gram negative bacteria. Upon LPS binding, TLR4 dimerizes and recruits downstream signalling and/or adapter molecules leading to gene expression related to cancer cell proliferation, survival, invasion, and metastasis. Although LPS/TLR4 signalling seems a single signal transduction pathway, the TLR4 activation results in the activation of multiple diverse intracellular networks with huge cellular responses in both immune and cancer cells. The role of TLR4 in growth, invasion and metastasis of breast cancer is attracting huge attention in oncology research. Several clinical and preclinical studies utilize both TLR4 agonists and antagonists as treatment option for cancer therapy either as monotherapy or adjuvants for vaccine development. <p> Conclusion: This review narrates the role of LPS/TLR4 signalling in breast cancer development and future prospective for targeting LPS/TLR4 axis in the treatment of breast cancer.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland. Australia
| | - E M Tanvir
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland. Australia
| | - Mousumi Tania
- Research Division, Nature Study Society of Bangladesh, Dhaka. Bangladesh
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan. China
| | | | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan. China
| |
Collapse
|
13
|
Zheng M, Mei Z, Junaid M, Tania M, Fu J, Chen HC, Khan MA. Synergistic Role of Thymoquinone on Anticancer Activity of 5-fluorouracil in Triple-Negative Breast Cancer Cells. Anticancer Agents Med Chem 2021; 22:1111-1118. [PMID: 34170813 DOI: 10.2174/1871520621666210624111613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is considered the most deadly subtype of breast cancer because of heterogeneity, fewer treatment options, and resistance to chemotherapy. OBJECTIVE We investigated the combined therapy of 5-Fluorouracil (5-FU) and thymoquinone (TQ) against TNBC cell lines BT-549 and MDA-MB-231 in this study to find out efficient chemotherapeutic options. METHODS We tested 5-FU and TQ alone and in combination (5-FU + TQ) to observe the cellular growth, cell cycle, and apoptosis status of BT-549 and MDA-MB-231 cells. Also, we have measured the mRNA level expression of genes related to the cell cycle and apoptosis. RESULTS Experimental results suggest that both 5-FU and TQ are effective in controlling cell growth, cell cycle, and inducing apoptosis, but their combination is much more effective. 5-FU was found more effective in controlling cell growth, while TQ was found more effective in inducing apoptosis, but in both cases, their combination was most effective. TQ was found to be more effective in increasing and BAX/BCL-2 ratio), while 5-FU was more effective in inhibiting thymidylate synthase. They had shown significant increasing effects on caspases and P53 and decreasing effects on CDK-2, where their combination was found most effective. CONCLUSIONS Thus, TQ and 5-FU probably showed a synergistic effect on both of cell cycle and apoptosis of tested TNBC cell lines. Our study reveals that TQ can synergise 5-FU action and increase its anticancer efficiency against TNBC cells, which might be a good choice in drug development for TNBC treatment.
Collapse
Affiliation(s)
- Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhiqiang Mei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Md Junaid
- Advanced Bioinformatics, Computational Biology, and Data Science Laboratory, Bangladesh, Chattogram, China
| | - Mousumi Tania
- Research Division, Nature Study Society of Bangladesh, Dhaka. Bangladesh
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Han-Chun Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Sorokin M, Borisov N, Kuzmin D, Gudkov A, Zolotovskaia M, Garazha A, Buzdin A. Algorithmic Annotation of Functional Roles for Components of 3,044 Human Molecular Pathways. Front Genet 2021; 12:617059. [PMID: 33633781 PMCID: PMC7900570 DOI: 10.3389/fgene.2021.617059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Current methods of high-throughput molecular and genomic analyses enabled to reconstruct thousands of human molecular pathways. Knowledge of molecular pathways structure and architecture taken along with the gene expression data can help interrogating the pathway activation levels (PALs) using different bioinformatic algorithms. In turn, the pathway activation profiles can characterize molecular processes, which are differentially regulated and give numeric characteristics of the extent of their activation or inhibition. However, different pathway nodes may have different functions toward overall pathway regulation, and calculation of PAL requires knowledge of molecular function of every node in the pathway in terms of its activator or inhibitory role. Thus, high-throughput annotation of functional roles of pathway nodes is required for the comprehensive analysis of the pathway activation profiles. We proposed an algorithm that identifies functional roles of the pathway components and applied it to annotate 3,044 human molecular pathways extracted from the Biocarta, Reactome, KEGG, Qiagen Pathway Central, NCI, and HumanCYC databases and including 9,022 gene products. The resulting knowledgebase can be applied for the direct calculation of the PALs and establishing large scale profiles of the signaling, metabolic, and DNA repair pathway regulation using high throughput gene expression data. We also provide a bioinformatic tool for PAL data calculations using the current pathway knowledgebase.
Collapse
Affiliation(s)
- Maxim Sorokin
- Omicsway Corp., Walnut, CA, United States.,Laboratory of Clinical Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory for Translational Bioinformatics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Nicolas Borisov
- Omicsway Corp., Walnut, CA, United States.,Laboratory for Translational Bioinformatics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Denis Kuzmin
- Laboratory for Translational Bioinformatics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexander Gudkov
- Laboratory of Clinical Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna Zolotovskaia
- Laboratory for Translational Bioinformatics, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | - Anton Buzdin
- Omicsway Corp., Walnut, CA, United States.,Laboratory for Translational Bioinformatics, Moscow Institute of Physics and Technology, Moscow, Russia.,Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|