1
|
Cui X, He Z, Liang J, Wei M, Guo Z, Zhou Y, Qin Y, Deng Z. Dehydrocurvularin-loaded mPEG-PLGA nanoparticles for targeted breast cancer drug delivery: preparation, characterization, in vitro, and in vivo evaluation. J Drug Target 2024; 32:325-333. [PMID: 38269592 DOI: 10.1080/1061186x.2024.2309566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024]
Abstract
Dehydrocurvularin (DCV) is a promising lead compound for anti-cancer therapy. Unfortunately, the development of DCV-based drugs has been hampered by its poor solubility and bioavailability. Herein, we prepared a DCV-loaded mPEG-PLGA nanoparticles (DCV-NPs) with improved drug properties and therapeutic efficacy. The spherical and discrete particles of DCV-NPs had a uniform diameter of 101.8 ± 0.45 nm and negative zeta potential of -22.5 ± 1.12 mV (pH = 7.4), and its entrapment efficiency (EE) and drug loading (DL) were ∼53.28 ± 1.12 and 10.23 ± 0.30%, respectively. In vitro the release of DCV-NPs lasted for more than 120 h in a sustained-release pattern, its antiproliferation efficacy towards breast cancer cell lines (MCF-7, MDA-MB-231, and 4T1) was better than that of starting drug DCV, and it could be efficiently and rapidly internalised by breast cancer cells. In vivo DCV-NPs were gradually accumulated in tumour areas of mice and significantly suppressed tumour growth. In summary, loading water-insoluble DCV onto nanoparticles has the potential to be an effective agent for breast cancer therapy with injectable property and tumour targeting capacity.
Collapse
Affiliation(s)
- Xuewei Cui
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Zhong He
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Jianjia Liang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Mulan Wei
- Department of Pathology, Yiling Hospital Yichang, Yichang, China
| | - Zhiyong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Ye Qin
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
2
|
Tyutereva EV, Dalinova AA, Demchenko KN, Dmitrieva VA, Dubovik VR, Lukinskiy YV, Mitina GV, Voitsekhovskaja OV, Berestetskiy A. Effects of Phytotoxic Nonenolides, Stagonolide A and Herbarumin I, on Physiological and Biochemical Processes in Leaves and Roots of Sensitive Plants. Toxins (Basel) 2023; 15:toxins15040234. [PMID: 37104172 PMCID: PMC10145764 DOI: 10.3390/toxins15040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Phytotoxic macrolides attract attention as prototypes of new herbicides. However, their mechanisms of action (MOA) on plants have not yet been elucidated. This study addresses the effects of two ten-membered lactones, stagonolide A (STA) and herbarumin I (HBI) produced by the fungus Stagonospora cirsii, on Cirsium arvense, Arabidopsis thaliana and Allium cepa. Bioassay of STA and HBI on punctured leaf discs of C. arvense and A. thaliana was conducted at a concentration of 2 mg/mL to evaluate phenotypic responses, the content of pigments, electrolyte leakage from leaf discs, the level of reactive oxygen species, Hill reaction rate, and the relative rise in chlorophyll a fluorescence. The toxin treatments resulted in necrotic and bleached leaf lesions in the dark and in the light, respectively. In the light, HBI treatment caused the drop of carotenoids content in leaves on both plants. The electrolyte leakage caused by HBI was light-dependent, in contrast with that caused by STA. Both compounds induced light-independent peroxide generation in leaf cells but did not affect photosynthesis 6 h after treatment. STA (10 µg/mL) caused strong disorders in root cells of A. thaliana leading to the complete dissipation of the mitochondrial membrane potential one hour post treatment, as well as DNA fragmentation and disappearance of acidic vesicles in the division zone after 8 h; the effects of HBI (50 µg/mL) were much milder. Furthermore, STA was found to inhibit mitosis but did not affect the cytoskeleton in cells of root tips of A. cepa and C. arvense, respectively. Finally, STA was supposed to inhibit the intracellular vesicular traffic from the endoplasmic reticulum to the Golgi apparatus, thus interfering with mitosis. HBI is likely to have another main MOA, probably inhibiting the biosynthesis of carotenoids.
Collapse
Affiliation(s)
- Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Anna A Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Valeriya A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Vsevolod R Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Yuriy V Lukinskiy
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Galina V Mitina
- Laboratory of Microbiological Plant Protection, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| |
Collapse
|
3
|
The natural product dehydrocurvularin induces apoptosis of gastric cancer cells by activating PARP-1 and caspase-3. Apoptosis 2023; 28:525-538. [PMID: 36652130 DOI: 10.1007/s10495-023-01811-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The natural product dehydrocurvularin (DSE2) is a fungal-derived macrolide with potent anticancer activity, but the mechanism is still unclear. We found that DSE2 effectively inhibited the growth of gastric cancer cells and induced the apoptosis by activating Poly(ADP-ribose) polymerase 1 (PARP-1) and caspase-3. Pharmacological inhibition and genetic knockdown with PARP-1 or caspase-3 suppressed DSE2-induced apoptosis. PARP-1 was previously reported to be cleaved into fragments during apoptosis. However, PARP-1 was barely cleaved in DSE2-induced apoptosis. DSE2 induced PARP-1 activation as indicated by rapid depletion of NAD+ and the concomitant formation of poly(ADP-ribosylated) proteins (PARs). Interestingly, the PARP-1 inhibitor (Olaparib) attenuated the cytotoxicity of DSE2. Moreover, the combination of Olaparib and Z-DEVD-FMK (caspase-3 inhibitor) further reduced the cytotoxicity. It has been shown that PARP-1 activation triggers cytoplasm-nucleus translocation of apoptosis-inducing factor (AIF). Caspase-3 inhibitors inhibited PARP-1 activation and suppressed PARP-1-induced AIF nuclear translocation. These results indicated that DSE2-induced caspase-3 activation may occur before PARP-1 activation. The ROS inhibitor, N-acetyl-cysteine, significantly inhibited the activation of caspase-3 and PARP-1, indicating that ROS overproduction contributed to DSE2-induced apoptosis. Using an in vivo approach, we further found that DSE2 significantly inhibited gastric tumor growth and promoted translocation of AIF to the nucleus. In conclusion, DSE2 induces gastric cell apoptosis by activating caspase-3 and PARP-1, and shows potent antitumor activity against human gastric carcinoma in vitro and in vivo.
Collapse
|