1
|
Zárate RV, Arancibia D, Fernández A, Signorelli JR, Larrondo LF, Andrés ME, Zamorano P. Optimization of the Light-On system in a lentiviral platform to a light-controlled expression of genes in neurons. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
2
|
Moncion A, Harmon JN, Li Y, Natla S, Farrell EC, Kripfgans OD, Stegemann JP, Martín-Saavedra FM, Vilaboa N, Franceschi RT, Fabiilli ML. Spatiotemporally-controlled transgene expression in hydroxyapatite-fibrin composite scaffolds using high intensity focused ultrasound. Biomaterials 2019; 194:14-24. [PMID: 30572283 PMCID: PMC6339574 DOI: 10.1016/j.biomaterials.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/13/2018] [Accepted: 12/09/2018] [Indexed: 01/05/2023]
Abstract
Conventional tissue engineering approaches rely on scaffold-based delivery of exogenous proteins, genes, and/or cells to stimulate regeneration via growth factor signaling. However, scaffold-based approaches do not allow active control of dose, timing, or spatial localization of a delivered growth factor once the scaffold is implanted, yet these are all crucial parameters in promoting tissue regeneration. To address this limitation, we developed a stable cell line containing a heat-activated and rapamycin-dependent gene expression system. In this study, we investigate how high intensity focused ultrasound (HIFU) can spatiotemporally control firefly luciferase (fLuc) transgene activity both in vitro and in vivo by the tightly controlled generation of hyperthermia. Cells were incorporated into composite scaffolds containing fibrin and hydroxyapatite particles, which yielded significant increases in acoustic attenuation and heating in response to HIFU compared to fibrin alone. Using 2.5 MHz HIFU, transgene activation was observed at acoustic intensities of 201 W/cm2 and higher. Transgene activation was spatially patterned in the scaffolds by rastering HIFU at speeds up to 0.15 mm/s. In an in vivo study, a 67-fold increase in fLuc activity was observed in scaffolds exposed to HIFU and rapamycin versus rapamycin only at 2 days post implantation. Repeated activation of transgene expression was also demonstrated 8 days after implantation. No differences in in vivo scaffold degradation or compaction were observed between +HIFU and -HIFU groups. These results highlight the potential utility of using this heat-activated and rapamycin-dependent gene expression system in combination with HIFU for the controlled stimulation of tissue regeneration.
Collapse
Affiliation(s)
- Alexander Moncion
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Jennifer N Harmon
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yan Li
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Sam Natla
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Easton C Farrell
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Francisco M Martín-Saavedra
- Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Peng L, Pan P, Chen J, Yu X, Wu J, Chen Y. A tetracycline-inducible CRISPR/Cas9 system, targeting two long non-coding RNAs, suppresses the malignant behavior of bladder cancer cells. Oncol Lett 2018; 16:4309-4316. [PMID: 30214566 PMCID: PMC6126189 DOI: 10.3892/ol.2018.9157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) technology has been applied in varied biological studies, including cancer studies. However, stable mRNA expression of Cas9 has potential risks in future gene therapy. Therefore, in the present study, a tetracycline-inducible switch was used to control the mRNA expression of Cas9. Long non-coding RNAs (lncRNAs) may be important functional regulators in tumor development, including in bladder cancer. RNA was designed to simultaneously target two lncRNAs, PVT1 and ANRIL, which are considered to be bladder cancer oncogenes. The mRNA expression of Cas9 was controlled by doxycycline. Reverse transcription-quantitative polymerase chain reaction revealed that the expression of PVT1 and ANRIL was significantly inhibited by the tetracycline-inducible CRISPR/Cas9 system. Functional assays demonstrated that this system could inhibit proliferation, induce apoptosis and suppress cell migration. Therefore, the tetracycline-inducible CRISPR/Cas9 system was demonstrated to repress the malignant behavior of bladder cancer cells by controlling the expression of Cas9 and simultaneously targeting two oncogenic lncRNAs.
Collapse
Affiliation(s)
- Lu Peng
- Department of Clinical Laboratory, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Peng Pan
- Reproductive Medicine Center, Nanjing General Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Jinbu Chen
- Department of Clinical Laboratory, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xueyuan Yu
- Department of Clinical Laboratory, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jun Wu
- Department of Clinical Laboratory, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yong Chen
- Department of Clinical Laboratory, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
4
|
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 2016; 6:37289. [PMID: 27853296 PMCID: PMC5112523 DOI: 10.1038/srep37289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.
Collapse
|
5
|
Tet-On lentiviral transductants lose inducibility when silenced for extended intervals in mammary epithelial cells. Metab Eng Commun 2016; 3:64-67. [PMID: 29142821 PMCID: PMC5678824 DOI: 10.1016/j.meteno.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/25/2016] [Accepted: 03/13/2016] [Indexed: 01/09/2023] Open
Abstract
Silencing of virally transduced genes by promoter methylation and histone deacetylation has been a chronic problem both experimentally and therapeutically. We observed frequent silencing of the tetracycline-inducible Tet-On promoter borne by the Tripz lentivirus in mammary epithelial cell lines. We found that silencing could be prevented by continuous induction, but uninduced Tet-On gradually became uninducible, suggesting promoter modification. Accordingly, silencing was reversible by a common inhibitor of histone deacetylases, sodium butyrate. The effect was cell-line dependent, as HEK293 cells exhibited only moderate silencing that could be partly reversed by extended induction. These results indicate the need to test individual cell lines prior to using this system for studies that require induction after long periods of repression such as in animal models or RNA interference screens. Loss of inducibility of Tet-On transgenes in cancer cell lines is reported. Expression can be restored by an HDAC inhibitor. Expression can be maintained by continuous induction. Loss of expression is cell-line dependent.
Collapse
|
6
|
Remote Patterning of Transgene Expression Using Near Infrared-Responsive Plasmonic Hydrogels. Methods Mol Biol 2016. [PMID: 26965130 DOI: 10.1007/978-1-4939-3512-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The development of noninvasive technologies for remote control of gene expression has received increased attention for their therapeutic potential in clinical scenarios, including cancer, neurological disorders, immunology, tissue engineering, as well as developmental biology research. Near-infrared (NIR) light is a suitable source of energy that can be employed to pattern transgene expression in plasmonic cell constructs. Gold nanoparticles tailored to exhibit a plasmon surface band absorption peaking at NIR wavelengths within the so called tissue optical window (TOW) can be used as fillers in fibrin-based hydrogels. These biocompatible composites can be loaded with cells harboring heat-inducible gene switches. NIR laser irradiation of the resulting plasmonic cell constructs causes the local conversion of NIR photon energy into heat, achieving spatially restricted patterns of transgene expression that faithfully match the illuminated areas of the hydrogels. In combination with cells genetically engineered to harbor gene switches activated by heat and dependent on a small-molecule regulator (SMR), NIR-responsive hydrogels allow reliable and safe control of the spatiotemporal availability of therapeutic biomolecules in target tissues.
Collapse
|
7
|
Lalitha K, Muthusamy K, Prasad YS, Vemula PK, Nagarajan S. Recent developments in β-C-glycosides: synthesis and applications. Carbohydr Res 2014; 402:158-71. [PMID: 25498016 DOI: 10.1016/j.carres.2014.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/11/2014] [Accepted: 10/16/2014] [Indexed: 11/26/2022]
Abstract
In the last few years, considerable progress has been made in the synthesis of C-glycosides. Despite its challenging chemistry, due to its versatility, C-glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules. In this review, we present snapshots of various synthetic methodologies developed for C-glycosides in the recent years and the potential application of C-glycosides derived from β-C-glycosidic ketones.
Collapse
Affiliation(s)
- Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Kumarasamy Muthusamy
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Y Siva Prasad
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Praveen Kumar Vemula
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, UAS-GKVK Post, Bellary Road, Bangalore 560065, India
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
8
|
Tang Y, Li Y, Lin X, Miao P, Wang Y, Yang GY. Stimulation of cerebral angiogenesis by gene delivery. Methods Mol Biol 2014; 1135:317-29. [PMID: 24510875 DOI: 10.1007/978-1-4939-0320-7_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis, an important process for long term neurological recovery, could be induced by ischemic brain injury. In this chapter, we describe a system to deliver adeno-associated viral (AAV) vector-mediated gene therapy for ischemic stroke. This includes the methods to construct, produce, and purify an AAV vector expressing target gene and an approach to quantify the number of microvessels and capillary density with synchrotron radiation angiography (SRA) imaging.
Collapse
Affiliation(s)
- Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai, China
| | | | | | | | | | | |
Collapse
|
9
|
Le Guiner C, Stieger K, Toromanoff A, Guilbaud M, Mendes-Madeira A, Devaux M, Guigand L, Cherel Y, Moullier P, Rolling F, Adjali O. Transgene regulation using the tetracycline-inducible TetR-KRAB system after AAV-mediated gene transfer in rodents and nonhuman primates. PLoS One 2014; 9:e102538. [PMID: 25248159 PMCID: PMC4172479 DOI: 10.1371/journal.pone.0102538] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
Numerous studies have demonstrated the efficacy of the Adeno-Associated Virus (AAV)-based gene delivery platform in vivo. The control of transgene expression in many protocols is highly desirable for therapeutic applications and/or safety reasons. To date, the tetracycline and the rapamycin dependent regulatory systems have been the most widely evaluated. While the long-term regulation of the transgene has been obtained in rodent models, the translation of these studies to larger animals, especially to nonhuman primates (NHP), has often resulted in an immune response against the recombinant regulator protein involved in transgene expression regulation. These immune responses were dependent on the target tissue and vector delivery route. Here, using AAV vectors, we evaluated a doxycyclin-inducible system in rodents and macaques in which the TetR protein is fused to the human Krüppel associated box (KRAB) protein. We demonstrated long term gene regulation efficiency in rodents after subretinal and intramuscular administration of AAV5 and AAV1 vectors, respectively. However, as previously described for other chimeric transactivators, the TetR-KRAB-based system failed to achieve long term regulation in the macaque after intramuscular vector delivery because of the development of an immune response. Thus, immunity against the chimeric transactivator TetR-KRAB emerged as the primary limitation for the clinical translation of the system when targeting the skeletal muscle, as previously described for other regulatory proteins. New developments in the field of chimeric drug-sensitive transactivators with the potential to not trigger the host immune system are still needed.
Collapse
Affiliation(s)
- Caroline Le Guiner
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | - Knut Stieger
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alice Toromanoff
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | - Mickaël Guilbaud
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | | | - Marie Devaux
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | - Lydie Guigand
- INRA UMR 703 and Atlantic Gene Therapies, ONIRIS, Nantes, France
| | - Yan Cherel
- INRA UMR 703 and Atlantic Gene Therapies, ONIRIS, Nantes, France
| | - Philippe Moullier
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
- Department of Molecular Genetics and Microbiology department, University of Florida, Gainesville, Florida, United States of America
| | - Fabienne Rolling
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| |
Collapse
|
10
|
Martin-Saavedra FM, Cebrian V, Gomez L, Lopez D, Arruebo M, Wilson CG, Franceschi RT, Voellmy R, Santamaria J, Vilaboa N. Temporal and spatial patterning of transgene expression by near-infrared irradiation. Biomaterials 2014; 35:8134-8143. [PMID: 24957294 DOI: 10.1016/j.biomaterials.2014.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/03/2014] [Indexed: 01/23/2023]
Abstract
We investigated whether near-infrared (NIR) light could be employed for patterning transgene expression in plasmonic cell constructs. Hollow gold nanoparticles with a plasmon surface band absorption peaking at ∼750 nm, a wavelength within the so called "tissue optical window", were used as fillers in fibrin-based hydrogels. These composites, which efficiently transduce NIR photon energy into heat, were loaded with genetically-modified cells that harbor a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation in the presence of ligand triggered 3-dimensional patterns of transgene expression faithfully matching the illuminated areas of plasmonic cell constructs. This non-invasive technology was proven useful for remotely controlling in vivo the spatiotemporal bioavailability of transgenic vascular endothelial growth factor. The combination of spatial control by means of NIR irradiation along with safe and timed transgene induction presents a high application potential for engineering tissues in regenerative medicine scenarios.
Collapse
Affiliation(s)
- Francisco M Martin-Saavedra
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Virginia Cebrian
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Leyre Gomez
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
| | - Daniel Lopez
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Christopher G Wilson
- Center for Craniofacial Regeneration and Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Renny T Franceschi
- Center for Craniofacial Regeneration and Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Richard Voellmy
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
- HSF Pharmaceuticals S.A., 1814 La Tour-de-Peilz, Switzerland
| | - Jesus Santamaria
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
11
|
Doherty JE, Woodard LE, Bear AS, Foster AE, Wilson MH. An adaptable system for improving transposon-based gene expression in vivo via transient transgene repression. FASEB J 2013; 27:3753-62. [PMID: 23752206 DOI: 10.1096/fj.13-232090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transposons permit permanent cellular genome engineering in vivo. However, transgene expression falls rapidly postdelivery due to a variety of mechanisms, including immune responses. We hypothesized that delaying initial transgene expression would improve long-term transgene expression by using an engineered piggyBac transposon system that can regulate expression. We found that a 2-part nonviral Tet-KRAB inducible expression system repressed expression of a luciferase reporter in vitro. However, we also observed nonspecific promoter-independent repression. Thus, to achieve temporary transgene repression after gene delivery in vivo, we utilized a nonintegrating version of the repressor plasmid while the gene of interest was delivered in an integrating piggyBac transposon vector. When we delivered the luciferase transposon and repressor to immunocompetent mice by hydrodynamic injection, initial luciferase expression was repressed by 2 orders of magnitude. When luciferase expression was followed long term in vivo, we found that expression was increased >200-fold compared to mice that received only the luciferase transposon and piggyBac transposase. We found that repression of early transgene expression could prevent the priming of luciferase-specific T cells in vivo. Therefore, transient transgene repression postgene delivery is an effective strategy for inhibiting the antitransgene immune response and improving long-term expression in vivo without using immunosuppression.
Collapse
Affiliation(s)
- Joseph E Doherty
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
12
|
Deckers R, Debeissat C, Fortin PY, Moonen CT, Couillaud F. Arrhenius analysis of the relationship between hyperthermia and Hsp70 promoter activation: A comparison betweenex vivoandin vivodata. Int J Hyperthermia 2012; 28:441-50. [DOI: 10.3109/02656736.2012.674620] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Yu T, Barchetta S, Pucciarelli S, La Terza A, Miceli C. A Novel Robust Heat-inducible Promoter for Heterologous Gene Expression in Tetrahymena thermophila. Protist 2012; 163:284-95. [DOI: 10.1016/j.protis.2011.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/28/2011] [Indexed: 11/29/2022]
|
14
|
Liu L, Abdel Motaal B, Schmidt-Supprian M, Pohl NLB. Multigram synthesis of isobutyl-β-C-galactoside as a substitute of isopropylthiogalactoside for exogenous gene induction in mammalian cells. J Org Chem 2012; 77:1539-46. [PMID: 22283618 DOI: 10.1021/jo2024569] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we report that isobutyl-β-C-galactoside (IBCG) is also a promising inducer of gene expression in mammalian cells and report a new synthetic route to the compound that should make obtaining the multigram quantities of material required for animal studies more feasible. A convenient synthesis of IBCG, an inducer of genes controlled by the lac operon system in bacterial cells, was achieved in 5 steps from galactose in 81% overall yield without any chromatographic separation steps. An optimized microwave-assisted reaction at high concentration was key to making the C-glycosidic linkage. A Wittig reaction on a per-O-silylated rather than per-O-acetylated or -benzylated substrate proved most effective in installing the final carbon atom.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemistry, Plant Sciences Institute, Hach Hall, Iowa State University, Ames, Iowa 50011-3111, USA
| | | | | | | |
Collapse
|
15
|
Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3:3279-330. [PMID: 24212956 PMCID: PMC3759197 DOI: 10.3390/cancers3033279] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/07/2011] [Accepted: 08/08/2011] [Indexed: 11/16/2022] Open
Abstract
Cancer therapy has been characterized throughout history by ups and downs, not only due to the ineffectiveness of treatments and side effects, but also by hope and the reality of complete remission and cure in many cases. Within the therapeutic arsenal, alongside surgery in the case of solid tumors, are the antitumor drugs and radiation that have been the treatment of choice in some instances. In recent years, immunotherapy has become an important therapeutic alternative, and is now the first choice in many cases. Nanotechnology has recently arrived on the scene, offering nanostructures as new therapeutic alternatives for controlled drug delivery, for combining imaging and treatment, applying hyperthermia, and providing directed target therapy, among others. These therapies can be applied either alone or in combination with other components (antibodies, peptides, folic acid, etc.). In addition, gene therapy is also offering promising new methods for treatment. Here, we present a review of the evolution of cancer treatments, starting with chemotherapy, surgery, radiation and immunotherapy, and moving on to the most promising cutting-edge therapies (gene therapy and nanomedicine). We offer an historical point of view that covers the arrival of these therapies to clinical practice and the market, and the promises and challenges they present.
Collapse
|
16
|
Baraniak PR, Nelson DM, Leeson CE, Katakam AK, Friz JL, Cress DE, Hong Y, Guan J, Wagner WR. Spatial control of gene expression within a scaffold by localized inducer release. Biomaterials 2011; 32:3062-71. [PMID: 21269687 DOI: 10.1016/j.biomaterials.2010.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/26/2010] [Indexed: 12/31/2022]
Abstract
Gene expression can be controlled in genetically modified cells by employing an inducer/promoter system where presence of the inducer molecule regulates the timing and level of gene expression. By applying the principles of controlled release, it should be possible to control gene expression on a biomaterial surface by the presence or absence of inducer release from the underlying material matrix, thus avoiding alternative techniques that rely upon uptake of relatively labile DNA from material surfaces. To evaluate this concept, a modified ecdysone-responsive gene expression system was transfected into B16 murine cells and the ability of an inducer ligand, which was released from elastomeric poly(ester urethane) urea (PEUU), to initiate gene expression was studied. The synthetic inducer ligand was first loaded into PEUU to demonstrate extended release of the bioactive molecule at various loading densities over a one year period in vitro. Patterning films of PEUU variably-loaded with inducer resulted in spatially controlled cell expression of the gene product (green fluorescent protein, GFP). In porous scaffolds made from PEUU by salt leaching, where the central region was exclusively loaded with inducer, cells expressed GFP predominately in the loaded central regions whereas expression was minimal in outer regions where ligand was omitted. This scaffold system may ultimately provide a means to precisely control progenitor cell commitment in a spatially-defined manner in vivo for soft tissue repair and regeneration.
Collapse
Affiliation(s)
- Priya R Baraniak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Promoting functional recovery after ischemic brain injury has emerged as a potential approach for the treatment of ischemic stroke. An ideal restorative approach to enhance long-term functional recovery is to promote postischemic angiogenesis and neurogenesis. This chapter describes a system using adeno-associated viral (AAV) vector-mediated vascular endothelial growth factor (VEGF) gene transfer into the ischemic brain. The methods described here for construction, production, and purification of AAV vector expressing VEGF gene can also be applied to producing AAV vectors expressing other genes. This chapter also illustrates the methods to produce mouse middle cerebral artery occlusion (MCAO), injection of viral vector into the mouse brain, and standard assays for determining the success of brain ischemia and gene transfer.
Collapse
Affiliation(s)
- Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
18
|
Tas SW, Vervoordeldonk MJBM, Tak PP. Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 2009; 9:160-70. [PMID: 19519361 PMCID: PMC2864453 DOI: 10.2174/156652309788488569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nuclear factor (NF)-κB is regarded as one of the most important transcription factors and plays an essential role in the transcriptional activation of pro-inflammatory cytokines, cell proliferation and survival. NF-κB can be activated via two distinct NF-κB signal transduction pathways, the so-called canonical and non-canonical pathways, and has been demonstrated to play a key role in a wide range of inflammatory diseases and various types of cancer. Much effort has been put in strategies to inhibit NF-κB activation, for example by the development of pharmacological compounds that selectively inhibit NF-κB activity and therefore would be beneficial for immunotherapy of transplantation, autoimmune and allergic diseases, as well as an adjuvant approach in patients treated with chemotherapy for cancer. Gene therapy targeting NF-κB is a promising new strategy with the potential of long-term effects and has been explored in a wide variety of diseases, ranging from cancer to transplantation medicine and autoimmune diseases. In this review we discuss recent progress made in the development of NF-κB targeted gene therapy and the evolution towards clinical application.
Collapse
Affiliation(s)
- Sander W Tas
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
19
|
Paulmurugan R, Padmanabhan P, Ahn BC, Ray S, Willmann JK, Massoud TF, Biswal S, Gambhir SS. A novel estrogen receptor intramolecular folding-based titratable transgene expression system. Mol Ther 2009; 17:1703-11. [PMID: 19654568 DOI: 10.1038/mt.2009.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The use of regulated gene expression systems is important for successful gene therapy applications. In this study, ligand-induced structural change in the estrogen receptor (ER) was used to develop a novel ER intramolecular folding-based transcriptional activation system. The system was studied using ER-variants of different lengths, flanked on either side by the GAL4-DNA-binding domain and the VP16-transactivation domain (GAL4(DBD)-ER-VP16). The ER ligands of different types showed efficient ligand-regulated transactivation. We also characterized a bidirectional transactivation system based on the ER and demonstrated its utility in titrating both reporter and therapeutic gene expression. The ligand-regulated transactivation system developed by using a mutant form of the ER (G521T, lacking affinity for the endogenous ligand 17beta-estradiol, whereas maintaining affinity for other ligands) showed efficient activation by the ligand raloxifene in living mice without significant interference from the circulating endogenous ligand. The ligand-regulated transactivation system was used to test the therapeutic efficiency of the tumor suppressor protein p53 in HepG2 (p53(+/+)) and SKBr3 (p53(-/-)/mutant-p53(+/+)) cells in culture and tumor xenografts in living mice. The multifunctional capabilities of this system should be useful for gene therapy applications, to study ER biology, to evaluate gene regulation, ER ligand screening, and ER ligand biocharacterization in cells and living animals.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, 150 East Wing, 1st Floor, Stanford, CA 94305-5427, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lapenna S, Dinan L. HPLC and TLC characterisation of ecdysteroid alkyl ethers. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2996-3002. [PMID: 19648067 DOI: 10.1016/j.jchromb.2009.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 06/29/2009] [Accepted: 07/12/2009] [Indexed: 12/15/2022]
Abstract
Semi-synthetic ecdysteroid alkyl ethers have increased potential over natural ecdysteroids as actuators of ligand-inducible gene-expression systems based on the ecdysteroid receptor for in vivo applications. However, a scalable synthesis of these compounds has yet to be developed. We report a set of reversed-phase (RP; C(18) and C(6)) and normal-phase (NP; diol) HPLC systems which can be used to analyse and separate ecdysteroid ethers with single or multiple O-methyl substitutions at the 2alpha-, 3beta-, 14alpha-, 22- and 25-positions. The elution order of methyl ether analogues of the prototypical ecdysteroid 20-hydroxyecdysone (20E) was 3-methyl<2-methyl<14-methyl<25-methyl<22-methyl with both C(18)- and C(6)-RP-HPLC, when eluted with methanol/water mixtures. Further, the elution order of 20E 22-O-alkyl ethers was methyl<ethyl<allyl<n-propyl<benzyl<n-butyl with both C(18)- and C(6)-RP-HPLC. Moreover, the ecdysteroid alkyl ethers can also be adequately resolved by NP-HPLC and silica HPTLC. On the latter, detection of ecdysteroid O-alkyl ethers with the p-anisaldehyde/sulphuric acid reagent distinguishes 22-O-alkyl ethers from non-22-O-alkyl ether analogues by the colour of the resulting spot.
Collapse
Affiliation(s)
- Silvia Lapenna
- Department of Biological Sciences, University of Exeter, Prince of Wales Road, EX4 4PS, Exeter, UK.
| | | |
Collapse
|
21
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
22
|
Hundt W, Steinbach S, Mayer D, Bednarski MD. Modulation of luciferase activity using high intensity focused ultrasound in combination with bioluminescence imaging, magnetic resonance imaging and histological analysis in muscle tissue. ULTRASONICS 2009; 49:549-557. [PMID: 19345388 DOI: 10.1016/j.ultras.2009.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/05/2009] [Accepted: 02/03/2009] [Indexed: 05/27/2023]
Abstract
This study investigates the effect of high intensity focused ultrasound (HIFU) to muscle tissue transfected with a luciferase reporter gene under the control of a CMV-promoter. HIFU was applied to the transfected muscle tissue using a dual HIFU system. In a first group four different intensities (802 W/cm2, 1401 W/cm2, 2117 W/cm2, 3067 W/cm2) of continuous HIFU were applied 20 s every other week for four times. In a second group two different intensities (802 W/cm2, 1401 W/cm2) were applied 20 s every fourth day for 20 times. The luciferase activity was determined by bioluminescence imaging. The effect of HIFU to the muscle tissue was assessed by T1-weighted +/- Gd-DTPA, T2-weighted and a diffusion-weighted STEAM sequence obtained on a 1.5-T GE-MRI scanner. Histology of the treated tissue was done at the end. In the first group the photon emission was at 3067.6 W/cm2 1.28 x 10(7) +/- 3.1 x 10(6) photon/s (5.5 +/- 1.2-fold), of 2157.9 W/cm2 8.1 +/- 2.7 x 10(6) photon/s (3.2 +/- 1.1-fold), of 1401.9 W/cm2 9.3 +/- 1.3 x 10(6) photon/s (4.9 +/- 0.4-fold) and of 802.0 W/cm2 8.6x +/- 1.2 x 10(6) photon/s (4.5 +/- 0.6-fold) compared to baseline. In the second group the photon emission was at 1401.9 W/cm2 and 802.0 W/cm2 14.1 +/- 3.6 x 10(6) photon/s (6.1 +/- 1.5-fold), respectively, 5.1 +/- 4.7 x 10(6) photon/s (6.5 +/- 2.0-fold). HIFU can enhance the luciferase activity controlled by a CMV-promoter.
Collapse
Affiliation(s)
- Walter Hundt
- Department of Radiology, Lucas MRS Research Center, Stanford School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
23
|
Lapenna S, Dinan L, Friz J, Hopfinger AJ, Liu J, Hormann RE. Semi-synthetic ecdysteroids as gene-switch actuators: synthesis, structure-activity relationships, and prospective ADME properties. ChemMedChem 2009; 4:55-68. [PMID: 19065574 DOI: 10.1002/cmdc.200800280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ligand-inducible, ecdysteroid receptor (EcR) gene-expression system can add critical control features to protein expression in cell and gene therapy. However, potent natural ecdysteroids possess absorption, distribution, metabolism and excretion (ADME) properties that have not been optimised for use as gene-switch actuators in vivo. Herein we report the first systematic synthetic exploration of ecdysteroids toward modulation of gene-switch potency. Twenty-three semi-synthetic O-alkyl ecdysteroids were assayed in both a natural insect system (Drosophila B(II) cells) and engineered gene-switch systems in mammalian cells using Drosophila melanogaster, Choristoneura fumiferana, and Aedes aegypti EcRs. Gene-switch potency is maintained, or even enhanced, for ecdysteroids methylated at the 22-position in favourable cases. Furthermore, trends toward lower solubility, higher permeability, and higher blood-brain barrier penetration are supported by predicted ADME properties, calculated using the membrane-interaction (MI)-QSAR methodology. The structure-activity relationship (SAR) of alkylated ecdysteroids indicates that 22-OH is an H-bond acceptor, 25-OH is most likely an H-bond donor, and 2-OH and 3-OH are donors and/or acceptors in network with each other, and with the EcR. The strategy of alkylation points the way to improved ecdysteroidal actuators for switch-activated gene therapy.
Collapse
Affiliation(s)
- Silvia Lapenna
- Department of Biological Sciences, University of Exeter, Prince of Wales Road, EX4 4PS, Exeter, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Image-guided, noninvasive, spatiotemporal control of gene expression. Proc Natl Acad Sci U S A 2009; 106:1175-80. [PMID: 19164593 DOI: 10.1073/pnas.0806936106] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporal control of transgene expression is of paramount importance in gene therapy. Here, we demonstrate the use of magnetic resonance temperature imaging (MRI)-guided, high-intensity focused ultrasound (HIFU) in combination with a heat-inducible promoter [heat shock protein 70 (HSP70)] for the in vivo spatiotemporal control of transgene activation. Local gene activation induced by moderate hyperthermia in a transgenic mouse expressing luciferase under the control of the HSP70 promoter showed a high similarity between the local temperature distribution in vivo and the region emitting light. Modulation of gene expression is possible by changing temperature, duration, and location of regional heating. Mild heating protocols (2 min at 43 degrees C) causing no tissue damage were sufficient for significant gene activation. The HSP70 promoter was shown to be induced by the local temperature increase and not by the mechanical effects of ultrasound. Therefore, the combination of MRI-guided HIFU heating and transgenes under control of heat-inducible HSP promoter provides a direct, noninvasive, spatial control of gene expression via local hyperthermia.
Collapse
|
25
|
Johnson LA, Zhao Y, Golden K, Barolo S. Reverse-engineering a transcriptional enhancer: a case study in Drosophila. Tissue Eng Part A 2009; 14:1549-59. [PMID: 18687053 DOI: 10.1089/ten.tea.2008.0074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enhancers, or cis-regulatory elements, are the principal determinants of spatiotemporal patterning of gene expression. For reasons of clinical and research utility, it is desirable to build customized enhancers that drive novel gene expression patterns, but currently, we largely rely on "found" genomic elements. Synthetic enhancers, assembled from transcription factor binding sites taken from natural signal-regulated enhancers, generally fail to behave like their wild-type counterparts when placed in transgenic animals, suggesting that important aspects of enhancer function are still unexplored. As a step toward the creation of a truly synthetic regulatory element, we have undertaken an extensive structure-function study of an enhancer of the Drosophila decapentaplegic (dpp) gene that drives expression in the developing visceral mesoderm (VM). Although considerable past efforts have been made to dissect the dppVM enhancer, transgenic experiments presented here indicate that its activity cannot be explained by the known regulators alone. dppVM contains multiple, previously uncharacterized, regulatory sites, some of which exhibit functional redundancy. The results presented here suggest that even the best-studied enhancers must be further dissected before they can be fully understood, and before faithful synthetic elements based on them can be created. Implications for developmental genetics, mathematical modeling, and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Lisa A Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
26
|
Szabo E, Soboloff J, Dziak E, Opas M. Tamoxifen-Inducible Cre-Mediated Calreticulin Excision to Study Mouse Embryonic Stem Cell Differentiation. Stem Cells Dev 2009; 18:187-93. [DOI: 10.1089/scd.2008.0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Eva Szabo
- Laboratory Medicine and Pathobiology/Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Soboloff
- Laboratory Medicine and Pathobiology/Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Current affiliation: Department of Biochemistry, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ewa Dziak
- Laboratory Medicine and Pathobiology/Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michal Opas
- Laboratory Medicine and Pathobiology/Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Lapenna S, Friz J, Barlow A, Palli SR, Dinan L, Hormann RE. Ecdysteroid ligand-receptor selectivity - exploring trends to design orthogonal gene switches. FEBS J 2008; 275:5785-809. [DOI: 10.1111/j.1742-4658.2008.06687.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Guo ZS, Li Q, Bartlett DL, Yang JY, Fang B. Gene transfer: the challenge of regulated gene expression. Trends Mol Med 2008; 14:410-8. [PMID: 18692441 DOI: 10.1016/j.molmed.2008.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/04/2008] [Accepted: 07/04/2008] [Indexed: 01/04/2023]
Abstract
Gene therapy is expected to have a major impact on human healthcare in the future. However, precise regulation of therapeutic gene expression in vivo is still a challenge. Natural and synthetic enhancer-promoters (EPs) can be utilized to drive gene transcription in a temporal, spatial or environmental signal-inducible manner in response to heat shock, hypoxia, radiation, chemotherapy, epigenetic agents or viral infection. To allow tightly regulated expression, a regulatable gene-expression system can also be implemented. Most of these systems are based on small molecule (drug)-responsive artificial transactivators. In this review, we aim to provide a brief overview of the classes of EPs and regulatable systems, along with lessons learned from these studies. We highlight the potential applications in gene transfer, gene therapy for cancer and genetic disease and the future challenges for clinical applications.
Collapse
Affiliation(s)
- Z Sheng Guo
- Division of Surgical Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
29
|
Cai W, Kerner ZJ, Hong H, Sun J. Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha. BIOCHEMISTRY INSIGHTS 2008. [DOI: 10.4137/bci.s901] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α), a member of the TNF superfamily, was the first cytokine to be evaluated for cancer biotherapy. However, the clinical use of TNF-α is severely limited by its toxicity. Currently, TNF-α is administered only through locoregional drug delivery systems such as isolated limb perfusion and isolated hepatic perfusion. To reduce the systemic toxicity of TNF-α, various strategies have been explored over the last several decades. This review summarizes current state-of-the-art targeted cancer therapy using TNF-α. Passive targeting, cell-based therapy, gene therapy with inducible or tissue-specific promoters, targeted polymer-DNA complexes, tumor pre-targeting, antibody-TNF-α conjugate, scFv/TNF-α fusion proteins, and peptide/TNF-α fusion proteins have all been investigated to combat cancer. Many of these agents are already in advanced clinical trials. Molecular imaging, which can significantly speed up the drug development process, and nanomedicine, which can integrate both imaging and therapeutic components, has the potential to revolutionize future cancer patient management. Cooperative efforts from scientists within multiple disciplines, as well as close partnerships among many organizations/entities, are needed to quickly translate novel TNF-α-based therapeutics into clinical investigation.
Collapse
Affiliation(s)
- Weibo Cai
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin–-Madison, Madison, Wisconsin, U.S.A
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, Wisconsin, U.S.A
| | - Zachary J. Kerner
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin–-Madison, Madison, Wisconsin, U.S.A
| | - Hao Hong
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin–-Madison, Madison, Wisconsin, U.S.A
| | - Jiangtao Sun
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin–-Madison, Madison, Wisconsin, U.S.A
| |
Collapse
|
30
|
Sato M, Figueiredo ML, Burton JB, Johnson M, Chen M, Powell R, Gambhir SS, Carey M, Wu L. Configurations of a two-tiered amplified gene expression system in adenoviral vectors designed to improve the specificity of in vivo prostate cancer imaging. Gene Ther 2008; 15:583-93. [PMID: 18305574 DOI: 10.1038/gt.2008.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer.
Collapse
Affiliation(s)
- M Sato
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1738, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
This review will cover the state of the field in retinal degeneration and gene therapy with a focus on the great strides that have been made in retina gene therapy. Topics ranging from the development of animal models to clinical trials (for the treatment of Leber congenital amaurosis, age-related macular degeneration, and retinoblastoma) will be discussed. In addition, the results of gene therapy studies targeting the photoreceptors will be presented. Finally, strategies and progress in overcoming the challenges of photoreceptor-directed gene therapy will be presented.
Collapse
Affiliation(s)
- Tonia S Rex
- F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
32
|
Maguire-Zeiss KA, Mhyre TR, Federoff HJ. Gazing into the future: Parkinson's disease gene therapeutics to modify natural history. Exp Neurol 2007; 209:101-13. [PMID: 18035353 DOI: 10.1016/j.expneurol.2007.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/19/2007] [Accepted: 09/24/2007] [Indexed: 12/21/2022]
Abstract
PD gene therapy clinical trials have primarily focused on increasing the production of dopamine (DA) through supplemental amino acid decarboxylase (AADC) expression, neurotrophic support for surviving dopaminergic neurons (DAN) or altering brain circuitry to compensate for DA neuron loss. The future of PD gene therapy will depend upon resolving a number of important issues that are discussed in this special issue. Of particular importance is the identification of novel targets that are amenable to early intervention prior to the substantial loss of DAN. However, for the most part the etiopathogenesis of PD is unknown making early intervention a challenge and the development of early biomarker diagnostics imperative.
Collapse
|
33
|
De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59:292-307. [PMID: 17512630 PMCID: PMC1949490 DOI: 10.1016/j.addr.2007.03.017] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 03/28/2007] [Indexed: 12/13/2022]
Abstract
Regenerative medicine aims to create functional tissue replacements, typically through creating a controlled environment that promotes and directs the differentiation of stem or progenitor cells, either endogenous or transplanted. Scaffolds serve a central role in many strategies by providing the means to control the local environment. Gene delivery from the scaffold represents a versatile approach to manipulating the local environment for directing cell function. Research at the interface of biomaterials, gene therapy, and drug delivery has identified several design parameters for the vector and the biomaterial scaffold that must be satisfied. Progress has been made towards achieving gene delivery within a tissue engineering scaffold, though the design principles for the materials and vectors that produce efficient delivery require further development. Nevertheless, these advances in obtaining transgene expression with the scaffold have created opportunities to develop greater control of either delivery or expression and to identify the best practices for promoting tissue formation. Strategies to achieve controlled, localized expression within the tissue engineering scaffold will have broad application to the regeneration of many tissues, with great promise for clinical therapies.
Collapse
Affiliation(s)
- Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University Chicago, IL 60611
| |
Collapse
|