1
|
Zeng YY, Gu Q, Li D, Li AX, Liu RM, Liang JY, Liu JY. Immunocyte membrane-derived biomimetic nano-drug delivery system: a pioneering platform for tumour immunotherapy. Acta Pharmacol Sin 2024; 45:2455-2473. [PMID: 39085407 PMCID: PMC11579519 DOI: 10.1038/s41401-024-01355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor immunotherapy characterized by its high specificity and minimal side effects has achieved revolutionary progress in the field of cancer treatment. However, the complex mechanisms of tumor immune microenvironment (TIME) and the individual variability of patients' immune system still present significant challenges to its clinical application. Immunocyte membrane-coated nanocarrier systems, as an innovative biomimetic drug delivery platform, exhibit remarkable advantages in tumor immunotherapy due to their high targeting capability, good biocompatibility and low immunogenicity. In this review we summarize the latest research advances in biomimetic delivery systems based on immune cells for tumor immunotherapy. We outline the existing methods of tumor immunotherapy including immune checkpoint therapy, adoptive cell transfer therapy and cancer vaccines etc. with a focus on the application of various immunocyte membranes in tumor immunotherapy and their prospects and challenges in drug delivery and immune modulation. We look forward to further exploring the application of biomimetic delivery systems based on immunocyte membrane-coated nanoparticles, aiming to provide a new framework for the clinical treatment of tumor immunity.
Collapse
Affiliation(s)
- Yuan-Ye Zeng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Gu
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai, 200070, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ai-Xue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rong-Mei Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ji-Yong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Thoidingjam S, Bhatnagar AR, Sriramulu S, Siddiqui F, Nyati S. Optimizing Pancreatic Cancer Therapy: The Promise of Immune Stimulatory Oncolytic Viruses. Int J Mol Sci 2024; 25:9912. [PMID: 39337402 PMCID: PMC11432658 DOI: 10.3390/ijms25189912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pancreatic cancer presents formidable challenges due to rapid progression and resistance to conventional treatments. Oncolytic viruses (OVs) selectively infect cancer cells and cause cancer cells to lyse, releasing molecules that can be identified by the host's immune system. Moreover, OV can carry immune-stimulatory payloads such as interleukin-12, which when delivered locally can enhance immune system-mediated tumor killing. OVs are very well tolerated by cancer patients due to their ability to selectively target tumors without affecting surrounding normal tissues. OVs have recently been combined with other therapies, including chemotherapy and immunotherapy, to improve clinical outcomes. Several OVs including adenovirus, herpes simplex viruses (HSVs), vaccinia virus, parvovirus, reovirus, and measles virus have been evaluated in preclinical and clinical settings for the treatment of pancreatic cancer. We evaluated the safety and tolerability of a replication-competent oncolytic adenoviral vector carrying two suicide genes (thymidine kinase, TK; and cytosine deaminase, CD) and human interleukin-12 (hIL12) in metastatic pancreatic cancer patients in a phase 1 trial. This vector was found to be safe and well-tolerated at the highest doses tested without causing any significant adverse events (SAEs). Moreover, long-term follow-up studies indicated an increase in the overall survival (OS) in subjects receiving the highest dose of the OV. Our encouraging long-term survival data provide hope for patients with advanced pancreatic cancer, a disease that has not seen a meaningful increase in OS in the last five decades. In this review article, we highlight several preclinical and clinical studies and discuss future directions for optimizing OV therapy in pancreatic cancer. We envision OV-based gene therapy to be a game changer in the near future with the advent of newer generation OVs that have higher specificity and selectivity combined with personalized treatment plans developed under AI guidance.
Collapse
Affiliation(s)
| | | | | | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Khanduja S, Bloom SM, Raman V, Deshpande CP, Hall CL, Forbes NS. Intracellular delivery of oncolytic viruses with engineered Salmonella causes viral replication and cell death. iScience 2024; 27:109813. [PMID: 38799578 PMCID: PMC11126981 DOI: 10.1016/j.isci.2024.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
As therapies, oncolytic viruses regress tumors and have the potential to induce antitumor immune responses that clear hard-to-treat and late-stage cancers. Despite this promise, clearance from the blood prevents treatment of internal solid tumors. To address this issue, we developed virus-delivering Salmonella (VDS) to carry oncolytic viruses into cancer cells. The VDS strain contains the PsseJ-lysE delivery circuit and has deletions in four homologous recombination genes (ΔrecB, ΔsbcB, ΔsbcCD, and ΔrecF) to preserve essential hairpins in the viral genome required for replication and infectivity. VDS delivered the genome for minute virus of mice (MVMp) to multiple cancers, including breast, pancreatic, and osteosarcoma. Viral delivery produced functional viral particles that are cytotoxic and infective to neighboring cells. The release of mature virions initiated new rounds of infection and amplified the infection. Using Salmonella for delivery will circumvent the limitations of oncolytic viruses and will provide a new therapy for many cancers.
Collapse
Affiliation(s)
- Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shoshana M.K. Bloom
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Chinmay P. Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Christopher L. Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA
- Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA
| |
Collapse
|
5
|
Chowaniec H, Ślubowska A, Mroczek M, Borowczyk M, Braszka M, Dworacki G, Dobosz P, Wichtowski M. New hopes for the breast cancer treatment: perspectives on the oncolytic virus therapy. Front Immunol 2024; 15:1375433. [PMID: 38576614 PMCID: PMC10991781 DOI: 10.3389/fimmu.2024.1375433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a promising frontier in cancer treatment, especially for solid tumours. While immunotherapies like immune checkpoint inhibitors and CAR-T cells have demonstrated impressive results, their limitations in inducing complete tumour regression have spurred researchers to explore new approaches targeting tumours resistant to current immunotherapies. OVs, both natural and genetically engineered, selectively replicate within cancer cells, inducing their lysis while sparing normal tissues. Recent advancements in clinical research and genetic engineering have enabled the development of targeted viruses that modify the tumour microenvironment, triggering anti-tumour immune responses and exhibiting synergistic effects with other cancer therapies. Several OVs have been studied for breast cancer treatment, including adenovirus, protoparvovirus, vaccinia virus, reovirus, and herpes simplex virus type I (HSV-1). These viruses have been modified or engineered to enhance their tumour-selective replication, reduce toxicity, and improve oncolytic properties.Newer generations of OVs, such as Oncoviron and Delta-24-RGD adenovirus, exhibit heightened replication selectivity and enhanced anticancer effects, particularly in breast cancer models. Clinical trials have explored the efficacy and safety of various OVs in treating different cancers, including melanoma, nasopharyngeal carcinoma, head and neck cancer, and gynecologic malignancies. Notably, Talimogene laherparepvec (T-VEC) and Oncorine have. been approved for advanced melanoma and nasopharyngeal carcinoma, respectively. However, adverse effects have been reported in some cases, including flu-like symptoms and rare instances of severe complications such as fistula formation. Although no OV has been approved specifically for breast cancer treatment, ongoing preclinical clinical trials focus on four groups of viruses. While mild adverse effects like low-grade fever and nausea have been observed, the effectiveness of OV monotherapy in breast cancer remains insufficient. Combination strategies integrating OVs with chemotherapy, radiotherapy, or immunotherapy, show promise in improving therapeutic outcomes. Oncolytic virus therapy holds substantial potential in breast cancer treatment, demonstrating safety in trials. Multi-approach strategies combining OVs with conventional therapies exhibit more promising therapeutic effects than monotherapy, signalling a hopeful future for OV-based breast cancer treatments.
Collapse
Affiliation(s)
- Hanna Chowaniec
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Ślubowska
- Department of Biostatistics and Research Methodology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University of Warsaw, Warsaw, Poland
| | - Magdalena Mroczek
- Department of Neurology, University Hospital Basel, Univeristy of Basel, Basel, Switzerland
| | - Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Braszka
- Faculty of Medical Sciences, University College London Medical School, London, United Kingdom
| | - Grzegorz Dworacki
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Chair of Patomorphology and Clinical Immunology, Poznań University of Medical Sciences, Poznan, Poland
| | - Paula Dobosz
- University Centre of Cancer Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Wichtowski
- Surgical Oncology Clinic, Institute of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
7
|
Gesundheit B, Muckenhuber A, Posen Y, Ellis R, Zisman PD, Schmoll H, Weisslein C, Srinivas Raju J. Oncolytic virotherapy for metastatic breast cancer - a case report. Front Oncol 2023; 13:1186888. [PMID: 37350941 PMCID: PMC10282946 DOI: 10.3389/fonc.2023.1186888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Background Breast cancer is one of the most common malignancies worldwide and remains incurable after metastasis, with a 3-year overall survival rate of <40%. Case presentation A 40-year-old, Caucasian patient with a grade-3 estrogen receptor-, progesterone receptor-, Her2-positive breast tumor and two lung nodules was treated with intramuscular targeted immunotherapy with trastuzumab and oral tamoxifen hormone therapy, together with customized intra-tumoral oncolytic virotherapy (IT-OV) over a 17-month period. PET/CT imaging at 3 and 6 months showed increased primary tumor size and metabolic glucose uptake in the primary tumor, axillary lymph nodes and lung nodules, which were paralleled by a hyperimmune reaction in the bones, liver, and spleen. Thereafter, there was a steady decline in both tumor size and metabolic activity until no radiographic evidence of disease was observed. The treatment regimen was well tolerated and good quality of life was maintained throughout. Conclusion Integration of IT-OV immunotherapy in standard treatment protocols presents an attractive modality for late-stage primary tumors with an abscopal effect on metastases.
Collapse
|
8
|
Faranoush P, Jahandideh A, Nekouian R, Mortazavi P. Evaluation of the in vitro and in vivo effect of liposomal doxorubicin along with oncolytic Newcastle disease virus on 4T1 cell line: Animal preclinical research. Vet Med Sci 2023; 9:1426-1437. [PMID: 36920334 PMCID: PMC10188073 DOI: 10.1002/vms3.1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/23/2022] [Accepted: 01/28/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Breast cancer is one of the most common malignancies in women, with one in 20 globally. Oncolytic viruses have recently been the first step in the biological treatment of cancer, either genetically engineered or naturally occurring. They increase specifically inside cancer cells and destroy them without damaging normal tissues or producing a host immune response against tumour cells or expressing transgenes. One of the most known members of this family is the Newcastle disease virus (NDV), a natural oncolytic virus that selectively induces apoptosis and DNA fragmentation in human cancer cells. METHODS This study performed biochemical and molecular investigations with variable doses of NDV (32, 64, 128 HAU) and liposomal doxorubicin (9 mg/kg) on mouse triple-negative mammary carcinoma cell line 4T1 and BALB/c models tumours for the first time. RESULTS Real-time quantitative PCR analysis in NDV-treated animal tumours showed increased expression of P21, P27 and P53 genes and decreased expression of CD34, integrin Alpha 5, VEGF and VEGF-R genes. Additional assessments in treated mouse models also showed that NDV increased ROS production, induced apoptosis, reduced tumour size and significantly improved prognosis, with no adverse effect on normal tissues. CONCLUSIONS These findings all together might indicate that NDV in combination with chemotherapy drugs could improve prognosis in cancer patients although many more conditions should be considered.
Collapse
Affiliation(s)
- Pooya Faranoush
- Faculty of Specialized Veterinary Sciences, Science and Research BranchIslamic Azad UniversityTehranIran
- Pediatric Growth and Development Research CenterInstitute of Endocrinology and Metabolism, Iran University of Medical SciencesTehranIran
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
| | - Alireza Jahandideh
- Department of Clinical Science, Faculty of Specialized Veterinary Sciences, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Reza Nekouian
- Pediatric Growth and Development Research CenterInstitute of Endocrinology and Metabolism, Iran University of Medical SciencesTehranIran
- Department of Medical Biotechnology, School of Allied MedicineIran University of Medical SciencesTehranIran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
9
|
Abdou Y, Goudarzi A, Yu JX, Upadhaya S, Vincent B, Carey LA. Immunotherapy in triple negative breast cancer: beyond checkpoint inhibitors. NPJ Breast Cancer 2022; 8:121. [PMID: 36351947 PMCID: PMC9646259 DOI: 10.1038/s41523-022-00486-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
The development of immunotherapy agents has revolutionized the field of oncology. The only FDA-approved immunotherapeutic approach in breast cancer consists of immune checkpoint inhibitors, yet several novel immune-modulatory strategies are being actively studied and appear promising. Innovative immunotherapeutic strategies are urgently needed in triple negative breast cancer (TNBC), a subtype of breast cancer known for its poor prognosis and its resistance to conventional treatments. TNBC is more primed to respond to immunotherapy given the presence of more tumor infiltrating lymphocytes, higher PD-L1 expression, and higher tumor mutation burden relative to the other breast cancer subtypes, and therefore, immuno-oncology represents a key area of promise for TNBC research. The aim of this review is to highlight current data and ongoing efforts to establish the safety and efficacy of immunotherapeutic approaches beyond checkpoint inhibitors in TNBC.
Collapse
Affiliation(s)
- Yara Abdou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Atta Goudarzi
- Department of Medicine, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jia Xin Yu
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, 94129, USA
| | | | - Benjamin Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Thuy LT, Choi M, Lee M, Choi JS. Preparation and characterization of polyamidoamine dendrimers conjugated with cholesteryl-dipeptide as gene carriers in HeLa cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:976-994. [PMID: 35038285 DOI: 10.1080/09205063.2022.2030657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Improving the transfection efficiency of non-viral carriers by using cationic polymers is a useful approach to addressing several challenges in gene therapy, such as cellular uptake, endosomal escape, and toxicity. Among the various cationic polymers, polyamidoamine (PAMAM) dendrimers have been widely utilized because of the abundance of terminal functional groups, thereby enabling further functionalization and enhancing DNA condensation and internalization into cells. The combination of various functional groups is required for these PAMAM dendrimer derivatives to function appropriately for gene delivery. Herein, we synthesized PAMAM G2-HRChol by conjugating dipeptide (histidine-arginine) and cholesterol at different ratios (6% or 23%) on the surface of PAMAM dendrimer generation 2 (PAMAM G2). Both PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% have buffering capacity, leading to improved endosomal escape after entering the cells. PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% dendrimers were condensed with pDNA to form nano-polyplexes at a weight ratio of 4 (polymer/pDNA). Polyplexes are positively charged, which facilitates cellular uptake. The transfection efficiency of PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% dendrimers was similar to that of PEI 25 kDa under optimum conditions, and the cytotoxicity was much lower than that of PEI 25 kDa in HeLa cells. In addition, after apoptin gene transfection was performed, cell death ratios of 34.47% and 22.47% were observed for PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23%, respectively. The results show that a suitable amount of cholesterol can improve gene transfection efficiency, and the PAMAM G2-HRChol 6% dendrimer could be a potential gene carrier in HeLa cells.
Collapse
Affiliation(s)
- Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Minyoung Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Hu H, Zhang S, Cai L, Duan H, Li Y, Yang J, Wang Y, Liu B, Dong S, Fang Z, Liu B. A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 results in enhanced antitumor efficacy. Virol J 2022; 19:74. [PMID: 35459242 PMCID: PMC9034647 DOI: 10.1186/s12985-022-01795-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Selectively replicating herpes simplex virus-2 (HSV-2) vector is a promising treatment for cancer therapy. The insertion of multiple transgenes into the viral genome has been performed to improve its oncolytic activity. METHODS Herein, we simultaneously constructed five "armed" oncolytic viruses (OVs), designated oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19. These OVs delete the ICP34.5 and ICP47 genes with the insertion of transgenes into the deleted ICP34.5 locus. The anti-tumor efficacy in vivo was tested in the syngeneic 4T1 and CT26 tumor-bearing mice model. RESULTS The OVs showed comparable oncolytic capability in vitro. The combination therapy of oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19 exhibited the highest tumor inhibition efficacy compared with the treatment of single OV or two OVs combination. CONCLUSIONS The OVs armed with different transgenes combination therapy also named 5-valent oHSV2 (also called cocktail therapy) might be an effective therapeutic strategy for solid tumors.
Collapse
Affiliation(s)
- Han Hu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Siqi Zhang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Linkang Cai
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Haixiao Duan
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yuying Li
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Junhan Yang
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yang Wang
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Biao Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Shuang Dong
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China. .,Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China.
| |
Collapse
|
12
|
Miguel Cejalvo J, Falato C, Villanueva L, Tolosa P, González X, Pascal M, Canes J, Gavilá J, Manso L, Pascual T, Prat A, Salvador F. Oncolytic Viruses: a new immunotherapeutic approach for breast cancer treatment? Cancer Treat Rev 2022; 106:102392. [DOI: 10.1016/j.ctrv.2022.102392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
|
13
|
Carter ME, Koch A, Lauer UM, Hartkopf AD. Clinical Trials of Oncolytic Viruses in Breast Cancer. Front Oncol 2021; 11:803050. [PMID: 35004328 PMCID: PMC8733599 DOI: 10.3389/fonc.2021.803050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the second most common kind of cancer worldwide and oncolytic viruses may offer a new treatment approach. There are three different types of oncolytic viruses used in clinical trials; (i) oncolytic viruses with natural anti-neoplastic properties; (ii) oncolytic viruses designed for tumor-selective replication; (iii) oncolytic viruses modified to activate the immune system. Currently, fourteen different oncolytic viruses have been investigated in eighteen published clinical trials. These trials demonstrate that oncolytic viruses are well tolerated and safe for use in patients and display clinical activity. However, these trials mainly studied a small number of patients with different advanced tumors including some with breast cancer. Future trials should focus on breast cancer and investigate optimal routes of administration, occurrence of neutralizing antibodies, viral gene expression, combinations with other antineoplastic therapies, and identify subtypes that are particularly suitable for oncolytic virotherapy.
Collapse
Affiliation(s)
- Mary E Carter
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - André Koch
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Medical Oncology & Pneumology, University of Tuebingen, Tuebingen, Germany
| | - Andreas D Hartkopf
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
14
|
Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10:229-255. [PMID: 34631474 PMCID: PMC8474975 DOI: 10.5501/wjv.v10.i5.229] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
In view of the advancement in the understanding about the most diverse types of cancer and consequently a relentless search for a cure and increased survival rates of cancer patients, finding a therapy that is able to combat the mechanism of aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) have demonstrated great benefits in the treatment of cancer because it mediates antitumor effects in several ways. Viruses can be used to infect cancer cells, especially over normal cells, to present tumor-associated antigens, to activate "danger signals" that generate a less immune-tolerant tumor microenvironment, and to serve transduction vehicles for expression of inflammatory and immunomodulatory cytokines. The success of therapies using OVs was initially demonstrated by the use of the genetically modified herpes virus, talimogene laherparepvec, for the treatment of melanoma. At this time, several OVs are being studied as a potential treatment for cancer in clinical trials. However, it is necessary to be aware of the safety and possible adverse effects of this therapy; after all, an effective treatment for cancer should promote regression, attack the tumor, and in the meantime induce minimal systemic repercussions. In this manuscript, we will present a current review of the mechanism of action of OVs, main clinical uses, updates, and future perspectives on this treatment.
Collapse
Affiliation(s)
- Jonathan Santos Apolonio
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - João Victor Silva Souza
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Wedja Rafaela de Souza
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
15
|
Jin S, Wang Q, Wu H, Pang D, Xu S. Oncolytic viruses for triple negative breast cancer and beyond. Biomark Res 2021; 9:71. [PMID: 34563270 PMCID: PMC8466906 DOI: 10.1186/s40364-021-00318-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Biological therapy is considered an alternative treatment capable of eliciting the same effects on tumors as surgery, radiotherapy, and chemotherapy. As a major player in biological therapy, oncolytic viruses (OVs) have attracted great attention and achieved good results. Specifically, the successful application of OVs in head and neck cancer, as well as melanoma, promoted its research in triple negative breast cancer (TNBC). TNBC is a high-risk molecular type of breast cancer, characterized by strong invasion, easy recurrence, and metastasis. Due to the absence of estrogen and progesterone receptors, as well as the absence of overexpression or gene amplification of human epidermal growth factor receptor 2 (HER2), endocrine therapy and anti HER-2 targeted therapy have proven ineffective. Although chemotherapy has shown substantial efficacy in some TNBC patients, the occurrence of drug resistance and poor prognosis have prompted the exploration of new and effective treatment methods. The emerging concept of OVs provides a new platform to treat TNBC. Indeed, several studies have confirmed the therapeutic effects of OVs in TNBC. Numerous studies have also investigated the efficacy of OVs in other malignances, including solid tumor clinical trials, thus further demonstrating the promising application of oncolytic virotherapy for TNBC. The primary focus of the current review is the examination of OV mechanisms underlying their antitumor properties, while also summarizing the ongoing progress in OV research regarding TNBC treatment, as well as the various combinatorial strategies comprising OVs and other therapies. We also briefly introduce specific relevant clinical trials and discuss some of the progress in the research of novel OVs for the treatment of other malignancies, thereby affirming the significant therapeutic potential of OVs for the treatment of TNBC, as well as other cancers.
Collapse
Affiliation(s)
- Shengye Jin
- Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China. .,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China.
| |
Collapse
|
16
|
Teijeira Crespo A, Burnell S, Capitani L, Bayliss R, Moses E, Mason GH, Davies JA, Godkin AJ, Gallimore AM, Parker AL. Pouring petrol on the flames: Using oncolytic virotherapies to enhance tumour immunogenicity. Immunology 2021; 163:389-398. [PMID: 33638871 PMCID: PMC8274202 DOI: 10.1111/imm.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses possess the ability to infect, replicate and lyse malignantly transformed tumour cells. This oncolytic activity amplifies the therapeutic advantage and induces a form of immunogenic cell death, characterized by increased CD8 + T-cell infiltration into the tumour microenvironment. This important feature of oncolytic viruses can result in the warming up of immunologically 'cold' tumour types, presenting the enticing possibility that oncolytic virus treatment combined with immunotherapies may enhance efficacy. In this review, we assess some of the most promising candidates that might be used for oncolytic virotherapy: immunotherapy combinations. We assess their potential as separate agents or as agents combined into a single therapy, where the immunotherapy is encoded within the genome of the oncolytic virus. The development of such advanced agents will require increasingly sophisticated model systems for their preclinical assessment and evaluation. In vivo rodent model systems are fraught with limitations in this regard. Oncolytic viruses replicate selectively within human cells and therefore require human xenografts in immune-deficient mice for their evaluation. However, the use of immune-deficient rodent models hinders the ability to study immune responses against any immunomodulatory transgenes engineered within the viral genome and expressed within the tumour microenvironment. There has therefore been a shift towards the use of more sophisticated ex vivo patient-derived model systems based on organoids and explant co-cultures with immune cells, which may be more predictive of efficacy than contrived and artificial animal models. We review the best of those model systems here.
Collapse
Affiliation(s)
- Alicia Teijeira Crespo
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Stephanie Burnell
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Lorenzo Capitani
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Rebecca Bayliss
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Elise Moses
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Georgina H. Mason
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - James A. Davies
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Andrew J. Godkin
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Awen M. Gallimore
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Alan L. Parker
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| |
Collapse
|
17
|
Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells 2021; 10:cells10061541. [PMID: 34207386 PMCID: PMC8235327 DOI: 10.3390/cells10061541] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
With the increased worldwide burden of cancer, including aggressive and resistant cancers, oncolytic virotherapy has emerged as a viable therapeutic option. Oncolytic herpes simplex virus (oHSV) can be genetically engineered to target cancer cells while sparing normal cells. This leads to the direct killing of cancer cells and the activation of the host immunity to recognize and attack the tumor. Different variants of oHSV have been developed to optimize its antitumor effects. In this review, we discuss the development of oHSV, its antitumor mechanism of action and the clinical trials that have employed oHSV variants to treat different types of tumor.
Collapse
|
18
|
Kwan A, Winder N, Muthana M. Oncolytic Virotherapy Treatment of Breast Cancer: Barriers and Recent Advances. Viruses 2021; 13:1128. [PMID: 34208264 PMCID: PMC8230950 DOI: 10.3390/v13061128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OV) is an emerging class of immunotherapeutic drugs. Their mechanism of action is two-fold: direct cell lysis and unmasking of the cancer through immunogenic cell death, which allows the immune system to recognize and eradicate tumours. Breast cancer is the most common cancer in women and is challenging to treat with immunotherapy modalities because it is classically an immunogenically "cold" tumour type. This provides an attractive niche for OV, given viruses have been shown to turn "cold" tumours "hot," thereby opening a plethora of treatment opportunities. There has been a number of pre-clinical attempts to explore the use of OV in breast cancer; however, these have not led to any meaningful clinical trials. This review considers both the potential and the barriers to OV in breast cancer, namely, the limitations of monotherapy and the scope for combination therapy, improving viral delivery and challenges specific to the breast cancer population (e.g., tumour subtype, menopausal status, age).
Collapse
Affiliation(s)
| | | | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK; (A.K.); (N.W.)
| |
Collapse
|
19
|
Combination Therapy of Novel Oncolytic Adenovirus with Anti-PD1 Resulted in Enhanced Anti-Cancer Effect in Syngeneic Immunocompetent Melanoma Mouse Model. Pharmaceutics 2021; 13:pharmaceutics13040547. [PMID: 33919827 PMCID: PMC8070801 DOI: 10.3390/pharmaceutics13040547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Malignant melanoma, an aggressive form of skin cancer, has a low five-year survival rate in patients with advanced disease. Immunotherapy represents a promising approach to improve survival rates among patients at advanced stage. Herein, the aim of the study was to design and produce, by using engineering tools, a novel oncolytic adenovirus AdV-D24- inducible co-stimulator ligand (ICOSL)-CD40L expressing potent co-stimulatory molecules enhancing clinical efficacy through the modulation of anti-cancer immune responses. Firstly, we demonstrated the vector's identity and genetic stability by restriction enzyme assay and sequencing, then, by performing in vitro and in vivo pre-clinical studies we explored the anti-cancer efficacy of the virus alone or in combination with anti PD-1 inhibitor in human melanoma cell lines, i.e., MUG Mel-1 and MUG Mel-2, and in immunocompetent C57BL/6 melanoma B16V mouse model. We showed that both monotherapy and combination approaches exhibit enhanced anti-cancer ability and immunogenic cell death in in vitro settings. Furthermore, AdV-D24-ICOSL-CD40L combined with anti PD-1 revealed a fall in tumor volume and 100% survival in in vivo context, thus suggesting enhanced efficacy and survival via complementary anti-cancer properties of those agents in melanoma therapy. Collectively, the novel oncolytic vector AdV-D24-ICOSL-CD40L alone or in combination with anticancer drugs, such as check point inhibitors, may open novel therapeutic perspectives for the treatment of melanoma.
Collapse
|
20
|
Nguyen HM, Guz-Montgomery K, Lowe DB, Saha D. Pathogenetic Features and Current Management of Glioblastoma. Cancers (Basel) 2021; 13:cancers13040856. [PMID: 33670551 PMCID: PMC7922739 DOI: 10.3390/cancers13040856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of both sexes, and has an average overall survival of 12-15 months, despite advances in diagnosis and rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most survivors will eventually experience tumor recurrence that only imparts survival of a few months. GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment. Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative treatment options that allow for more efficient targeting of the tumor including small molecule drugs and immunotherapies. A number of other strategies in development include therapies based on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances in these potential approaches shed a promising outlook on the future of GBM treatment. In this review, we briefly discuss the current understanding of adult GBM's pathogenetic features that promote treatment resistance. We also outline novel and promising targeted agents currently under development for GBM patients during the last few years with their current clinical status.
Collapse
|
21
|
Yu CC, Wortman JC, He TF, Solomon S, Zhang RZ, Rosario A, Wang R, Tu TY, Schmolze D, Yuan Y, Yost SE, Li X, Levine H, Atwal G, Lee PP. Physics approaches to the spatial distribution of immune cells in tumors. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:022601. [PMID: 33232952 DOI: 10.1088/1361-6633/abcd7b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The goal of immunotherapy is to mobilize the immune system to kill cancer cells. Immunotherapy is more effective and, in general, the prognosis is better, when more immune cells infiltrate the tumor. We explore the question of whether the spatial distribution rather than just the density of immune cells in the tumor is important in forecasting whether cancer recurs. After reviewing previous work on this issue, we introduce a novel application of maximum entropy to quantify the spatial distribution of discrete point-like objects. We apply our approach to B and T cells in images of tumor tissue taken from triple negative breast cancer patients. We find that the immune cells are more spatially dispersed in good clinical outcome (no recurrence of cancer within at least 5 years of diagnosis) compared to poor clinical outcome (recurrence within 3 years of diagnosis). Our results highlight the importance of spatial distribution of immune cells within tumors with regard to clinical outcome, and raise new questions on their role in cancer recurrence.
Collapse
Affiliation(s)
- Clare C Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, United States of America
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Juliana C Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Ting-Fang He
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Shawn Solomon
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Robert Z Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Anthony Rosario
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Roger Wang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Travis Y Tu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Susan E Yost
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Xuefei Li
- Department of Bioengineering and the Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, United States of America
| | - Herbert Levine
- Department of Bioengineering and the Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, United States of America
- Department of Bioengineering and Department of Physics, Northeastern University, Boston, MA 02115, United States of America
| | - Gurinder Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States of America
| | - Peter P Lee
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| |
Collapse
|
22
|
O'Bryan SM, Mathis JM. CXCL12 Retargeting of an Oncolytic Adenovirus Vector to the Chemokine CXCR4 and CXCR7 Receptors in Breast Cancer. ACTA ACUST UNITED AC 2021; 12:311-336. [PMID: 34178415 DOI: 10.4236/jct.2021.126029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant progress has been made in developing targeted therapies for breast cancer, advanced breast cancer continues to have high mortality, with poor 5-year survival rates. Thus, current therapies are insufficient in treating advanced stages of breast cancer; new treatments are sorely needed to address the complexity of advanced-stage breast cancer. Oncolytic virotherapy has been explored as a therapeutic approach capable of systemic administration, targeting cancer cells, and sparing normal tissue. In particular, oncolytic adenoviruses have been exploited as viral vectors due to their ease of manipulation, production, and demonstrated clinical safety profile. In this study, we engineered an oncolytic adenovirus to target the chemokine receptors CXCR4 and CXCR7. The overexpression of CXCR4 and CXCR7 is implicated in the initiation, survival, progress, and metastasis of breast cancer. Both receptors bind to the ligand, CXCL12 (SDF-1), which has been identified to play a crucial role in the metastasis of breast cancer cells. This study incorporated a T4 fibritin protein fused to CXCL12 into the tail domain of an adenovirus fiber to retarget the vector to the CXCR4 and CXCR7 chemokine receptors. We showed that the modified virus targets and infects CXCR4- and CXCR7-overexpressing breast cancer cells more efficiently than a wild-type control vector. In addition, the substitution of the wild-type fiber and knob with the modified chimeric fiber did not interfere with oncolytic capability. Overall, the results of this study demonstrate the feasibility of retargeting adenovirus vectors to chemokine receptor-positive tumors.
Collapse
Affiliation(s)
- Samia M O'Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana USA
| | - J Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana USA.,University of North Texas Health Science Center, Graduate School of Biomedical Sciences, Fort Worth, Texas, USA
| |
Collapse
|
23
|
Radosa JC, Stotz L, Müller C, Kaya AC, Solomayer EF, Radosa MP. Clinical Data on Immunotherapy in Breast Cancer. Breast Care (Basel) 2020; 15:450-469. [PMID: 33223989 PMCID: PMC7650095 DOI: 10.1159/000511788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Breast cancer has traditionally been considered to have a low immunogenic potential compared to other tumor entities. SUMMARY The most extensively studied immunotherapeutic agents for breast cancer to date are immune checkpoint inhibitors, with the results of the IMpassion130 trial leading to the approval of atezolizumab plus nab-paclitaxel for first-line treatment of programmed cell death ligand 1-positive, metastatic, triple-negative breast cancer, and studies in earlier stages have yielded promising results. Other immunotherapeutic options being assessed in phases 2 and 3 trials include vaccine-based therapies and treatment with anti-human epidermal growth factor receptor 2 (H-directed immune-linked antibodies) and substances evaluated in early clinical trials as cellular therapies (adoptive cell therapy and chimeric antigen receptor T cells). KEY MESSAGES Immunotherapy is an emerging modality for the treatment of breast cancer, as evidenced by the plethora of preclinical and clinical concepts and ongoing trials. Early studies established the role of immunotherapeutic agents in the metastatic setting. Ongoing studies will expand our knowledge about the timing of administration, best partners for combination therapy, and predictive biomarkers to guide immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Julia Caroline Radosa
- Department of Gynecology and Obstetrics, Saarland University Hospital, Homburg, Germany
| | - Lisa Stotz
- Department of Gynecology and Obstetrics, Saarland University Hospital, Homburg, Germany
| | - Carolin Müller
- Department of Gynecology and Obstetrics, Saarland University Hospital, Homburg, Germany
| | - Askin Canguel Kaya
- Department of Gynecology and Obstetrics, Saarland University Hospital, Homburg, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology and Obstetrics, Saarland University Hospital, Homburg, Germany
| | - Marc Philipp Radosa
- Department of Gynecology and Obstetrics, Klinikum Bremen-Nord, Bremen, Germany
| |
Collapse
|
24
|
Ghouse SM, Nguyen HM, Bommareddy PK, Guz-Montgomery K, Saha D. Oncolytic Herpes Simplex Virus Encoding IL12 Controls Triple-Negative Breast Cancer Growth and Metastasis. Front Oncol 2020; 10:384. [PMID: 32266155 PMCID: PMC7105799 DOI: 10.3389/fonc.2020.00384] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a difficult-to-treat disease with high rates of local recurrence, distant metastasis, and poor overall survival with existing therapies. Thus, there is an unmet medical need to develop new treatment regimen(s) for TNBC patients. An oncolytic herpes simplex virus encoding a master anti-tumor cytokine, interleukin 12, (designated G47Δ-mIL12) selectively kills cancer cells while inducing anti-tumor immunity. G47Δ-mIL12 efficiently infected and killed murine (4T1 and EMT6) and human (HCC1806 and MDA-MB-468) mammary tumor cells in vitro. In vivo in the 4T1 syngeneic TNBC model, it significantly reduced primary tumor burden and metastasis, both at early and late stages of tumor development. The virus-induced local and abscopal effects were confirmed by significantly increased infiltration of CD45+ leukocytes and CD8+ T cells, and reduction of granulocytic and monocytic MDSCs in tumors, both treated and untreated contralateral, and in the spleen. Significant trafficking of dendritic cells (DCs) were only observed in spleens of virus-treatment group, indicating that DCs are primed and activated in the tumor-microenvironment following virotherapy, and trafficked to lymphoid organs for activation of immune cells, such as CD8+ T cells. DC priming/activation could be associated with virally enhanced expression of several antigen processing/presentation genes in the tumor microenvironment, as confirmed by NanoString gene expression analysis. Besides DC activation/priming, G47Δ-mIL12 treatment led to up-regulation of CD8+ T cell activation markers in the tumor microenvironment and inhibition of tumor angiogenesis. The anti-tumor effects of G47Δ-mIL12 treatment were CD8-dependent. These studies illustrate the ability of G47Δ-mIL12 to immunotherapeutically treat TNBC.
Collapse
Affiliation(s)
- Shanawaz M Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Praveen K Bommareddy
- School of Graduate Studies, Rutgers University, New Brunswick, NJ, United States
| | - Kirsten Guz-Montgomery
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
25
|
Abdullah SA, Al-Shammari AM, Lateef SA. Attenuated measles vaccine strain have potent oncolytic activity against Iraqi patient derived breast cancer cell line. Saudi J Biol Sci 2020; 27:865-872. [PMID: 32127764 PMCID: PMC7042618 DOI: 10.1016/j.sjbs.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND One of the world's leading causes of death among females is breast cancer. Oncolytic viruses are promising anticancer therapy that can overcome resistance to current conventional therapies. Measles virus replicates in and destroys malignant cells without affecting healthy cells. The study aimed to evaluate the lives attenuated Measles virus vaccine against Iraqi patient derived breast cancer cells that have functional BRCA1/BRCA2 genes and compare its activity against international breast cancer MCF-7 and CAL-51 cell lines. METHODS The virus was propagated in VERO-hSLAM slam cells. The MTT cytotoxicity assay used to test the virus's ability to kill three human breast cell lines (AMJ13), (MCF-7), and (CAL-51). The cytopathic effect of the measles virus was determined using an H&E stain. Immunocytochemistry assay using specific anti H protein monoclonal antibody for measles virus in the virally infected cells. Finally, apoptosis induction in the infected cells tested using double staining of acridine orange/propidium iodide. RESULTS The result shown that breast cancer cells are effectively infected and destroyed by live attenuated measles virus vaccine, and it caused a significant cytopathic effect in the infected cell lines after 48-72 h of infection with remarkable effect on AMJ13 cells (IC50 was 3.527 for AMJ13, when it was 5.079 and 9.171 for MCF-7 and CAL-51 respectively). Measles virus treatment induces apoptosis significantly in breast cancer cell lines compared with control cells. CONCLUSION MeV vaccine is useful and safe as anticancer therapy with a notable impact on the local Iraqi breast cancer AMJ13 cells.
Collapse
Affiliation(s)
| | - Ahmed Majeed Al-Shammari
- Mustansiriyah University, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - Safaa A. Lateef
- University of Anbar, Collage of Science, Department of Biology, Anbar, Iraq
| |
Collapse
|
26
|
García-Aranda M, Redondo M. Immunotherapy: A Challenge of Breast Cancer Treatment. Cancers (Basel) 2019; 11:E1822. [PMID: 31756919 PMCID: PMC6966503 DOI: 10.3390/cancers11121822] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is a leading cause of cancer death in women worldwide. Despite the significant benefit of the use of conventional chemotherapy and monoclonal antibodies in the prognosis of breast cancer patients and although the recent approval of the anti-PD-L1 antibody atezolizumab in combination with chemotherapy has been a milestone for the treatment of patients with metastatic triple-negative breast cancer, immunologic treatment of breast tumors remains a great challenge. In this review, we summarize current breast cancer classification and standard of care, the main obstacles that hinder the success of immunotherapies in breast cancer patients, as well as different approaches that could be useful to enhance the response of breast tumors to immunotherapies.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain;
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Carlos III Health Institute (Instituto de Salud Carlos III). Av. de Monforte de Lemos, 5. 28029 Madrid, Spain
- Malaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28. 29010 Málaga, Spain
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain
| | - Maximino Redondo
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain;
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Carlos III Health Institute (Instituto de Salud Carlos III). Av. de Monforte de Lemos, 5. 28029 Madrid, Spain
- Malaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28. 29010 Málaga, Spain
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain
| |
Collapse
|