1
|
Wang R, Zhu Y, Zhong H, Gao X, Sun Q, He M. Homotypic cell-in-cell structures as an adverse prognostic predictor of hepatocellular carcinoma. Front Oncol 2022; 12:1007305. [PMID: 36419874 PMCID: PMC9676929 DOI: 10.3389/fonc.2022.1007305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors. A homotypic cell-in-cell structure (hoCIC) refers to one or more cells internalized into the same type as their neighbors, which predominantly occurs in multiple tumors. The objective of this study was to investigate the prognostic value of hoCICs in HCC and its relationship with other clinicopathological features. By immunostaining analysis of a panel of HCC tissues, we found that hoCICs were prevalent in tumor tissues (54/90) but not in para-tumor tissues (17/90). The presence of hoCICs in tumor tissues was closely associated with E-cadherin expression. The presence of CICs was identified as significantly associated with poor survival rates of patients with HCC, comparable to traditional clinicopathological parameters, such as histological grade [hazard ratio (HR) = 0.734, p = 0.320]. Multivariate Cox regression analysis further confirmed that CICs were an independent risk factor for poor survival (HR = 1.902, p = 0.047). In addition, hoCICs were the predominant contributor in a nomogram model constructed for survival prediction at 1, 3, and 5 years [the areas under the curve (AUCs) were 0.760, 0.733, and 0.794, respectively]. Stratification analysis indicated that hoCICs tend to selectively affect patients with high-grade disease (HR = 2.477, p = 0.009) and at the early TNM stage (HR = 2.351, p = 0.05). Thus, hoCICs predict poor survival of patients with HCC, particularly those with higher grades and at an early stage.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yichao Zhu
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Hao Zhong
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinyue Gao
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Qiang Sun
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Tang M, Su Y, Zhao W, Niu Z, Ruan B, Li Q, Zheng Y, Wang C, Zhang B, Zhou F, Wang X, Huang H, Shi H, Sun Q. AIM-CICs: an automatic identification method for cell-in-cell structures based on convolutional neural network. J Mol Cell Biol 2022; 14:6649212. [PMID: 35869978 PMCID: PMC9701057 DOI: 10.1093/jmcb/mjac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Edited by Luonan Chen Whereas biochemical markers are available for most types of cell death, current studies on non-autonomous cell death by entosis rely strictly on the identification of cell-in-cell structures (CICs), a unique morphological readout that can only be quantified manually at present. Moreover, the manual CIC quantification is generally over-simplified as CIC counts, which represents a major hurdle against profound mechanistic investigations. In this study, we take advantage of artificial intelligence technology to develop an automatic identification method for CICs (AIM-CICs), which performs comprehensive CIC analysis in an automated and efficient way. The AIM-CICs, developed on the algorithm of convolutional neural network, can not only differentiate between CICs and non-CICs (the area under the receiver operating characteristic curve (AUC) > 0.99), but also accurately categorize CICs into five subclasses based on CIC stages and cell number involved (AUC > 0.97 for all subclasses). The application of AIM-CICs would systemically fuel research on CIC-mediated cell death, such as high-throughput screening.
Collapse
Affiliation(s)
| | | | | | | | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Qinqin Li
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Bo Zhang
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China,Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric & State Key Laboratory of Kidney, Chinese PLA General Hospital, Beijing 100853, China
| | | | | | - Qiang Sun
- Correspondence to: Qiang Sun, E-mail:
| |
Collapse
|
3
|
Su Y, Huang H, Luo T, Zheng Y, Fan J, Ren H, Tang M, Niu Z, Wang C, Wang Y, Zhang Z, Liang J, Ruan B, Gao L, Chen Z, Melino G, Wang X, Sun Q. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov 2022; 8:35. [PMID: 35436988 PMCID: PMC9016064 DOI: 10.1038/s41421-022-00387-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Penetration of immune cells into tumor cells was believed to be immune-suppressive via cell-in-cell (CIC) mediated death of the internalized immune cells. We unexpectedly found that CIC formation largely led to the death of the host tumor cells, but not the internalized immune cells, manifesting typical features of death executed by NK cells; we named this "in-cell killing" which displays the efficacy superior to the canonical way of "kiss-killing" from outside. By profiling isogenic cells, CD44 on tumor cells was identified as a negative regulator of "in-cell killing" via inhibiting CIC formation. CD44 functions to antagonize NK cell internalization by reducing N-cadherin-mediated intercellular adhesion and by enhancing Rho GTPase-regulated cellular stiffness as well. Remarkably, antibody-mediated blockade of CD44 signaling potentiated the suppressive effects of NK cells on tumor growth associated with increased heterotypic CIC formation. Together, we identified CIC-mediated "in-cell killing" as a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Su
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - You Zheng
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jie Fan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - He Ren
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Meng Tang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Zubiao Niu
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Chenxi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Yuqi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhengrong Zhang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jianqing Liang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Banzhan Ruan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Lihua Gao
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhaolie Chen
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Gerry Melino
- Departments of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Xiaoning Wang
- National Research Center of Geriatrics Diseases, Chinese PLA General Hospital, Beijing, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China.
| |
Collapse
|
4
|
Xu Q, Zhang X, Sanchez GJ, Ramirez AT, Liu X. Cell type-specific intercellular gene transfer in mammalian cells via transient cell entrapment. Cell Discov 2022; 8:20. [PMID: 35228545 PMCID: PMC8885815 DOI: 10.1038/s41421-021-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Quanbin Xu
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, JSCBB, 596 UCB, Boulder, CO, USA
| | - Xiaojuan Zhang
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, JSCBB, 596 UCB, Boulder, CO, USA
| | - Gilson J Sanchez
- Department of MCD-Biology, University of Colorado, Boulder, CO, USA
| | - Adrian T Ramirez
- Department of MCD-Biology, University of Colorado, Boulder, CO, USA
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, JSCBB, 596 UCB, Boulder, CO, USA.
| |
Collapse
|
5
|
Wang M, Niu Z, Qin H, Ruan B, Zheng Y, Ning X, Gu S, Gao L, Chen Z, Wang X, Huang H, Ma L, Sun Q. Mechanical Ring Interfaces between Adherens Junction and Contractile Actomyosin to Coordinate Entotic Cell-in-Cell Formation. Cell Rep 2021; 32:108071. [PMID: 32846129 DOI: 10.1016/j.celrep.2020.108071] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/21/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Entosis is a cell-in-cell (CIC)-mediated death program. Contractile actomyosin (CA) and the adherens junction (AJ) are two core elements essential for entotic CIC formation, but the molecular structures interfacing them remain poorly understood. Here, we report the characterization of a ring-like structure interfacing between the peripheries of invading and engulfing cells. The ring-like structure is a multi-molecular complex consisting of adhesive and cytoskeletal proteins, in which the mechanical sensor vinculin is highly enriched. The vinculin-enriched structure senses mechanical force imposed on cells, as indicated by fluorescence resonance energy transfer (FRET) analysis, and is thus termed the mechanical ring (MR). The MR actively interacts with CA and the AJ to help establish and maintain polarized actomyosin that drives cell internalization. Vinculin depletion leads to compromised MR formation, CA depolarization, and subsequent CIC failure. In summary, we suggest that the vinculin-enriched MR, in addition to CA and AJ, is another core element essential for entosis.
Collapse
Affiliation(s)
- Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China; Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Hongquan Qin
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China; Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China
| | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Xiangkai Ning
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Songzhi Gu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric, the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Li Ma
- Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China.
| |
Collapse
|
6
|
Chia JSM, Wall ES, Wee CL, Rowland TAJ, Cheng RK, Cheow K, Guillemin K, Jesuthasan S. Bacteria evoke alarm behaviour in zebrafish. Nat Commun 2019; 10:3831. [PMID: 31444339 PMCID: PMC6707203 DOI: 10.1038/s41467-019-11608-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
When injured, fish release an alarm substance (Schreckstoff) that elicits fear in members of their shoal. Although Schreckstoff has been proposed to be produced by club cells in the skin, several observations indicate that these giant cells function primarily in immunity. Previous data indicate that the alarm substance can be isolated from mucus. Here we show that mucus, as well as bacteria, are transported from the external surface into club cells, by cytoplasmic transfer or invasion of cells, including neutrophils. The presence of bacteria inside club cells raises the possibility that the alarm substance may contain a bacterial component. Indeed, lysate from a zebrafish Staphylococcus isolate is sufficient to elicit alarm behaviour, acting in concert with a substance from fish. These results suggest that Schreckstoff, which allows one individual to unwittingly change the emotional state of the surrounding population, derives from two kingdoms and is associated with processes that protect the host from bacteria.
Collapse
Affiliation(s)
- Joanne Shu Ming Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Elena S Wall
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | | | - Thomas A J Rowland
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- St. Edmund Hall, University of Oxford, Oxford, UK
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kathleen Cheow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Singapore, Singapore.
| |
Collapse
|
7
|
Abstract
Cell-in-cell structures are reported in numerous cancers, and their presence is an indicator for poor prognosis. Mechanistic studies have identified how cancer cells manage to ingest whole neighbouring cells to form such structures, and the consequences of cell-in-cell formation on cancer progression have been elucidated. In this Opinion article, we discuss how two related cell-in-cell processes, cell cannibalism and entosis, are regulated and how these mechanisms promote cancer progression. We propose that cannibalistic activity is a hallmark of cancer that results in part from selection by metabolic stress and serves to feed aggressive cancer cells.
Collapse
Affiliation(s)
- Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy.
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Durgan J, Florey O. Cancer cell cannibalism: Multiple triggers emerge for entosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:831-841. [PMID: 29548938 DOI: 10.1016/j.bbamcr.2018.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
Entosis is a form of epithelial cell engulfment and cannibalism prevalent in human cancer. Until recently, the only known trigger for entosis was loss of attachment to the extracellular matrix, as often occurs in the tumour microenvironment. However, two new studies now reveal that entosis can also occur among adherent epithelial cells, induced by mitosis or glucose starvation. Together, these findings point to the intriguing notion that certain hallmark properties of cancer cells, including anchorage independence, aberrant proliferation and metabolic stress, can converge on the induction of cell cannibalism, a phenomenon so frequently observed in tumours. In this review, we explore the molecular, cellular and biophysical mechanisms underlying entosis and discuss the impact of cell cannibalism on tumour biology.
Collapse
Affiliation(s)
- J Durgan
- Babraham Institute, Cambridge, UK.
| | - O Florey
- Babraham Institute, Cambridge, UK
| |
Collapse
|
9
|
Krishna S, Overholtzer M. Mechanisms and consequences of entosis. Cell Mol Life Sci 2016; 73:2379-86. [PMID: 27048820 PMCID: PMC4889469 DOI: 10.1007/s00018-016-2207-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Multiple mechanisms have emerged where the engulfment of whole live cells, leading to the formation of what are called 'cell-in-cell' structures, induces cell death. Entosis is one such mechanism that drives cell-in-cell formation during carcinogenesis and development. Curiously, entotic cells participate actively in their own engulfment, by invading into their hosts, and are then killed non-cell-autonomously. Here we review the mechanisms of entosis and entotic cell death and the consequences of entosis on cell populations.
Collapse
Affiliation(s)
- Shefali Krishna
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
10
|
He M, Huang H, Wang M, Chen A, Ning X, Yu K, Li Q, Li W, Ma L, Chen Z, Wang X, Sun Q. Fluorescence-Activated Cell Sorting Analysis of Heterotypic Cell-in-Cell Structures. Sci Rep 2015; 5:9588. [PMID: 25913618 PMCID: PMC5386181 DOI: 10.1038/srep09588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Cell-in-cell structures (CICs), characterized by the presence of one or more viable cells inside another one, were recently found important player in development, immune homeostasis and tumorigenesis etc. Incompatible with ever-increasing interests on this unique phenomenon, reliable methods available for high throughput quantification and systemic investigation are lacking. Here, we report a flow cytometry-based method for rapid analysis and sorting of heterotypic CICs formed between lymphocytes and tumor cells. In this method, cells were labeled with fluorescent dyes for fluorescence-activated cell sorting (FACS) by flow cytometry, conditions for reducing cell doublets were optimized such that high purity (>95%) of CICs could be achieved. By taking advantage of this method, we analyzed CICs formation between different cell pairs, and found that factors from both internalized effector cells and engulfing target cells affect heterotypic CICs formation. Thus, flow cytometry-based FACS analysis would serve as a high throughput method to promote systemic researches on CICs.
Collapse
Affiliation(s)
- Meifang He
- 1] Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan er Road, Guangzhou, Guangdong 510080, P. R. China [2] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [3] The Institute of Life Sciences, the Key Laboratory of Normal Aging &Geriatric, the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Hongyan Huang
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, P. R. China
| | - Manna Wang
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ang Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiangkai Ning
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Kaitao Yu
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Qihong Li
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan er Road, Guangzhou, Guangdong 510080, P. R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiaoning Wang
- The Institute of Life Sciences, the Key Laboratory of Normal Aging &Geriatric, the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Qiang Sun
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| |
Collapse
|