1
|
Chen WC, Chang AC, Tsai HC, Liu PI, Huang CL, Guo JH, Liu CL, Liu JF, Huynh Hoai Thuong L, Tang CH. Bone sialoprotein promotes lung cancer osteolytic bone metastasis via MMP14-dependent mechanisms. Biochem Pharmacol 2023; 211:115540. [PMID: 37028462 DOI: 10.1016/j.bcp.2023.115540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Bone metastases during lung cancer are common. Bone sialoprotein (BSP), a non-collagenous bone matrix protein, plays important functions in bone mineralization processes and in integrin-mediated cell-matrix interactions. Importantly, BSP induces bone metastasis in lung cancer, but the underlying mechanisms remain unclear. This study therefore sought to determine the intracellular signaling pathways responsible for BSP-induced migration and invasion of lung cancer cells to bone. Analyses of the Kaplan-Meier, TCGA, GEPIA and GENT2 databases revealed that high levels of BSP expression in lung tissue samples were associated with significantly decreased overall survival (hazard ratio = 1.17; p=0.014) and with a more advanced clinical disease stage (F-value = 2.38, p<0.05). We also observed that BSP-induced stimulation of matrix metalloproteinase (MMP)-14 promoted lung cancer cell migration and invasion via the PI3K/AKT/AP-1 signaling pathway. Notably, BSP promoted osteoclastogenesis in RAW 264.7 cells exposed to RANKL and BSP neutralizing antibody reduced osteoclast formation in conditioned medium (CM) from lung cancer cell lines. Finally, at 8 weeks after mice were injected with A549 cells or A549 BSP shRNA cells, the findings revealed that the knockdown of BSP expression significantly reduced metastasis to bone. These findings suggest that BSP signaling promotes lung bone metastasis via its direct downstream target gene MMP14, which reveals a novel potential therapeutic target for lung cancer bone metastases.
Collapse
|
2
|
Lou Q, Zhang M, Yang Y, Gao Y. Low-dose arsenic trioxide enhances membrane-GLUT1 expression and glucose uptake via AKT activation to support L-02 cell aberrant proliferation. Toxicology 2022; 475:153237. [PMID: 35714947 DOI: 10.1016/j.tox.2022.153237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Long term low dose exposure of arsenic has been reported to lead various cells proliferation and malignant transformation. GLUT1, as the key transporter of glucose, has been reported to have association with rapid proliferation of various cells or tumor cells. In our study, we found that low dose exposure to arsenic trioxide (0.1μmol/L As2O3) could induce an increase in glucose uptake and promote cell viability and DNA synthesis. And, 2-DG, a non-metabolized glucose analog, significantly decreased the glucose uptake and cell proliferation of 0.1μmol/L As2O3 treated L-02 cells. However, 4 mmol/L 2-DG was co-utilized with equal dose glucose had no significant effect on the cell proliferation of 0.1μmol/L As2O3 treated L-02 cells. Further studies showed that exposure to 0.1μmol/L As2O3 could promote the expression of GLUT1 on plasma membrane. Inhibition of GLUT1 expression by 5μmol/L BAY-876 significantly decreased the abilities of glucose uptake and cell proliferation in As2O3-treated L-02 cells. Moreover, 0.1μmol/L As2O3 induced the AKT activation indicated by increased the phospho-AKT (Ser473 and Thr308). Knockdown AKT by shRNA or inhibited AKT activation by LY294002 was followed by significantly decreased glucose uptake, GLUT1 plasma membrane expression and cell proliferation in As2O3-treated L-02 cells. All in all, these results demonstrated that arsenic trioxide-induced AKT activation contributed to the cells proliferation through upregulating expression of GLUT1 on plasma membrane that enhanced glucose uptake.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
3
|
The Metastasis Suppressor NDRG1 Directly Regulates Androgen Receptor Signaling in Prostate Cancer. J Biol Chem 2021; 297:101414. [PMID: 34785213 PMCID: PMC8668986 DOI: 10.1016/j.jbc.2021.101414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
N-myc-downregulated gene 1 (NDRG1) has potent anticancer effects and inhibits cell growth, survival, metastasis, and angiogenesis. Previous studies suggested that NDRG1 is linked to the androgen signaling network, but this mechanistic relationship is unclear. Considering the crucial role of the androgen receptor (AR) in prostate cancer (PCa) progression, here we examined for the first time the effect of NDRG1 on AR expression, activation, and downstream signaling in LNCaP, 22Rv1, and C4-2B PCa cell types. We demonstrate that NDRG1 effectively promotes interaction of AR with the chaperone HSP90, which in turn stabilizes the AR while decreasing its androgen-mediated activation. The expression of NDRG1 suppressed: (1) AR activation, as measured by p-ARSer213 and p-ARSer81; (2) expression of a major AR transcriptional target, prostate-specific antigen (PSA); and (3) AR transcriptional activity, probably via inhibiting the c-Jun-AR interaction by reducing c-Jun phosphorylation (p-c-JunSer63). NDRG1 was also demonstrated to inhibit multiple key molecules involved in androgen-dependent and -independent signaling (namely EGFR, HER2, HER3, PI3K, STAT3, and NF-κB), which promote the development of castration-resistant prostate cancer. We also identified the cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of NDRG1 as vital for inhibition of AR activity. Examining NDRG1 and p-NDRG1 in PCa patient specimens revealed a significant negative correlation between NDRG1 and PSA levels in prostatectomy patients that went on to develop metastasis. These results highlight a vital role for NDRG1 in androgen signaling and its potential as a key therapeutic target and biomarker in PCa.
Collapse
|
4
|
Bahr HI, Ibrahiem AT, Gabr AM, Elbahaie AM, Elmahdi HS, Soliman N, Youssef AM, El-Sherbiny M, Zaitone SA. Chemopreventive effect of α-hederin/carboplatin combination against experimental colon hyperplasia and impact on JNK signaling. Toxicol Mech Methods 2020; 31:138-149. [PMID: 33190582 DOI: 10.1080/15376516.2020.1849483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colon cancer is the commonest cancer worldwide. α-Hederin is a monodesmosidic triterpenoid saponin possessing diverse pharmacological activities. The running experiment was designed to test the chemopreventive activity of α-hederin when used as an adjuvant to carboplatin in an experimental model of mouse colon hyperplasia induced by 1,2-dimethylhydrazine (DMH). Fifty male Swiss albino mice were classified into five groups: group (I): saline group, group (II): DMH-induced colon hyperplasia control group, group (III): DMH + carboplatin (5 mg/kg) group, group (IV): DMH + α-hederin (80 mg/kg) group, and group (V): DMH + carboplatin (5 mg/kg)+α-hederin (80 mg/kg) group. Analyzing of colonic tissue indicated that the disease control group showed higher colon levels of phospho-PI3K to total-PI3K, phospho-AKT to total-AKT and cyclin D1 concurrent with lower phospho-JNK/total JNK ratio and caspase 3. However, treatment with α-hederin, in combination with carboplatin, favorably ameliorated phosphorylation of PI3K/AKT/JNK proteins, increased colon caspase 3 and downregulated cyclin D1. Microscopically, α-hederin, in combination with carboplatin, produced the most reduction in the histologic hyperplasia score, enhanced the goblet cell survival in periodic acid Schiff staining and reduced proliferation (Ki-67 immunostaining) in the current colon hyperplasia model. Collectively, the current study highlighted for the first time that using α-hederin as an adjuvant to carboplatin enhanced its chemopreventive activity, improved JNK signaling and increased apoptosis. Hence, further studies are warranted to test α-hederin as a promising candidate with chemotherapeutic agents in treating colon cancer.
Collapse
Affiliation(s)
- Hoda I Bahr
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Attia M Gabr
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Alaaeldeen M Elbahaie
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda S Elmahdi
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nema Soliman
- Department of Histology & Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal M Youssef
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Ad Diriyah, Saudi Arabia.,Anatomy Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
5
|
Kasemsuk T, Phuagkhaopong S, Yubolphan R, Rungreangplangkool N, Vivithanaporn P. Cadmium induces CCL2 production in glioblastoma cells via activation of MAPK, PI3K, and PKC pathways. J Immunotoxicol 2020; 17:186-193. [DOI: 10.1080/1547691x.2020.1829211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Thitima Kasemsuk
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Suttinee Phuagkhaopong
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruedeemars Yubolphan
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
6
|
Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR. Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia. Front Pharmacol 2019; 10:1148. [PMID: 31649532 PMCID: PMC6794426 DOI: 10.3389/fphar.2019.01148] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
Collapse
Affiliation(s)
- Hui Min Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
7
|
Wang C, Liu E, Li W, Cui J, Li T. MiR-3188 Inhibits Non-small Cell Lung Cancer Cell Proliferation Through FOXO1-Mediated mTOR-p-PI3K/AKT-c-JUN Signaling Pathway. Front Pharmacol 2018; 9:1362. [PMID: 30618730 PMCID: PMC6297856 DOI: 10.3389/fphar.2018.01362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
This study investigated the role of miR-3188 on the proliferation of non-small cell lung cancer cells and its relationship to FOXO1-modulated feedback loop. Two non-small cell lung cancer (NSCLC) cell lines A549 and H1299 were used. RNA silencing was achieved by lentiviral transfection. Cell proliferation was assessed by immunohistochemical staining of Ki67 and PCNA, Edu incorporation, and colony formation assay. Western blotting was used to examine expression of FOXO1, mTOR, p-mTOR, CCND1, p21, c-JUN, AKT, pAKT, PI3K, p-PI3K, and p27 proteins. It was found that miR-3188 reduced cell proliferation in NSCLC cells. Molecular analyses indicated that the effect of mammalian target of rapamycin (mTOR) was directly mediated by miR-3188, leading to p-PI3K/p-AKT/c-JUN inactivation. The inhibition of this signaling pathway further caused cell-cycle suppression. Moreover, FOXO1 was found to be involved in regulating the interaction of miR-3188 and mTOR through p-PI3K/p-AKT/c-JUN signaling pathway. Taken together, our study demonstrated that miR-3188 interacts with mTOR and FOXO1 to inhibit NSCLC cell proliferation through a mTOR-p-PI3K/AKT-c-JUN signaling pathway. Therefore, miR-3188 might be a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Chunyan Wang
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Enqi Liu
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Wen Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Jue Cui
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Tongxiang Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| |
Collapse
|
8
|
The geranyl acetophenone tHGA attenuates human bronchial smooth muscle proliferation via inhibition of AKT phosphorylation. Sci Rep 2018; 8:16640. [PMID: 30413753 PMCID: PMC6226528 DOI: 10.1038/s41598-018-34847-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022] Open
Abstract
Increased airway smooth muscle (ASM) mass is a prominent hallmark of airway remodeling in asthma. Inhaled corticosteroids and long-acting beta2-agonists remain the mainstay of asthma therapy, however are not curative and ineffective in attenuating airway remodeling. The geranyl acetophenone 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), an in-house synthetic non-steroidal compound, attenuates airway hyperresponsiveness and remodeling in murine models of asthma. The effect of tHGA upon human ASM proliferation, migration and survival in response to growth factors was assessed and its molecular target was determined. Following serum starvation and induction with growth factors, proliferation and migration of human bronchial smooth muscle cells (hBSMCs) treated with tHGA were significantly inhibited without any significant effects upon cell survival. tHGA caused arrest of hBSMC proliferation at the G1 phase of the cell cycle with downregulation of cell cycle proteins, cyclin D1 and diminished degradation of cyclin-dependent kinase inhibitor (CKI), p27Kip1. The inhibitory effect of tHGA was demonstrated to be related to its direct inhibition of AKT phosphorylation, as well as inhibition of JNK and STAT3 signal transduction. Our findings highlight the anti-remodeling potential of this drug lead in chronic airway disease.
Collapse
|
9
|
Feng R, Liu J, Wang Z, Zhang J, Cates C, Rousselle T, Meng Q, Li J. The structure-activity relationship of ginsenosides on hypoxia-reoxygenation induced apoptosis of cardiomyocytes. Biochem Biophys Res Commun 2017; 494:556-568. [PMID: 29032181 PMCID: PMC5765766 DOI: 10.1016/j.bbrc.2017.10.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 02/08/2023]
Abstract
Ginsenosides have been studied extensively in recent years due to their therapeutic effects in cardiovascular diseases. While most studies examined the different ginsenosides individually, few studies compare the therapeutic effects among the different types. This study examined how effective protopanaxadiol, protopanaxatriol ginsenosides Rh2, Rg3, Rh1, and Rg2 of the ginsenoside family are in protecting H9c2 cardiomyocytes from damage caused by hypoxia/reoxygenation. In the current study, a model of myocardial ischemia and reperfusion was induced in H9c2 cardiomyocytes by oxygen deprivation via a hypoxia chamber followed by reoxygenation. Our data show that structures similar to that of protopanaxadiol, which lacked the hydroxide group at C6, were more effective in lowering apoptosis than structures similar to protopanaxatriol with a hydroxide group at C6. As the compounds increased in size and complexity, the cardioprotective effects diminished. In addition, the S enantiomer proved to be more effective in cardioprotection than the R enantiomer. Furthermore, the immunoblotting analysis demonstrated that ginsenosides activate AMPK but suppress JNK signaling pathways during hypoxia/reoxygenation. Thus, ginsenosides treatment attenuated hypoxia/reoxygenation-induced apoptosis via modulating cardioprotective AMPK and inflammation-related JNK signaling pathways.
Collapse
Affiliation(s)
- Ruiqi Feng
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jia Liu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Zhenhua Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jingwen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Courtney Cates
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Ji Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
10
|
Kim JH, Shim JW, Eum DY, Kim SD, Choi SH, Yang K, Heo K, Park MT. Downregulation of UHRF1 increases tumor malignancy by activating the CXCR4/AKT-JNK/IL-6/Snail signaling axis in hepatocellular carcinoma cells. Sci Rep 2017; 7:2798. [PMID: 28584306 PMCID: PMC5459852 DOI: 10.1038/s41598-017-02935-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
UHRF1 (ubiquitin-like, with PHD and RING finger domains 1) plays a crucial role in DNA methylation, chromatin remodeling and gene expression and is aberrantly upregulated in various types of human cancers. However, the precise role of UHRF1 in cancer remains controversial. In this study, we observed that hypoxia-induced downregulation of UHRF1 contributes to the induction of the epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma cells. By negatively modulating UHRF1 expression, we further showed that UHRF1 deficiency in itself is sufficient to increase the migratory and invasive properties of cells via inducing EMT, increasing the tumorigenic capacity of cells and leading to the expansion of cancer stem-like cells. Epigenetic changes caused by UHRF1 deficiency triggered the upregulation of CXCR4, thereby activating AKT and JNK to increase the expression and secretion of IL-6. In addition, IL-6 readily activated the JAK/STAT3/Snail signaling axis, which subsequently contributed to UHRF1 deficiency-induced EMT. Our results collectively demonstrate that UHRF1 deficiency may play a pivotal role in the malignant alteration of cancer cells.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Jae-Woong Shim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Da-Young Eum
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Sung Dae Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea.
| | - Moon-Taek Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea.
| |
Collapse
|
11
|
Beeravolu N, McKee C, Chaudhry GR. Mechanism of arsenite toxicity in embryonic stem cells. J Appl Toxicol 2017; 37:1151-1161. [PMID: 28370166 DOI: 10.1002/jat.3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/31/2017] [Accepted: 02/21/2017] [Indexed: 11/11/2022]
Abstract
Environmental arsenite exposure has been linked to cancer as well as other diseases, presenting an important and serious public health problem. Toxicity of inorganic arsenite (iAs) has been investigated using animal models and cell culture, yet its developmental effects are poorly understood. This study investigated the molecular mechanism of iAs toxicity to ascertain insight into development and differentiation processes using mouse embryonic stem cells (ESCs). The results showed that iAs exposure affected morphology and integrity of ESC colonies as well as inhibited cell growth in a concentration-dependent manner, excluding concentrations <1 μM iAs which stimulated ESC growth. ESCs self-renewal and pluripotency was also affected as evident from the downregulation of transcription circuitry, Oct4, Nanog, Sox2 and Klf4 resulting in non-specific differentiation. ESCs exposed to iAs randomly differentiated into three germ layers, mesoderm, endoderm and ectoderm, as judged by transcriptional expression of Brachyury, Gata4 and FGF2, as well as translational expression of BRACHYURY, GATA4 and TUJ1 respectively. The differentiated cells represented osteogenic, chondrogenic, myogenic and neurogenic lineages as evident from upregulation of Col1, Sox9, Col2, Myog, Notch, Nes and Nef. Although iAs caused slight apoptosis with a concomitant increase in ROS levels, the exposed ESCs had significant Bcl2 expression, which could be involved in the protection against apoptosis. Further analysis revealed upregulation of Jun and P38 in ESCs with an increase in iAs concentration. These observations indicated that iAs stress caused random differentiation of ESCs via JNK/P38 pathways. These findings suggest that iAs exposure may cause teratogenicity during early fetal development. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Naimisha Beeravolu
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, Michigan, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, Michigan, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
12
|
Park JY, Juhnn YS. cAMP signaling increases histone deacetylase 8 expression by inhibiting JNK-dependent degradation via autophagy and the proteasome system in H1299 lung cancer cells. Biochem Biophys Res Commun 2016; 470:336-342. [PMID: 26792731 DOI: 10.1016/j.bbrc.2016.01.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the roles of autophagy and the ubiquitin-proteasome system in the degradation of histone deacetylase 8 (HDAC8) and to clarify the mechanism by which cAMP signaling regulates this degradation. cAMP signaling was activated by treating H1299 non-small cell lung cancer cells with isoproterenol or forskolin/3-isobutyl-1-methylxanthine, and HDAC8 expression was assessed by western blot analysis. The inhibition of autophagy and ubiquitin-proteasome-dependent degradation increased HDAC8 expression. cAMP signaling inhibited JNK activation, which decreased the phosphorylation of Bcl-2, thereby reducing autophagy, and the phosphorylation of Itch, thereby reducing ubiquitination. These results suggest that the HDAC8 protein is degraded via autophagy and the ubiquitin-proteasome system and that cAMP signaling increases HDAC8 protein levels by reducing JNK-mediated autophagy and ubiquitin-proteasome-dependent degradation of the HDAC8 protein in H1299 lung cancer cells.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Sung Juhnn
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
13
|
Haidar M, Whitworth J, Noé G, Liu WQ, Vidal M, Langsley G. TGF-β2 induces Grb2 to recruit PI3-K to TGF-RII that activates JNK/AP-1-signaling and augments invasiveness of Theileria-transformed macrophages. Sci Rep 2015; 5:15688. [PMID: 26511382 PMCID: PMC4625156 DOI: 10.1038/srep15688] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023] Open
Abstract
Theileria-infected macrophages display many features of cancer cells such as heightened invasive capacity; however, the tumor-like phenotype is reversible by killing the parasite. Moreover, virulent macrophages can be attenuated by multiple in vitro passages and so provide a powerful model to elucidate mechanisms related to transformed macrophage virulence. Here, we demonstrate that in two independent Theileria-transformed macrophage cell lines Grb2 expression is down-regulated concomitant with loss of tumor virulence. Using peptidimer-c to ablate SH2 and SH3 interactions of Grb2 we identify TGF-receptor II and the p85 subunit of PI3-K, as Grb2 partners in virulent macrophages. Ablation of Grb2 interactions reduces PI3-K recruitment to TGF-RII and decreases PIP3 production, and dampens JNK phosphorylation and AP-1-driven transcriptional activity down to levels characteristic of attenuated macrophages. Loss of TGF-R>PI3-K>JNK>AP-1 signaling negatively impacts on virulence traits such as reduced JAM-L/ITG4A and Fos-B/MMP9 expression that contribute to virulent macrophage adhesion and invasiveness.
Collapse
Affiliation(s)
- Malak Haidar
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France.,Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014 France
| | - Jessie Whitworth
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France.,Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014 France
| | - Gaelle Noé
- UF Pharmacocinétique et pharmacochimie Hôpital Cochin, Paris, France Assistance Publique Hôpitaux de Paris.,UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Wang Qing Liu
- UF Pharmacocinétique et pharmacochimie Hôpital Cochin, Paris, France Assistance Publique Hôpitaux de Paris.,UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Michel Vidal
- UF Pharmacocinétique et pharmacochimie Hôpital Cochin, Paris, France Assistance Publique Hôpitaux de Paris.,UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France.,Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014 France
| |
Collapse
|
14
|
Guan PP, Yu X, Guo JJ, Wang Y, Wang T, Li JY, Konstantopoulos K, Wang ZY, Wang P. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget 2015; 6:9140-9159. [PMID: 25823818 PMCID: PMC4496208 DOI: 10.18632/oncotarget.3274] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/07/2015] [Indexed: 12/28/2022] Open
Abstract
Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jian-Jun Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yue Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jia-Yi Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund 22184, Sweden
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States of America
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States of America
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland 21218, United States of America
- Johns Hopkins Physical Sciences-Oncology Center, Center of Cancer Nanotechonology Excellence, The Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
15
|
Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability. Oncotarget 2015; 5:2664-77. [PMID: 24797581 PMCID: PMC4058035 DOI: 10.18632/oncotarget.1872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.
Collapse
|
16
|
Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells. Biochem Pharmacol 2014; 91:40-50. [DOI: 10.1016/j.bcp.2014.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/30/2022]
|
17
|
Li L, Deng J, Zuo Z. Glutamate transporter type 3 mediates isoflurane preconditioning-induced acute phase of neuroprotection in mice. Brain Res Bull 2013; 98:23-9. [PMID: 23827345 DOI: 10.1016/j.brainresbull.2013.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
Abstract
A pre-exposure to isoflurane reduces ischemic brain injury in rodents (isoflurane preconditioning). This neuroprotection has acute and delayed phases. Our previous in vitro studies suggest that the acute phase may involve excitatory amino acid transporters (EAATs). We determine whether this protection involves EAAT3, the major neuronal EAAT. Adult male EAAT3 knockout mice and their wild-type littermates were exposed or were not exposed to 1.5% isoflurane for 30 min. Sixty minutes later, they were subjected to a 90- or 60-min middle cerebral arterial occlusion (MCAO). Their neurological outcomes were evaluated 24h after the MCAO. In another experiment, cerebral cortex was harvested for Western blotting at 30 min after animals were exposed to 1.5% isoflurane for 30 min. Here, we showed that isoflurane reduced brain infarct volumes and improved neurological functions of wild-type mice after a 90-min MCAO. However, isoflurane pre-exposure did not change the neurological outcome of EAAT3 knockout mice no matter whether the MCAO was for 90 min or 60 min. Isoflurane increased phospho-Akt, a survival-promoting protein, in the wild-type mice but not in the EAAT3 knockout mice. The isoflurane-induced neuroprotection in the wild-type mice was abolished by LY294004, an Akt activation inhibitor. LY294004 alone did not affect the neurological outcome of the wild-type or EAAT3 knockout mice after focal brain ischemia. These results suggest that the isoflurane preconditioning-induced acute phase of neuroprotection involves EAAT3. The downstream event includes Akt activation.
Collapse
Affiliation(s)
- Liaoliao Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | | | | |
Collapse
|
18
|
DNA-PKcs-mediated stabilization of p53 by JNK2 is involved in arsenite-induced DNA damage and apoptosis in human embryo lung fibroblast cells. Toxicol Lett 2012; 210:302-10. [DOI: 10.1016/j.toxlet.2012.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022]
|
19
|
Kappeler KV, Zhang J, Dinh TN, Strom JG, Chen QM. Histone deacetylase 6 associates with ribosomes and regulates de novo protein translation during arsenite stress. Toxicol Sci 2012; 127:246-55. [PMID: 22367689 DOI: 10.1093/toxsci/kfs070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is known as a cytoplasmic enzyme that regulates cell migration, cell adhesion, and degradation of misfolded proteins by deacetylating substrates such as α-tubulin and Hsp90. When HaCaT keratinocytes were exposed to 1-200μM sodium arsenite, we observed perinuclear localization of HDAC6 within 30 min. Although the overall level of HDAC6 protein did not change, sodium arsenite caused an increase of HDAC6 in ribosomal fractions. Separation of ribosomal subunits versus intact ribosomes or polysomes indicated that HDAC6 was mainly detected in 40/43S fractions containing the small ribosomal subunit in untreated cells but was associated with 40/43S and 60/80S ribosomal fractions in arsenite-treated cells. Immunocytochemistry studies revealed that arsenite caused colocalization of HDAC6 with the ribosomal large and small subunit protein L36a and S6. Both L36a and S6 were detected in the immunocomplex of HDAC6 isolated from arsenite-treated cells. The observed physical interaction of HDAC6 with ribosomes pointed to a role of HDAC6 in stress-induced protein translation. Among arsenite stress-induced proteins, de novo Nrf2 protein translation was inhibited by Tubastatin A. These data demonstrate that HDAC6 was recruited to ribosomes, physically interacted with ribosomal proteins, and regulated de novo protein translation in keratinocytes responding to arsenite stress.
Collapse
Affiliation(s)
- Kyle V Kappeler
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
20
|
Wang L, Zou W, Zhong Y, An J, Zhang X, Wu M, Yu Z. The hormesis effect of BDE-47 in HepG2 cells and the potential molecular mechanism. Toxicol Lett 2012; 209:193-201. [PMID: 22233939 DOI: 10.1016/j.toxlet.2011.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 01/20/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) had been used extensively in electrical and electronic products as brominated flame retardants. PBDEs are widely distributed in environment media and wildlife since they are lipophilic and persistent, resulting in bioaccumulation and bioamplification through food chains. Accumulation of PBDEs in the environment and human tissues will consequently cause potential negative effects on the ecological environment and human health. To date, some in vitro and in vivo studies have reported that PBDEs possess neurotoxicity, hepatotoxicity, immunotoxicity, reproduction toxicity, endocrine disrupting activity and carcinogenicity. BDE-47 is one of the most predominant PBDE congeners detected in human tissues. The objective of this study is to investigate whether low concentration of BDE-47 could cause hormesis effect in the human hepatoma HepG(2) cells, and to explore the possible molecular mechanism. The results showed that low concentration of BDE-47 (10(-10), 10(-9) and 10(-8) M) could promote cell proliferation and cause no obvious change in DNA damage or cell apoptosis, while the high concentration significantly inhibit cell proliferation. Meanwhile, the reactive oxygen species (ROS) in low concentration BDE-47 (10(-10), 10(-9) and 10(-8) M) treated groups significantly elevated compared with the control group. After low concentration BDE-47 treatment, the expression of proliferating cell nuclear antigen (PCNA), Cyclin D1, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylated protein kinase B (p-Akt) in the HepG(2) cells was markedly up-regulated. However, in DNA-PKcs inhibited cells, the promotion effect on cell proliferation was significantly suppressed. Cell cycle analysis showed a significant decrease in G1 phase after exposure to low concentration of BDE-47. Moreover, pre-exposure to low concentration BDE-47 seemed alleviate the negative effects of high concentration (50 μM) exposure to cause DNA damage and apoptosis. These results suggested that BDE-47 has a hormesis effect in HepG(2) cells and DNA-PKcs/Akt pathway may be involved in regulation of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Liulin Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang C, Kim SK. Antimetastasis effect of anthraquinones from marine fungus, Microsporum sp. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:415-421. [PMID: 22361203 DOI: 10.1016/b978-0-12-416003-3.00027-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This chapter discusses about obtaining natural products which have anticancer metastasis activities from selected marine-derived fungus (Microsporum sp.) and investigates their biological activities such as cytotoxicity on viability cell lines, anticancer cell migration and invasion, protease inhibition, and expression of matrix metalloproteinase (MMP-2 and -9). Moreover, the correlative mechanisms behind these activities were studied.
Collapse
Affiliation(s)
- Chen Zhang
- School of Medicine, Tongji University, Shanghai, China
| | | |
Collapse
|
22
|
Li Y, Shen L, Xu H, Pang Y, Xu Y, Ling M, Zhou J, Wang X, Liu Q. Up-regulation of cyclin D1 by JNK1/c-Jun is involved in tumorigenesis of human embryo lung fibroblast cells induced by a low concentration of arsenite. Toxicol Lett 2011; 206:113-20. [PMID: 21726611 DOI: 10.1016/j.toxlet.2011.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/15/2011] [Accepted: 06/18/2011] [Indexed: 12/12/2022]
Abstract
Inorganic arsenic, a ubiquitous environmental contaminant, is associated with an increased risk of cancer. There are several hypotheses regarding arsenic-induced carcinogenesis. The mechanism of action remains obscure, although hyper-proliferation of cells is involved. In the present study, the molecular mechanisms underlying the proliferation and malignant transformation of human embryo lung fibroblast (HELF) cells induced by a low concentration of arsenite were investigated. The results reveal that a low concentration of arsenite induces cell proliferation and promotes cell cycle transition from the G(1) to the S phase. Moreover, arsenite activates the JNK1/c-Jun signal pathway, but not JNK2, which up-regulates the expression of cyclin D1/CDK4 and phosphorylates the retinoblastoma (Rb) protein. Blocking of the JNK1/c-Jun signal pathway suppresses the increases of cyclin D1 expression and Rb phosphorylation, which attenuates cell proliferation, reduces the transition from the G1 to the S phase, and thereby inhibits the neoplastic transformation of HELF cells induced by a low concentration of arsenite. Thus, activation of the JNK1/c-Jun pathway up-regulates the expression of cyclin D1, which is involved in the tumorigenesis caused by a low concentration of arsenite.
Collapse
Affiliation(s)
- Yuan Li
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu J, Zhang D, Mi X, Xia Q, Yu Y, Zuo Z, Guo W, Zhao X, Cao J, Yang Q, Zhu A, Yang W, Shi X, Li J, Huang C. p27 suppresses arsenite-induced Hsp27/Hsp70 expression through inhibiting JNK2/c-Jun- and HSF-1-dependent pathways. J Biol Chem 2010; 285:26058-65. [PMID: 20566634 DOI: 10.1074/jbc.m110.100271] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p27 is an atypical tumor suppressor that can regulate the activity of cyclin-dependent kinases and G(0)-to-S phase transitions. More recent studies reveal that p27 may also exhibit its tumor-suppressive function through regulating many other essential cellular events. However, the molecular mechanisms underlying these anticancer effects of p27 are largely unknown. In this study, we found that depletion of p27 expression by either gene knock-out or knockdown approaches resulted in up-regulation of both Hsp27 and Hsp70 expression at mRNA- and promoter-derived transcription as well as protein levels upon arsenite exposure, indicating that p27 provides a negative signal for regulating the expression of Hsp27 and Hsp70. Consistently, arsenite-induced activation of JNK2/c-Jun and HSF-1 pathways was also markedly elevated in p27 knock-out (p27(-/-)) and knockdown (p27 shRNA) cells. Moreover, interference with the expression or function of JNK2, c-Jun, and HSF-1, but not JNK1, led to dramatic inhibition of arsenite-induced Hsp27 and Hsp70 expression. Collectively, our results demonstrate that p27 suppresses Hsp27 and Hsp70 expression at the transcriptional level specifically through JNK2/c-Jun- and HSF-1-dependent pathways upon arsenite exposure, which provides additional important molecular mechanisms for the tumor-suppressive function of p27.
Collapse
Affiliation(s)
- Jinyi Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wen W, Ding J, Sun W, Wu K, Ning B, Gong W, He G, Huang S, Ding X, Yin P, Chen L, Liu Q, Xie W, Wang H. Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. Cancer Res 2010; 70:2010-9. [PMID: 20179204 DOI: 10.1158/0008-5472.can-08-4910] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor (HIF) and cyclin D1 are both key mediators of cell growth and proliferation in normal and cancer cells. However, the interrelation between HIF and cyclin D1 remains unclear. In the present study, we observed the inverse correlation between cyclin D1 and HIF-1 in hypoxia condition. Overexpression of the dominant negative mutant of HIF-1alpha (DN-HIF) significantly enhanced cyclin D1 expression upon hypoxia or arsenite exposure, suggesting the negative regulation of cyclin D1 by HIF-1. Furthermore, we found that the impairment of HIF-1 increased cyclin D1 expression in A549 pulmonary cancer cells, which in turn promoted G1-S cell cycle transition and cell proliferation. Cyclin D1 expression was increased in s.c. xenograft of DN-HIF stably transfected A549 cells in nude mice compared with that of control cells. Chromatin immunoprecipitation assay revealed that HIF-1 was able to directly bind to the promoter region of cyclin D1, which indicates that the negative regulation of cyclin D1 by HIF-1 is through a direct mechanism. Inhibition of histone deacetylase (HDAC) by pretreatment of cells with trichostatin A or specific knockdown of HDAC7 by its shRNA antagonized the suppression of cyclin D1 by HIF-1, suggesting that HDAC7 is required for HIF-1-mediated cyclin D1 downregulation. Moreover, we found that 5-fluorouracil-triggered apoptosis of DN-HIF-transfected A549 cells was reduced by sicyclin D1 (cyclin D1-specific interference RNA) introduction, suggesting that clinical observation of HIF-1 overexpression-associated chemoresistance might be, at least partially, due to the negative regulation of cyclin D1.
Collapse
Affiliation(s)
- Wen Wen
- The International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|