1
|
Wu Y, Li CS, Meng RY, Jin H, Chai OH, Kim SM. Regulation of Hippo-YAP/CTGF signaling by combining an HDAC inhibitor and 5-fluorouracil in gastric cancer cells. Toxicol Appl Pharmacol 2024; 482:116786. [PMID: 38086440 DOI: 10.1016/j.taap.2023.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Histone deacetylase (HDAC) inhibitors diminish carcinogenesis, metastasis, and cancer cell proliferation by inducing death in cancer cells. Tissue regeneration and organ development are highly dependent on the Hippo signaling pathway. Targeting the dysregulated hippo pathway is an excellent approach for cancer treatment. According to the results of this study, the combination of panobinostat, a histone deacetylase inhibitor, and 5-fluorouracil (5-FU), a chemotherapy drug, can act synergistically to induce apoptosis in gastric cancer cells. The combination of panobinostat and 5-FU was more effective in inhibiting cell viability than either treatment alone by elevating the protein levels of cleaved PARP and cleaved caspase-9. By specifically targeting E-cadherin, vimentin, and MMP-9, the combination of panobinostat and 5-FU significantly inhibited cell migration. Additionally, panobinostat significantly increased the anticancer effects of 5-FU by activating Hippo signaling (Mst 1 and 2, Sav1, and Mob1) and inhibiting the Akt signaling pathway. As a consequence, there was a decrease in the amount of Yap protein. The combination therapy of panobinostat with 5-FU dramatically slowed the spread of gastric cancer in a xenograft animal model by deactivating the Akt pathway and supporting the Hippo pathway. Since combination treatment exhibits much higher anti-tumor potential than 5-FU alone, panobinostat effectively potentiates the anti-tumor efficacy of 5-FU. As a result, it is believed that panobinostat and 5-FU combination therapy will be useful as supplemental chemotherapy in the future.
Collapse
Affiliation(s)
- Yanling Wu
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Cong Shan Li
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Ruo Yu Meng
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ok Hee Chai
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
2
|
Giordano F, Paolì A, Forastiero M, Marsico S, De Amicis F, Marrelli M, Naimo GD, Mauro L, Panno ML. Valproic acid inhibits cell growth in both MCF-7 and MDA-MB231 cells by triggering different responses in a cell type-specific manner. J Transl Med 2023; 21:165. [PMID: 36864445 PMCID: PMC9983172 DOI: 10.1186/s12967-023-04015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Breast cancer is the second leading cause of death among women after lung cancer. Despite the improvement in prevention and in therapy, breast cancer still remains a threat, both for pre- and postmenopausal women, due to the development of drug resistance. To counteract that, novel agents regulating gene expression have been studied in both hematologic and solid tumors. The Histone Deacetylase (HDAC) inhibitor Valproic Acid (VA), used for epilepsy and other neuropsychiatric diseases, has been demonstrated a strong antitumoral and cytostatic activity. In this study, we tested the effects of Valproic Acid on the signaling pathways involved in breast cancer cells viability, apoptosis and in Reactive Oxygen Species (ROS) production using ER-α positive MCF-7 and triple negative MDA-MB-231 cells. METHODS Cell proliferation assay was performed by MTT Cell cycle, ROS levels and apoptosis were analyzed by flow cytometry, protein levels were detected by Western Blotting. RESULTS Cell treatment with Valproic Acid reduced cell proliferation and induced G0/G1 cell cycle arrest in MCF-7 and G2/M block in MDA-MB-231 cells. In addition, in both cells the drug enhanced the generation of ROS by the mitochondria. In MCF-7 treated cells, it has been observed a reduction in mitochondrial membrane potential, a down regulation of the anti-apoptotic marker Bcl-2 and an increase of Bax and Bad, leading to release of cytochrome C and PARP cleavage. Less consistent effects are recorded in MDA-MB-231 cells, in which the greater production of ROS, compared to MCF-7cells, involves an inflammatory response (activation of p-STAT3, increased levels of COX2). CONCLUSIONS Our results have demonstrated that in MCF-7 cells the Valproic Acid is a suitable drug to arrest cell growth, to address apoptosis and mitochondrial perturbations, all factors that are important in determining cell fate and health. In a triple negative MDA-MB 231 cells, valproate directs the cells towards the inflammatory response with a sustained expression of antioxidant enzymes. Overall, the not always unequivocal data between the two cellular phenotypes indicate that further studies are needed to better define the use of the drug, also in combination with other chemotherapy, in the treatment of breast tumors.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Alessandro Paolì
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Martina Forastiero
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
3
|
Ren L, Yang Y, Li W, Yang H, Zhang Y, Ge B, Zhang S, Du G, Wang J. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front Genet 2023; 13:1085391. [PMID: 36685834 PMCID: PMC9845602 DOI: 10.3389/fgene.2022.1085391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Tumor development is frequently accompanied by abnormal expression of multiple genomic genes, which can be broadly viewed as decreased expression of tumor suppressor genes and upregulated expression of oncogenes. In this process, epigenetic regulation plays an essential role in the regulation of gene expression without alteration of DNA or RNA sequence, including DNA methylation, RNA methylation, histone modifications and non-coding RNAs. Therefore, drugs developed for the above epigenetic modulation have entered clinical use or preclinical and clinical research stages, contributing to the development of antitumor drugs greatly. Despite the efficacy of epigenetic drugs in hematologic caners, their therapeutic effects in solid tumors have been less favorable. A growing body of research suggests that epigenetic drugs can be applied in combination with other therapies to increase efficacy and overcome tumor resistance. In this review, the progress of epigenetics in tumor progression and oncology drug development is systematically summarized, as well as its synergy with other oncology therapies. The future directions of epigenetic drug development are described in detail.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Jinhua Wang,
| |
Collapse
|
4
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
5
|
Ozman Z, Ozbek Iptec B, Sahin E, Guney Eskiler G, Deveci Ozkan A, Kaleli S. Regulation of valproic acid induced EMT by AKT/GSK3β/β-catenin signaling pathway in triple negative breast cancer. Mol Biol Rep 2021; 48:1335-1343. [PMID: 33515347 DOI: 10.1007/s11033-021-06173-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Valproic acid (VPA) is a selective histone deacetylation (HDAC) inhibitor and exerts anti-cancer properties in different types of cancer. The epithelial-to-mesenchymal transition (EMT) mediating by different signaling cascade can be a potential target in aggressive human cancers. Therefore, we aimed to clarified the unravel relationship between AKT/GSK3β/β-catenin signalling pathway and VPA-induced EMT in triple negative breast cancer (TNBC). The cytotoxicity of VPA in MDA-MB-231 TNBC and MCF-10A control cells was evaluated. Alterations in the expression levels of Snail, E-cadherin, AKT, GSK3β, β-catenin were analyzed by RT-PCR. Additionally, Annexin V, cell cycle and wound healing assays were performed. Our results showed that VPA remarkably inhibited the growth of TNBC cell and triggered apoptotic cell death through G0/G1 arrest. Furthermore, VPA increased cell migration and activated the EMT process through significantly increasing Snail expression and in turn downregulation of E-cadherin and GKS3β levels. However, the level of AKT and β-catenin was reduced after treatment of VPA. Our data showed that VPA induced EMT process and cell migration in TNBC cells. However, AKT/GSK3β/β-catenin signaling pathway did not mediate EMT activation.
Collapse
Affiliation(s)
- Zeynep Ozman
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Betul Ozbek Iptec
- Medical Biochemistry Laboratory, Kızılcahamam State Hospital, Ankara, Turkey
| | - Elvan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
6
|
Valproic acid promotes the epithelial-to-mesenchymal transition of breast cancer cells through stabilization of Snail and transcriptional upregulation of Zeb1. Eur J Pharmacol 2019; 865:172745. [PMID: 31639340 DOI: 10.1016/j.ejphar.2019.172745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Histone deacetylases (HDACs) can regulate cancer progression and its inhibitors (HDACIs) have been widely used for cancer therapy. Valproic acid (VPA, 2-propylpentanoic acid) can inhibit the class I HDAC and suppress the malignancy of solid cancers. Our present study revealed that 1 mM VPA, which has no effect on cell proliferation, can significantly increase the migration and induce epithelial to mesenchymal transition (EMT) like properties of breast cancer cells. Further, VPA increased the expression of EMT-transcription factors (EMT-TFs) Snail and Zeb1. Knockdown of Snail and Zeb1 can attenuate VPA induced cell migration and EMT. Mechanistically, VPA increased the protein stability of Snail via suppression its phosphorylation at Ser 11. As to Zeb1, VPA can increase its promoter activity and transcription via a HDAC2 dependent manner. Over expression of HDAC2 can block VPA induced expression of Zeb1. Collectively, our data revealed that VPA can trigger the EMT of breast cancer cells via upregulation of Snail and Zeb1. It indicated that more attention should be paid to the effects of VPA on the clinical therapy of breast cancer.
Collapse
|
7
|
Lee J, Park SS, Lee YK, Norton JA, Jeffrey SS. Liquid biopsy in pancreatic ductal adenocarcinoma: current status of circulating tumor cells and circulating tumor DNA. Mol Oncol 2019; 13:1623-1650. [PMID: 31243883 PMCID: PMC6670020 DOI: 10.1002/1878-0261.12537] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Reliable biomarkers are required to evaluate and manage pancreatic ductal adenocarcinoma. Circulating tumor cells and circulating tumor DNA are shed into blood and can be relatively easily obtained from minimally invasive liquid biopsies for serial assays and characterization, thereby providing a unique potential for early diagnosis, forecasting disease prognosis, and monitoring of therapeutic response. In this review, we provide an overview of current technologies used to detect circulating tumor cells and circulating tumor DNA and describe recent advances regarding the multiple clinical applications of liquid biopsy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jee‐Soo Lee
- Department of Laboratory MedicineHallym University Sacred Heart HospitalAnyangKorea
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| | - Sung Sup Park
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| | - Young Kyung Lee
- Department of Laboratory MedicineHallym University Sacred Heart HospitalAnyangKorea
- Department of Laboratory MedicineHallym University College of MedicineAnyangKorea
| | - Jeffrey A. Norton
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | | |
Collapse
|
8
|
Kumar D, Sarma P, Bhadra MP, Tangutur AD. Impact of Hybrid-polar Histone Deacetylase Inhibitor m-Carboxycinnamic Acid bis-Hydroxyamide on Human Pancreatic Adenocarcinoma Cells. Anticancer Agents Med Chem 2019; 19:750-759. [DOI: 10.2174/1871520619666190101115034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 11/22/2022]
Abstract
Background:
Histone deacetylase inhibitors (HDACIs) have got immense importance as promising
drugs for cancer treatment as these inhibitors regulate cellular differentiation, gene expression, cell cycle arrest
and apoptosis. The current study investigates the effect of the hybrid-polar HDACI m-carboxycinnamic acid bishydroxyamide
(CBHA) on the growth of human pancreatic adenocarcinoma cells, using the cell line MIA PaCa-
2 as an in vitro model.
Methods:
Following CBHA treatment of the MIA PaCa-2 cells, we characterized the effect of CBHA by in vitro
cytotoxicity evaluation, clonogenic assay, cell cycle analysis, immunoblotting for soluble and insoluble fractions
of tubulin, immunofluorescence and caspase-3 assay.
Results:
We observed that the histone deacetylase inhibitor CBHA markedly impaired growth of the pancreatic
cancer cells by resulting in dose-dependent G2/M arrest, disruption of microtubule organization, induction of
caspase-mediated apoptosis and in vitro suppression of HDAC6. Our study also shows that inhibition of
HDAC6 by CBHA induced acetylation of α-tubulin.
Conclusion:
Together, our findings show that CBHA can be a potential plausible therapeutic that could be
exploited for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT, Hyderabad, India
| | - Pranjal Sarma
- Department of Applied Biology, CSIR-IICT, Hyderabad, India
| | - Manika P. Bhadra
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT, Hyderabad, India
| | - Anjana D. Tangutur
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT, Hyderabad, India
| |
Collapse
|
9
|
Mansouri N, Alivand MR, Bayat S, Khaniani MS, Derakhshan SM. The hopeful anticancer role of oleuropein in breast cancer through histone deacetylase modulation. J Cell Biochem 2019; 120:17042-17049. [PMID: 31119806 DOI: 10.1002/jcb.28965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is one of the most common cancers among women worldwide. Genetic, epigenetic, and environmental factors play a crucial role in BC development. Because epigenetic imbalance occurs earlier than expression in carcinogenesis and is reversible, epigenetic reprogramming strategies could be more useful for cancer prevention and therapy. There is evidence indicating that the use of herbal compounds with low toxicity can offer a real benefit in the prevention or treatment of cancer. Oleuropein (OLE), as a natural polyphenol, has shown the anticancer property in cancers. In this study, we investigated for the first time the link between histone deacetylase (HDAC) and OLE to have an anticancer effect in BC. The potential apoptotic and anti-invasive effects of OLE were tested using MCF-7 cells. Transcript expression of HDAC1 and HDAC4 genes after treatment was determined using quantitative reverse transcription polymerase chain reaction. OLE obviously reduced invasiveness and cell viability and simultaneously induced cell apoptosis in MCF-7 cancer cells. Dose-dependent reduction of HDAC4 was observed, whereas apparent changes could not be observed in HDAC1 expression. The current research indicated that OLE can inhibit proliferation and invasion of cells by inducing apoptosis likely through modulation of an important epigenetic factor, HDAC4, in MCF-7 cells. OLE has the potential to be a therapeutic drug for BC prevention and treatment.
Collapse
Affiliation(s)
- Neda Mansouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Bayat
- Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signalling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol 2019; 109:23-32. [DOI: 10.1016/j.biocel.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
|
11
|
Combination of PI3K/Akt Pathway Inhibition and Plk1 Depletion Can Enhance Chemosensitivity to Gemcitabine in Pancreatic Carcinoma. Transl Oncol 2018; 11:852-863. [PMID: 29753186 PMCID: PMC6052177 DOI: 10.1016/j.tranon.2018.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
The prognosis of pancreatic cancer (PC) remains pessimistic because of the difficulty in early diagnosis as well as the little advance in chemotherapy. Although being the first-line chemotherapy drug for PC at present, gemcitabine still has some disadvantages, such as low drug sensitivity and significant side effects. Thus, how to further improve the sensitivity of PC cells to gemcitabine is still a difficult subject in the field of pancreatic cancer-treatment. Polo-like kinase 1 (Plk1) is closely related to poor outcome in many malignant tumors and its high expression is linked to chemoresistance in PC. As a downstream gene activated by PI3K/Akt signal pathway, we assumed that the targeted depletion of Plk1 could contribute to the chemosensitization induced by synergistic drug interaction of PI3K inhibitor LY294002 together with gemcitabine. To analyze effect of Plk1 in chemotherapy, we constructed two recombinant adenoviral vectors which carry enhanced green fluorescent protein (rAd-EGFP) and Plk1-shRNA (rAd-shPlk1), respectively. Both inhibition of PI3K/Akt signal pathway through PI3K inhibitor LY294002 and targeted depletion of Plk1 via recombinant adenoviral shRNA can cause chemosensitization, and the targeted depletion of Plk1 can enhance the chemosensitization of LY294002. Thus, the gene therapy like targeted depletion of Plk1 may create new perspectives for chemosensitization of PC.
Collapse
|
12
|
Hegarty SV, Togher KL, O'Leary E, Solger F, Sullivan AM, O'Keeffe GW. Romidepsin induces caspase-dependent cell death in human neuroblastoma cells. Neurosci Lett 2017; 653:12-18. [PMID: 28506690 DOI: 10.1016/j.neulet.2017.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
Neuroblastoma is the most common extracranial pediatric solid tumor, arising from the embryonic sympathoadrenal lineage of the neural crest, and is responsible for 15% of childhood cancer deaths. Although survival rates are good for some patients, those children diagnosed with high-risk neuroblastoma have survival rates as low as 35%. Thus, neuroblastoma remains a significant clinical challenge and the development of novel therapeutic strategies is essential. Given that there is widespread epigenetic dysregulation in neuroblastoma, epigenetic pharmacotherapy holds promise as a therapeutic approach. In recent years, histone deacetylase (HDAC) inhibitors, which cause selective activation of gene expression, have been shown to be potent chemotherapeutics for the treatment of a wide range of cancers. Here we examined the ability of the FDA-approved drug Romidepsin, a selective HDAC1/2 inhibitor, to act as a cytotoxic agent in neuroblastoma cells. Treatment with Romidepsin at concentrations in the low nanomolar range induced neuroblastoma cell death through caspase-dependent apoptosis. Romidepsin significantly increased histone acetylation, and significantly enhanced the cytotoxic effects of the cytotoxic agent 6-hydroxydopamine, which has been shown to induce cell death in neuroblastoma cells through increasing reactive oxygen species. Romidepsin was also more potent in MYCN-amplified neuroblastoma cells, which is an important prognostic marker of poor survival. This study has thus demonstrated that the FDA-approved chemotherapeutic drug Romidepsin has a potent caspase-dependent cytotoxic effect on neuroblastoma cells, whose effects enhance cell death induced by other cytotoxins, and suggests that Romidepsin may be a promising chemotherapeutic candidate for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Katie L Togher
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland; INFANT Centre, Cork University Maternity Hospital and UCC, Cork, Ireland
| | - Eimear O'Leary
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Franziska Solger
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland; INFANT Centre, Cork University Maternity Hospital and UCC, Cork, Ireland.
| |
Collapse
|
13
|
Arlt A, Schäfer H. Investigational histone deacetylase inhibitors for treating pancreatic adenocarcinoma. Expert Opin Investig Drugs 2016; 25:1251-1254. [PMID: 27666721 DOI: 10.1080/13543784.2016.1240167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Arlt
- a Department of Internal Medicine I , Laboratory for Gastrointestinal Signal Transduction, UKSH Campus Kiel , Kiel , Germany
| | - Heiner Schäfer
- b Institute for Experimental Cancer Research , Laboratory of Molecular Gastroenterology, - Christian-Albrechts-University & UKSH Campus Kiel , Kiel , Germany
| |
Collapse
|
14
|
Polireddy K, Chen Q. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. J Cancer 2016; 7:1497-514. [PMID: 27471566 PMCID: PMC4964134 DOI: 10.7150/jca.14922] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers among all malignances, with a median overall survival of <1 year and a 5-year survival of ~5%. The dismal survival rate and prognosis are likely due to lack of early diagnosis, fulminant disease course, high metastasis rate, and disappointing treatment outcome. Pancreatic cancers harbor a variety of genetic alternations that render it difficult to treat even with targeted therapy. Recent studies revealed that pancreatic cancers are highly enriched with a cancer stem cell (CSC) population, which is resistant to chemotherapeutic drugs, and therefore escapes chemotherapy and promotes tumor recurrence. Cancer cell epithelial to mesenchymal transition (EMT) is highly associated with metastasis, generation of CSCs, and treatment resistance in pancreatic cancer. Reviewed here are the molecular biology of pancreatic cancer, the major signaling pathways regulating pancreatic cancer EMT and CSCs, and the advancement in current clinical and experimental treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, USA 66160
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, USA 66160
| |
Collapse
|
15
|
Yang J, Zhang X, Zhang Y, Zhu D, Zhang L, Li Y, Zhu Y, Li D, Zhou J. HIF-2α promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:26. [PMID: 26842802 PMCID: PMC4741030 DOI: 10.1186/s13046-016-0298-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/25/2016] [Indexed: 02/05/2023]
Abstract
Background Epithelial-mesenchymal transition (EMT) is a dedifferentiation process that mainly involves in mesenchymal marker upregulation, epithelial maker downregulation and cell polarity loss. Related hypoxia factors play a crucial role in EMT, however, it remains few evidence to clarify the role of HIF-2α in EMT in pancreatic cancer. Method In this study, we investigated the expression of HIF-2α and E-cadherin by immunohistochemistry in 70 pancreatic cancer patients, as well as the correlation to the clinicopathologic characteristics. Then we regulated the expression of HIF-2α in pancreatic cancer cells to examine the role of HIF-2α on invasion and migration in vitro. Finally, we tested the relation of HIF-2α and EMT related proteins by Western blot and determined whether HIF-2α regulated EMT through Twist regulating the expression of E-cadherin by Chromatin immunoprecipitation (ChIP) assay. Results We found that HIF-2α protein was expressed positively in 67.1 % (47/70) of pancreatic cancer tissues and 11.4 % (8/70) of adjacent non-tumor pancreatic tissues, and there was a significant difference in the positive rate of HIF-2α protein between two groups (χ2 = 45.549, P < 0.05). In addition, the staining for HIF-2α was correlated with tumor differentiation (P < 0.05), clinical stage (P < 0.05) and lymph node metastasis (P < 0.05), while E-cadherin expression was only correlated with lymph node metastasis (P < 0.05). HIF-2α promoted cell migration, invasion in vitro, and regulated the expression of E-cadherin and MMPs, which are critical to EMT. Our further ChIP assay suggested that only Twist2 could bind to the promoter of E-cadherin in -714 bp region site, but there is no positive binding capacity in -295 bp promoter region site of E-cadherin. Clinical tissues IHC staining showed that Twist2 and E-cadherin expression had an obviously negative correlation in pancreatic cancer. Nevertheless, it had no obvious correlation between Twist1 and E-cadherin. Conclusion These findings indicated that HIF-2α promotes EMT in pancreatic cancer by regulating Twist2 binding to the promoter of E-cadherin, which meant that HIF-2α and this pathway may be effective therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Jian Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Xu Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Yi Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Dongming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Lifeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Ye Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Yanbo Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
16
|
Hwang CI, Boj SF, Clevers H, Tuveson DA. Preclinical models of pancreatic ductal adenocarcinoma. J Pathol 2015; 238:197-204. [PMID: 26419819 DOI: 10.1002/path.4651] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most difficult human malignancies to treat. The 5-year survival rate of PDA patients is 7% and PDA is predicted to become the second leading cancer-related cause of death in the USA. Despite intensive efforts, the translation of findings in preclinical studies has been ineffective, due partially to the lack of preclinical models that faithfully recapitulate features of human PDA. Here, we review current preclinical models for human PDA (eg human PDA cell lines, cell line-based xenografts and patient-derived tumour xenografts). In addition, we discuss potential applications of the recently developed pancreatic ductal organoids, three-dimensional culture systems and organoid-based xenografts as new preclinical models for PDA.
Collapse
Affiliation(s)
- Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA
| | - Sylvia F Boj
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht and CancerGenomics.nl, Utrecht, The Netherlands.,foundation Hubrecht Organoid Technology (HUB), Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht and CancerGenomics.nl, Utrecht, The Netherlands
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA.,Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Li L, Leung PS. Use of herbal medicines and natural products: an alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int J Biochem Cell Biol 2014; 53:224-36. [PMID: 24875648 DOI: 10.1016/j.biocel.2014.05.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/08/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer has a poor prognosis with a 5-year survival rate of <5%. It does not respond well to either chemotherapy or radiotherapy, due partly to apoptotic resistance (AR) of the cancer cells. AR has been attributed to certain genetic abnormalities or defects in apoptotic signaling pathways. In pancreatic cancer, significant mutations of K-ras and p53, constitutive activation of NFκB, over-expression of heat shock proteins (Hsp90, Hsp70), histone deacetylase (HDACs) and the activities of other proteins (COX-2, Nrf2 and bcl-2 family members) are closely linked with resistance to apoptosis and invasion. AR has also been associated with aberrant signaling of MAPK, PI3K-AKT, JAK/STAT, SHH, Notch, and Wnt/β-catenin pathways. Strategies targeting these signaling molecules and pathways provide an alternative for overcoming AR in pancreatic cancer. The use of herbal medicines or natural products (HM/NPs) alone or in combination with conventional anti-cancer agents has been shown to produce beneficial effects through actions upon multiple molecular pathways involved in AR. The current standard first-line chemotherapeutic agents for pancreatic cancer are gemcitabine (Gem) or Gem-containing combinations; however, the efficacy is dissatisfied and this limitation is largely attributed to AR. Meanwhile, emerging data have pointed to a combination of HM/NPs that may augment the sensitivity of pancreatic cancer cells to Gem. Greater understanding of how these compounds affect the molecular mechanisms of apoptosis may propel development of HM/NPs as anti-cancer agents and/or adjuvant therapies forward. In this review, we give a critical appraisal of the use of HM/NPs alone and in combination with anti-cancer drugs. We also discuss the potential regulatory mechanisms whereby AR is involved in these protective pathways.
Collapse
Affiliation(s)
- Lin Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
18
|
Xu XD, Yang L, Zheng LY, Pan YY, Cao ZF, Zhang ZQ, Zhou QS, Yang B, Cao C. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses vasculogenic mimicry and proliferation of highly aggressive pancreatic cancer PaTu8988 cells. BMC Cancer 2014; 14:373. [PMID: 24886166 PMCID: PMC4047270 DOI: 10.1186/1471-2407-14-373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive human malignancies with a extremely low 5-year survival rate. Hence, the search for more effective anti-pancreatic cancer agents is urgent. METHODS PaTu8988 pancreatic cancer cells were treated with different concentrations of suberoylanilide hydroxamic acid (SAHA), cell survival, proliferation, migration and vasculogenic mimicry (VM) were analyzed. Associated signaling changes were also analyzed by RT-PCR and Western blots. RESULTS Here, we reported that SAHA, a histone deacetylase inhibitor (HDACi), exerted significant inhibitory efficiency against pancreatic cancer cell survival, proliferation, migration and VM. SAHA dose-dependently inhibited PaTu8988 pancreatic cancer cell growth with the IC-50 of 3.4 ± 0. 7 μM. Meanwhile, SAHA suppressed PaTu8988 cell cycle progression through inducing G2/M arrest, which was associated with cyclin-dependent kinase 1 (CDK-1)/cyclin-B1 degradation and p21/p27 upregulation. Further, SAHA induced both apoptotic and non-apoptotic death of PaTu8988 cells. Significantly, SAHA suppressed PaTu8988 cell in vitro migration and cell-dominant tube formation or VM, which was accompanied by semaphorin-4D (Sema-4D) and integrin-β5 down-regulation. Our evidences showed that Akt activation might be important for Sema-4D expression in PaTu8988 cells, and SAHA-induced Sema-4D down-regulation might be associated with Akt inhibition. CONCLUSIONS This study is among the first to report the VM formation in cultured human pancreatic cancer cells. And we provided strong evidence to suggest that SAHA executes significant anti-VM efficiency in the progressive pancreatic cancer cells. Thus, SAHA could be further investigated as a promising anti-pancreatic cancer agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Yang
- Department of General Surgery, the Third Hospital affiliated to Soochow University, Changzhou City 213003, Jiangsu, China.
| | | |
Collapse
|
19
|
Rielland M, Cantor DJ, Graveline R, Hajdu C, Mara L, Diaz BDD, Miller G, David G. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J Clin Invest 2014; 124:2125-35. [PMID: 24691445 DOI: 10.1172/jci72619] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/30/2014] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is strikingly resistant to conventional therapeutic approaches. We previously demonstrated that the histone deacetylase-associated protein SIN3B is essential for oncogene-induced senescence in cultured cells. Here, using a mouse model of pancreatic cancer, we have demonstrated that SIN3B is required for activated KRAS-induced senescence in vivo. Surprisingly, impaired senescence as the result of genetic inactivation of Sin3B was associated with delayed PDAC progression and correlated with an impaired inflammatory response. In murine and human pancreatic cells and tissues, levels of SIN3B correlated with KRAS-induced production of IL-1α. Furthermore, evaluation of human pancreatic tissue and cancer cells revealed that Sin3B was decreased in control and PDAC samples, compared with samples from patients with pancreatic inflammation. These results indicate that senescence-associated inflammation positively correlates with PDAC progression and suggest that SIN3B has potential as a therapeutic target for inhibiting inflammation-driven tumorigenesis.
Collapse
|
20
|
Ahmad A, Li Y, Bao B, Kong D, Sarkar FH. Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals. Mol Nutr Food Res 2013; 58:79-86. [PMID: 24272883 DOI: 10.1002/mnfr.201300528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
21
|
The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2. PLoS One 2013; 8:e75102. [PMID: 24040391 PMCID: PMC3770617 DOI: 10.1371/journal.pone.0075102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/12/2013] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.
Collapse
|
22
|
Grassadonia A, Cioffi P, Simiele F, Iezzi L, Zilli M, Natoli C. Role of Hydroxamate-Based Histone Deacetylase Inhibitors (Hb-HDACIs) in the Treatment of Solid Malignancies. Cancers (Basel) 2013; 5:919-42. [PMID: 24202327 PMCID: PMC3795372 DOI: 10.3390/cancers5030919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023] Open
Abstract
Hydroxamate-based histone deacetylase inhibitors (Hb-HDACIs), such as vorinostat, belinostat and panobinostat, have been previously shown to have a wide range of activity in hematologic malignancies such as cutaneous T-cell lymphoma and multiple myeloma. Recent data show that they synergize with a variety of cytotoxic and molecular targeted agents in many different solid tumors, including breast, prostate, pancreatic, lung and ovarian cancer. Hb-HDACIs have a quite good toxicity profile and are now being tested in phase I and II clinical trials in solid tumors with promising results in selected neoplasms, such as hepatocarcinoma. This review will focus on their clinical activity and safety in patients with advanced solid neoplasms.
Collapse
Affiliation(s)
- Antonino Grassadonia
- Department of Experimental and Clinical Sciences, University ’G. d’Annunzio’, I-66013 Chieti, Italy; E-Mail:
| | - Pasquale Cioffi
- Hospital Pharmacy, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (P.C.); (F.S.)
| | - Felice Simiele
- Hospital Pharmacy, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (P.C.); (F.S.)
| | - Laura Iezzi
- Oncology Department, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (L.I.); (M.Z.)
| | - Marinella Zilli
- Oncology Department, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (L.I.); (M.Z.)
| | - Clara Natoli
- Department of Experimental and Clinical Sciences, University ’G. d’Annunzio’, I-66013 Chieti, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0871-355-6708; Fax: +39-0871-355-6732
| |
Collapse
|
23
|
Yu SL, Lee DC, Son JW, Park CG, Lee HY, Kang J. Histone deacetylase 4 mediates SMAD family member 4 deacetylation and induces 5-fluorouracil resistance in breast cancer cells. Oncol Rep 2013; 30:1293-300. [PMID: 23817620 DOI: 10.3892/or.2013.2578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/12/2013] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylases (HDACs) have been shown to play important roles in the regulation of chromatin remodeling by histone deacetylation, and their expression is induced in several types of cancer. In addition, they are known to be associated with resistance to anticancer drugs. However, the relevance of HDAC4 in chemoresistance remains unclear. Therefore, we investigated the interaction between HDAC4 expression and chemoresistance in breast cancer cells. We found that increased HDAC4 expression in MDA-MB-231 cells was associated with resistance to the anticancer drug 5-fluorouracil (5-FU). To verify these results, a cell line stably overexpressing HDAC4 was generated using MCF-7 cells (HDAC4OE). This cell line displayed increased 5-FU resistance, and HDAC4 knockdown in HDAC4OE cells restored 5-FU sensitivity. Consequently, we concluded that HDAC4 is a critical gene associated with 5‑FU chemoresistance. Further investigation using a microarray approach revealed that 355 genes were differentially expressed following HDAC4 overexpression. Based on functional annotation of the array results, HDAC4 overexpression was found to downregulate genes related to the transforming growth factor (TGF) β signaling pathway, including SMAD4, SMAD6, bone morphogenetic protein 6, inhibitor of DNA binding 1 and TGFβ2. We also found that HDAC4 expression regulates SMAD4 expression by inducing deacetylation of histone H3 in the SMAD4 promoter region. In addition, SMAD4 knockdown in MCF‑7 cells increased 5-FU resistance. In summary, our data suggest that HDAC4‑mediated deacetylation of the SMAD4 promoter may lead to 5-FU resistance in breast cancer cells.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 302-718, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Lu XX, Zhang SM, Fang Y, Wang ZT, Xie JJ, Zhan Q, Deng XX, Chen H, Jin JB, Peng CH, Li HW, Shen BY. Clinical significance of RECK promoter methylation in pancreatic ductal adenocarcinoma. Tumour Biol 2013; 34:3339-43. [PMID: 23749490 DOI: 10.1007/s13277-013-0903-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/27/2013] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to analyze the clinical significance of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) promoter methylation in pancreatic ductal adenocarcinoma (PDA). Methylation-specific polymerase chain reaction was used to examine the promoter methylation status of RECK in 60 pairs of PDA tissue samples and adjacent non-cancerous tissue samples. Statistical analyses were applied to test the associations between RECK promoter methylation status, clinicopathologic factors, and prognosis. The rate of RECK promoter methylation was significantly higher in PDA tissues than in adjacent non-cancerous tissues (P < 0.001). RECK methylation status was significantly associated with clinical stage (P = 0.017), histological differentiation (P = 0.046), and lymph node metastasis (P = 0.003), but was not associated with gender, age, and tumor location (all P > 0.05). Additionally, RECK promoter methylation is associated with malignant behavior and poor prognosis. In conclusion, determination of RECK promoter methylation status in tumor tissues may assist in the identification of patients who require aggressive postoperative intervention in order to improve prognosis.
Collapse
Affiliation(s)
- Xiong-Xiong Lu
- Center of Organ Transplantation, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No. 197, Ruijiner Road, Shanghai, 200025, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mascariñas E, Eibl G, Grippo PJ. Evaluating dietary compounds in pancreatic cancer modeling systems. Methods Mol Biol 2013; 980:225-248. [PMID: 23359157 DOI: 10.1007/978-1-62703-287-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With the establishment of outstanding rodent models of pancreatic neoplasia and cancer, there are now systems available for evaluating the role diet, dietary supplements, and/or therapeutic compounds (which can be delivered in the diet) play in disease suppression. Several outstanding reports, which demonstrate clear inhibition or regression of pancreatic tumors following dietary manipulations, represent a noticeable advancement in the field by allowing for the contribution of diet and natural and synthetic compounds to be identified. The real goal is to provide support for translational components that will provide true chemoprevention to individuals at higher risk for developing pancreatic cancer. In addition, administration of molecules with proven efficacy in an in vivo system will screen likely candidates for future clinical trials. Despite this growing enthusiasm, it is important to note that the mere one-to-one translation of findings in rodent models to clinical outcomes is highly unlikely. Thus, careful consideration must be made to correlate findings in rodents with those in human cells with full disclosure of the subtle but often critical differences between animal models and humans. Additional concern should also be placed on the approaches employed to establish dietary components with real potential in the clinic. This chapter is focused on procedures that provide a systematic design for evaluating dietary compounds in cell culture and animal models to highlight which ones might have the greatest potential in people. The general format for this text is a stepwise use of fairly well-known approaches covered briefly but annotated with certain considerations for dietary studies. These methods include administration of a compound or a diet, measuring the cellular and molecular effects (histology, proliferation, apoptosis, RNA and protein expression, and signaling pathways), measuring the level of certain metabolites, and assessing the stability of active compounds. Though this chapter is divided into in vitro and in vivo sections, it is not an implication as to the order of experiments but an endorsement for utilizing human cells to complement work in a rodent modeling system. The notion that cell culture can provide the basis for further in vivo work is an attractive starting point, though the lack of a response in a single cell type should not necessarily prevent diet studies in rodents. The advantage of cell culture over animal models is the human origin of these cells and the ease and directness of manipulating a single cell type (particularly when exploring mechanism of action in that cell). Of course, the full effect of a diet, diet supplement, or therapeutic can only be wholly appreciated in an intact living organism with similar anatomical and physiological relevance. Thus, both approaches are considered in this chapter as each can provide unique strengths to determining the effectiveness of various dietary compounds or supplements on pancreatic neoplasia and cancer.
Collapse
Affiliation(s)
- Emman Mascariñas
- Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
26
|
Trials with 'epigenetic' drugs: an update. Mol Oncol 2012; 6:657-82. [PMID: 23103179 DOI: 10.1016/j.molonc.2012.09.004] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/30/2012] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of pivotal genes involved in correct cell growth is a hallmark of human pathologies, in particular cancer. These epigenetic mechanisms, including crosstalk between DNA methylation, histone modifications and non-coding RNAs, affect gene expression and are associated with disease progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. Re-expression of genes epigenetically inactivated can result in the suppression of disease state or sensitization to specific therapies. Small molecules that reverse epigenetic inactivation, so-called epi-drugs, are now undergoing clinical trials. Accordingly, the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment have approved some of these drugs. Here, we focus on the biological features of epigenetic molecules, analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|