1
|
Tian Y, Liu N, Zhao X, Mei X, Zhang L, Huang J, Hua D. Construction of Anthocyanin Biosynthesis System Using Chalcone as a Substrate in Lactococcus lactis NZ9000. J Basic Microbiol 2024; 64:e2400274. [PMID: 39072774 DOI: 10.1002/jobm.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Anthocyanins are high-value natural compounds, but to date, their production still mainly relies on extraction from plants. A five-step metabolic pathway was constructed in probiotic Lactococcus lactis NZ9000 for rapid, stable, and glycosylated anthocyanin biosynthesis using chalcone as a substrate. The genes were cloned from anthocyanin-rich blueberry: chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanin synthase (ANS), and UDPG-flavonoid 3-O-glycosyltransferase (3GT). Using HR, the polysaccharide pellicle (PSP) segment of the cell wall polysaccharide synthesis (cwps) gene cluster from L. lactis NZ9000 was cloned into vector p15A-Cm-repDE. Then, CHI and F3H were placed sequentially under the control of NZProm 3 of this gene cluster in the vector, which was transformed into L. lactis NZ9000 to obtain Strain A. Furthermore, Strain B was constructed by placing F3H-DFR-ANS and 3GT under NZProm 2 and 3, respectively. Using LC-MS/MS analysis, several types of anthocyanins, including callistephin chloride, oenin chloride, malvidin O-hexoside, malvidin 3,5-diglucoside, and pelargonidin 3-O-malonyl-malonylhexoside, increased in the supernatant of the co-culture of Strains A and B compared to that of L. lactis NZ9000. This is the first time that a five-step metabolic pathway has been developed for anthocyanin biosynthesis in probiotic L. lactis NZ9000. This work lays the groundwork for novel anthocyanin production by a process involving the placement of several biosynthesis genes under the control of a gene cluster.
Collapse
Affiliation(s)
- Yujing Tian
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Na Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xiaowen Zhao
- The Center of Mass Spectrometry, Novogene Bioinformatics Institute, Beijing, China
| | - Xuefeng Mei
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Deping Hua
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Santos CMM, Silva AMS. Transition Metal-Catalyzed Transformations of Chalcones. CHEM REC 2024; 24:e202400060. [PMID: 39008887 DOI: 10.1002/tcr.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Bragança, Apolónia, 5300-253, Bragança, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
4
|
Yao Y, Zhang Q, Li Z, Zhang H. MDM2: current research status and prospects of tumor treatment. Cancer Cell Int 2024; 24:170. [PMID: 38741108 DOI: 10.1186/s12935-024-03356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Mousedouble minute 2 (MDM2) is one of the molecules activated by p53 and plays an important role in the regulation of p53. MDM2 is generally believed to function as a negative regulator of p53 by facilitating its ubiquitination and subsequent degradation. Consequently, blocked p53 activity often fails in damaged cells to undergo cell cycle arrest or apoptosis. Given that around 50% of human cancers involve the inactivation of p53 through genetic mutations, and directly targeting p53 through drug development has limited feasibility, targeting molecular regulation related to p53 has great potential and has become a research hotspot. For example, developing drugs that target the interaction between p53 and MDM2. Such drugs aim to reactivate p53 by targeting either MDM2 binding or p53 phosphorylation. Researchers have identified various compounds that can serve as inhibitors, either by directly binding to MDM2 or by modifying p53 through phosphorylation. Furthermore, a significant correlation exists between the expression of MDM2 in tumors and the effectiveness of immunotherapy, predominantly in the context of immune checkpoint inhibition. This review presents a comprehensive overview of the molecular characteristics of MDM2 and the current state of research on MDM2-targeting inhibitors. It includes a review of the impact of MDM2 targeting on the efficacy of immunotherapy, providing guidance and direction for the development of drugs targeting the p53-MDM2 interaction and optimization of immunotherapy.
Collapse
Affiliation(s)
- Yumei Yao
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Qian Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Zhi Li
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Hushan Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China.
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, 650302, People's Republic of China.
| |
Collapse
|
5
|
Hu Y, Yu C, Cheng L, Zhong C, An J, Zou M, Liu B, Gao X. Flavokawain C inhibits glucose metabolism and tumor angiogenesis in nasopharyngeal carcinoma by targeting the HSP90B1/STAT3/HK2 signaling axis. Cancer Cell Int 2024; 24:158. [PMID: 38711062 DOI: 10.1186/s12935-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Over the past decade, heat shock protein 90 (HSP90) inhibitors have emerged as promising anticancer drugs in solid and hematological malignancies. Flavokawain C (FKC) is a naturally occurring chalcone that has been found to exert considerable anti-tumor efficacy by targeting multiple molecular pathways. However, the efficacy of FKC has not been studied in nasopharyngeal carcinoma (NPC). Metabolic abnormalities and uncontrolled angiogenesis are two important features of malignant tumors, and the occurrence of these two events may involve the regulation of HSP90B1. Therefore, this study aimed to explore the effects of FKC on NPC proliferation, glycolysis, and angiogenesis by regulating HSP90B1 and the underlying molecular regulatory mechanisms. METHODS HSP90B1 expression was analyzed in NPC tissues and its relationship with patient's prognosis was further identified. Afterward, the effects of HSP90B1 on proliferation, apoptosis, glycolysis, and angiogenesis in NPC were studied by loss-of-function assays. Next, the interaction of FKC, HSP90B1, and epidermal growth factor receptor (EGFR) was evaluated. Then, in vitro experiments were designed to analyze the effect of FKC treatment on NPC cells. Finally, in vivo experiments were allowed to investigate whether FKC treatment regulates proliferation, glycolysis, and angiogenesis of NPC cells by HSP90B1/EGFR pathway. RESULTS HSP90B1 was highly expressed in NPC tissues and was identified as a poor prognostic factor in NPC. At the same time, knockdown of HSP90B1 can inhibit the proliferation of NPC cells, trigger apoptosis, and reduce glycolysis and angiogenesis. Mechanistically, FKC affects downstream EGFR phosphorylation by regulating HSP90B1, thereby regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. FKC treatment inhibited the proliferation, glycolysis, and angiogenesis of NPC cells, which was reversed by introducing overexpression of HSP90B1. In addition, FKC can affect NPC tumor growth and metastasis in vivo by regulating the HSP90B1/EGFR pathway. CONCLUSION Collectively, FKC inhibits glucose metabolism and tumor angiogenesis in NPC by targeting the HSP90B1/EGFR/PI3K/Akt/mTOR signaling axis.
Collapse
Affiliation(s)
- YuQiang Hu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - LiangJun Cheng
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chang Zhong
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun An
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - MingZhen Zou
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bing Liu
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
6
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Aziz M, Abdel-Rahman HM. Quinazoline-chalcone hybrids as HDAC/EGFR dual inhibitors: Design, synthesis, mechanistic, and in-silico studies of potential anticancer activity against multiple myeloma. Arch Pharm (Weinheim) 2024; 357:e2300626. [PMID: 38297894 DOI: 10.1002/ardp.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA), Assiut, Egypt
| |
Collapse
|
7
|
ZHOU JIANBO, WAN FENG, XIAO BIN, LI XIN, PENG CHENG, PENG FU. Metochalcone induces senescence-associated secretory phenotype via JAK2/STAT3 pathway in breast cancer. Oncol Res 2024; 32:943-953. [PMID: 38686052 PMCID: PMC11055985 DOI: 10.32604/or.2023.044775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/24/2023] [Indexed: 05/02/2024] Open
Abstract
Breast and lung cancers are the leading causes of mortality and most frequently diagnosed cancers in women and men, respectively, worldwide. Although the antitumor activity of chalcones has been extensively studied, the molecular mechanisms of isoliquiritigenin analog 2', 4', 4-trihydroxychalcone (metochalcone; TEC) against carcinomas remain less well understood. In this study, we found that TEC inhibited cell proliferation of breast cancer BT549 cells and lung cancer A549 cells in a concentration-dependent manner. TEC induced cell cycle arrest in the S-phase, cell migration inhibition in vitro, and reduced tumor growth in vivo. Moreover, transcriptomic analysis revealed that TEC modulated the activity of the JAK2/STAT3 and P53 pathways. TEC triggered the senescence-associated secretory phenotype (SASP) by repressing the JAK2/STAT3 axis. The mechanism of metochalcone against breast cancer depended on the induction of SASP via deactivation of the JAK2/STAT3 pathway, highlighting the potential of chalcone in senescence-inducing therapy against carcinomas.
Collapse
Affiliation(s)
- JIANBO ZHOU
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| | - FENG WAN
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu No. 1 Pharmaceutical Co., Ltd., Pengzhou, China
| | - BIN XIAO
- Chengdu Push Bio-Technology Co., Ltd., Chengdu, China
| | - XIN LI
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - CHENG PENG
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - FU PENG
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Santos Oliveira L, Kueirislene Amâncio Ferreira M, Wagner de Queiroz Almeida-Neto F, Wlisses da Silva A, Ivo Lima Pinto Filho J, Nunes da Rocha M, Machado Marinho E, Henrique Ferreira Ribeiro W, Machado Marinho M, Silva Marinho E, Eire Silva Alencar de Menezes J, Dos Santos HS. Synthesis, molecular docking, ADMET, and evaluation of the anxiolytic effect in adult zebrafish of synthetic chalcone (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one: An in vivo and in silico approach. Fundam Clin Pharmacol 2024; 38:290-306. [PMID: 37845792 DOI: 10.1111/fcp.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Anxiety disorders represent the complex interaction between biological, psychological, temperamental, and environmental factors; drugs available to treat anxiety such as benzodiazepines (BZDs) are associated with several unwanted side effects. Although there are useful treatments, there is still a need for more effective anxiolytics with better safety profiles than BZDs. Chalcones or 1,3-diphenyl-2-proper-1-ones can be an alternative since this class of compounds has shown therapeutic potential mainly due to interactions with GABAA receptors and serotonergic system. OBJECTIVES This study evaluated the anxiolytic potential of chalcone (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (C2OHPDA) in adult zebrafish (Danio rerio) (ZFa). METHODS Each animal (n = 6/group) was treated intraperitoneally (i.p.; 20 μL) with the chalcone (4, 20, and 40 mg/kg) and with the vehicle (DMSO 3%; 20 μL), being submitted to the tests of locomotor activity and 96-h acute toxicity. The light/dark test was also performed, and the serotonergic mechanism (5-HT) was evaluated through the antagonists of the 5-HTR1 , 5-HTR2A/2C , and 5-HTR3A/3B receptors. It was investigated the prediction of the chalcone's position and preferential orientation concerning its receptor, as well as the pharmacokinetic parameters (ADMET) involved in the process after administration. RESULTS As a result, C2OHPDA was not toxic and reduced the locomotor activity of ZFa. Furthermore, chalcone demonstrated an anxiolytic effect on the central nervous system (CNS), mediated by the serotonergic system, with action on 5-HT2A and 5-HTR3A/3B receptors. The interaction of C2OHPDA with 5-HT2A R and 5-HT3A receptors was confirmed by molecular docking study, the affinity energy observed was -8.7 and -9.1 kcal/mol, respectively. CONCLUSION Thus, this study adds new evidence and highlights that chalcone can potentially be used to develop compounds with anxiolytic properties.
Collapse
Affiliation(s)
- Larissa Santos Oliveira
- Science and Technology, Graduate Program in Natural Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Antonio Wlisses da Silva
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Matheus Nunes da Rocha
- Science and Technology, Graduate Program in Natural Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Emmanuel Silva Marinho
- Science and Technology, Graduate Program in Natural Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Hélcio Silva Dos Santos
- Science and Technology, Graduate Program in Natural Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
9
|
Baramaki I, Altıntop MD, Arslan R, Alyu Altınok F, Özdemir A, Dallali I, Hasan A, Bektaş Türkmen N. Design, Synthesis, and In Vivo Evaluation of a New Series of Indole-Chalcone Hybrids as Analgesic and Anti-Inflammatory Agents. ACS OMEGA 2024; 9:12175-12183. [PMID: 38497028 PMCID: PMC10938421 DOI: 10.1021/acsomega.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
Indole-chalcone hybrids have burst into prominence as potent weapons in the battle against pain and inflammation due to their unique features, allowing these ligands to form pivotal interactions with biological targets. In this context, the base-catalyzed Claisen-Schmidt condensation of 3',4'-(methylenedioxy)acetophenone with heteroaromatic aldehydes carrying an indole scaffold yielded new chalcones (1-7). The central and peripheral antinociceptive activities of all chalcones (compounds 1-7) at the dose of 10 mg/kg (i.p.) were evaluated by hot plate (supraspinal response), tail immersion (spinal response), and acetic acid-induced writhing tests in mice. The anti-inflammatory activities of compounds 1-7 were also investigated by means of a carrageenan-induced mouse paw edema model. The results revealed that compounds 1-7 extended the latency of response to thermal stimulus significantly in a hot-plate test similar to dipyrone (300 mg/kg; i.p.), the positive control drug. However, only compounds 2-7 were found to be significantly effective in the tail-immersion test. Compounds 1-7 also significantly showed analgesic effect by reducing the number of writhes and anti-inflammatory activity by inhibiting edema formation at different time intervals and levels. 1-(1,3-Benzodioxol-5-yl)-3-(1-methyl-1H-indol-2-yl)prop-2-en-1-one (4) drew attention by providing the highest efficacy results in both acute analgesia and inflammation models. Based on the in silico data acquired from the QikProp module, compound 4 was predicted to possess favorable oral bioavailability and drug-like properties. Taken together, it can be concluded that chalcones (1-7), especially compound 4, are outstanding candidates for further research to investigate their potential use in the management of pain and inflammation.
Collapse
Affiliation(s)
- Iman Baramaki
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Mehlika Dilek Altıntop
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Rana Arslan
- Department
of Pharmacology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Feyza Alyu Altınok
- Department
of Pharmacology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Ahmet Özdemir
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ilhem Dallali
- Department
of Pharmacology, Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Ahmed Hasan
- Department
of Pharmacology, Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Nurcan Bektaş Türkmen
- Department
of Pharmacology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
10
|
Zhang YH, Yang SS, Zhang Q, Zhang TT, Zhang TY, Zhou BH, Zhou L. Discovery of N-Phenylpropiolamide as a Novel Succinate Dehydrogenase Inhibitor Scaffold with Broad-Spectrum Antifungal Activity on Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3681-3693. [PMID: 36790098 DOI: 10.1021/acs.jafc.2c07712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Based on the structural features of both succinate dehydrogenase inhibitors (SDHIs) and targeted covalent inhibitors, a series of N-phenylpropiolamides containing a Michael acceptor moiety were designed to find new antifungal compounds. Nineteen compounds showed potent inhibition activity in vitro on nine species of plant pathogenic fungi. Compounds 9 and 13 showed higher activity on most of the fungi than the standard drug azoxystrobin. Compound 13 could completely inhibit Physalospora piricola infection on apples at 200 μg/mL concentration over 7 days and showed high safety to seed germination and seedling growth of plants at ≤100 μg/mL concentration. The action mechanism showed that 13 is an SDH inhibitor with a median inhibitory concentration, IC50, value of 0.55 μg/mL, comparable with that of the positive drug boscalid. Molecular docking studies revealed that 13 can bind well to the ubiquinone-binding region of SDH by hydrogen bonds and undergoes π-alkyl interaction and π-cation interaction. At the cellular level, 1 as the parent compound could destruct the mycelial structure of P. piricola and partly dissolve the cell wall and/or membrane. Structure-activity relationship analysis showed that the acetenyl group should be a structure determinant for the activity, and the substitution pattern of the phenyl ring can significantly impact the activity. Thus, N-phenylpropiolamide emerged as a novel and promising lead scaffold for the development of new SDHIs for plant protection.
Collapse
Affiliation(s)
- Yu-Hao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Shan-Shan Yang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
- Taizhou Polytechnic College, 8 Tianxing Road, Taizhou, 225300 Jiangsu, China
| | - Qi Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Tian-Tian Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Tian-Yi Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Bo-Hang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710043 Shaanxi, China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| |
Collapse
|
11
|
Dadi V, Malla RR, Siragam S. Natural and Synthetic Chalcones: Potential Impact on Breast Cancer. Crit Rev Oncog 2023; 28:27-40. [PMID: 38050979 DOI: 10.1615/critrevoncog.2023049659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chalcones are small molecules, naturally found in fruits and vegetables, and exhibit diverse pharmacological activities. They also possess anticancer activity against different tumors. They can be converted into numerous derivatives by modifying hydrogen moieties, enabling the exploration of their diverse anticancer potentials. The main aims are to provide valuable insights into the recent progress made in utilizing chalcones and their derivatives as agents against breast cancer while delivering their underlying molecular mechanisms of action. This review presents anticancer molecular mechanisms and signaling pathways modulated by chalcones. Furthermore, it helps in the understating of the precise mechanisms of action and specific molecular targets of chalcones and their synthetic derivatives for breast cancer treatment.
Collapse
Affiliation(s)
- Vasudha Dadi
- Department of Pharmaceutical Chemistry, Vignan Institute of Pharmaceutical Technology, Visakhapatnam 530049, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Satyalakshmi Siragam
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Visakhapatnam 530049, India
| |
Collapse
|
12
|
Sinha S, Medhi B, Radotra BD, Batovska DI, Markova N, Bhalla A, Sehgal R. Antimalarial and immunomodulatory potential of chalcone derivatives in experimental model of malaria. BMC Complement Med Ther 2022; 22:330. [PMID: 36510199 PMCID: PMC9743746 DOI: 10.1186/s12906-022-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malaria is a complex issue due to the availability of few therapies and chemical families against Plasmodium and mosquitoes. There is increasing resistance to various drugs and insecticides in Plasmodium and in the vector. Additionally, human behaviors are responsible for promoting resistance as well as increasing the risk of exposure to infections. Chalcones and their derivatives have been widely explored for their antimalarial effects. In this context, new derivatives of chalcones have been evaluated for their antimalarial efficacy. METHODS BALB/c mice were infected with P. berghei NK-65. The efficacy of the three most potent chalcone derivations (1, 2, and 3) identified after an in vitro compound screening test was tested. The selected doses of 10 mg/kg, 20 mg/kg, and 10 mg/kg were studied by evaluating parasitemia, changes in temperature, body weights, organ weights, histopathological features, nitric oxide, cytokines, and ICAM-1 expression. Also, localization of parasites inside the two vital tissues involved during malaria infections was done through a transmission electron microscope. RESULTS All three chalcone derivative treated groups showed significant (p < 0.001) reductions in parasitemia levels on the fifth and eighth days of post-infection compared to the infected control. These derivatives were found to modulate the immune response in a P. berghei infected malaria mouse model with a significant reduction in IL-12 levels. CONCLUSIONS The present study indicates the potential inhibitory and immunomodulatory actions of chalcones against the rodent malarial parasite P. berghei.
Collapse
Affiliation(s)
- Shweta Sinha
- grid.415131.30000 0004 1767 2903Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Bikash Medhi
- grid.415131.30000 0004 1767 2903Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - B. D. Radotra
- grid.415131.30000 0004 1767 2903Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Daniela I. Batovska
- grid.410344.60000 0001 2097 3094Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezhda Markova
- grid.410344.60000 0001 2097 3094Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ashish Bhalla
- grid.415131.30000 0004 1767 2903Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- grid.415131.30000 0004 1767 2903Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| |
Collapse
|
13
|
Altıntop MD, Özdemir A, Temel HE, Demir Cevizlidere B, Sever B, Kaplancıklı ZA, Akalın Çiftçi G. Design, synthesis and biological evaluation of a new series of arylidene indanones as small molecules for targeted therapy of non-small cell lung carcinoma and prostate cancer. Eur J Med Chem 2022; 244:114851. [DOI: 10.1016/j.ejmech.2022.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
|
14
|
Yang Y, Wu H, Zou X, Chen Y, He R, Jin Y, Zhou B, Ge C, Yang Y. A novel synthetic chalcone derivative, 2,4,6-trimethoxy-4'-nitrochalcone (Ch-19), exerted anti-tumor effects through stimulating ROS accumulation and inducing apoptosis in esophageal cancer cells. Cell Stress Chaperones 2022; 27:645-657. [PMID: 36242757 PMCID: PMC9672279 DOI: 10.1007/s12192-022-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer has always been associated with poor prognosis and a low five-year survival rate. Chalcone, a flavonoid family member, has shown anti-tumor property in several types of cancer. However, few studies reported the potency and mechanisms of action of synthetic Chalcone derivatives against esophageal squamous cell carcinoma. In this study, we designed and synthesized a series of novel chalcone analogs and Ch-19 was selected for its superior anti-tumor potency. Results indicated that Ch-19 shows a dose- and time-dependent anti-tumor activity in both KYSE-450 and Eca-109 esophageal cancer cells. Moreover, treatment of Ch-19 resulted in the regression of KYSE-450 tumor xenografts in nude mice. Furthermore, we investigated the potential mechanism involved in the effective anti-tumor effects of Ch-19. As a result, we observed that Ch-19 treatment promoted ROS accumulation and caused G2/M phase arrest in both Eca-109 and KYSE-450 cancer cell lines, thereby resulting in cell apoptosis. Taken together, our study provided a novel synthetic chalcone derivative as a potential anti-tumor therapeutic candidate for treating esophageal cancer.
Collapse
Affiliation(s)
- Yan Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - He Wu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiao Zou
- Department of Oncology and Hematology, The First People's Hospital of Taian, Taian, China
| | - Yongye Chen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Runjia He
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yibo Jin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Bei Zhou
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunpo Ge
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Yun Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
15
|
WalyEldeen AA, El-Shorbagy HM, Hassaneen HM, Abdelhamid IA, Sabet S, Ibrahim SA. [1,2,4] Triazolo [3,4-a]isoquinoline chalcone derivative exhibits anticancer activity via induction of oxidative stress, DNA damage, and apoptosis in Ehrlich solid carcinoma-bearing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1225-1238. [PMID: 35881165 PMCID: PMC9467967 DOI: 10.1007/s00210-022-02269-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/03/2022] [Indexed: 12/30/2022]
Abstract
Despite the advances made in cancer therapeutics, their adverse effects remain a major concern, putting safer therapeutic options in high demand. Since chalcones, a group of flavonoids and isoflavonoids, act as promising anticancer agents, we aimed to evaluate the in vivo anticancer activity of a synthetic isoquinoline chalcone (CHE) in a mice model with Ehrlich solid carcinoma. Our in vivo pilot experiments revealed that the maximum tolerated body weight-adjusted CHE dose was 428 mg/kg. Female BALB/c mice were inoculated with Ehrlich ascites carcinoma cells and randomly assigned to three different CHE doses administered intraperitoneally (IP; 107, 214, and 321 mg/kg) twice a week for two consecutive weeks. A group injected with doxorubicin (DOX; 4 mg/kg IP) was used as a positive control. We found that in CHE-treated groups: (1) tumor weight was significantly decreased; (2) the total antioxidant concentration was substantially depleted in tumor tissues, resulting in elevated oxidative stress and DNA damage evidenced through DNA fragmentation and comet assays; (3) pro-apoptotic genes p53 and Bax, assessed via qPCR, were significantly upregulated. Interestingly, CHE treatment reduced immunohistochemical staining of the proliferative marker ki67, whereas BAX was increased. Notably, histopathological examination indicated that unlike DOX, CHE treatment had minimal toxicity on the liver and kidney. In conclusion, CHE exerts antitumor activity via induction of oxidative stress and DNA damage that lead to apoptosis, making CHE a promising candidate for solid tumor therapy.
Collapse
Affiliation(s)
| | - Haidan M El-Shorbagy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Faculty of Biotechnology, October University for Modern Science and Art (MSA), 6th October, Cairo, Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Salwa Sabet
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
16
|
Discovery of α-methylene-γ-lactone-δ-epoxy derivatives with anti-cancer activity: synthesis, SAR study, and biological activity. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci 2022; 23:ijms23095005. [PMID: 35563397 PMCID: PMC9103871 DOI: 10.3390/ijms23095005] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Named as the guardian of the genome, p53 is a tumor suppressor that regulates cell function, often through many different mechanisms such as DNA repair, apoptosis, cell cycle arrest, senescence, metabolism, and autophagy. One of the genes that p53 activates is MDM2, which forms a negative feedback loop since MDM2 induces the degradation of p53. When p53 activity is inhibited, damaged cells do not undergo cell cycle arrest or apoptosis. As 50% of human cancers inactivate p53 by mutation, current research focuses on reactivating p53 by developing drugs that target the p53-MDM2 interaction, which includes the binding of MDM2 and phosphorylation of p53. The objective of this article is to provide a short list and description of p53-MDM2 antagonists that may be excellent candidates for inducing cancer cell death. Relevant articles were searched for and identified using online databases such as PubMed and ScienceDirect. Increasing p53 levels, by targeting the p53-MDM2 interaction, can help p53 play its role as a tumor suppressor and induce cancer cell death. Researchers have identified different compounds that can act as inhibitors, either by directly binding to MDM2 or by modifying p53 with phosphorylation. The results associated with the drugs demonstrate the importance of targeting such interactions to inhibit cancer cell growth, which indicates that the use of the compounds may improve cancer therapeutics.
Collapse
|
18
|
Aldoxime- and hydroxy-functionalized chalcones as highly potent and selective monoamine oxidase-B inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Möller G, Temml V, Cala Peralta A, Gruet O, Richomme P, Séraphin D, Viault G, Kraus L, Huber-Cantonati P, Schopfhauser E, Pachmayr J, Tokarz J, Schuster D, Helesbeux JJ, Dyar KA. Analogues of Natural Chalcones as Efficient Inhibitors of AKR1C3. Metabolites 2022; 12:99. [PMID: 35208174 PMCID: PMC8876231 DOI: 10.3390/metabo12020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Naturally occurring substances are valuable resources for drug development. In this respect, chalcones are known to be antiproliferative agents against prostate cancer cell lines through various mechanisms or targets. Based on the literature and preliminary results, we aimed to study and optimise the efficiency of a series of chalcones to inhibit androgen-converting AKR1C3, known to promote prostate cancer. A total of 12 chalcones with different substitution patterns were synthesised. Structure-activity relationships associated with these modifications on AKR1C3 inhibition were analysed by performing enzymatic assays and docking simulations. In addition, the selectivity and cytotoxicity of the compounds were assessed. In enzymatic assays, C-6' hydroxylated derivatives were more active than C-6' methoxylated derivatives. In contrast, C-4 methylation increased activity over C-4 hydroxylation. Docking results supported these findings with the most active compounds fitting nicely in the binding site and exhibiting strong interactions with key amino acid residues. The most effective inhibitors were not cytotoxic for HEK293T cells and selective for 17β-hydroxysteroid dehydrogenases not primarily involved in steroid hormone metabolism. Nevertheless, they inhibited several enzymes of the steroid metabolism pathways. Favourable substitutions that enhanced AKR1C3 inhibition of chalcones were identified. This study paves the way to further develop compounds from this series or related flavonoids with improved inhibitory activity against AKR1C3.
Collapse
Affiliation(s)
- Gabriele Möller
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (K.A.D.)
| | - Veronika Temml
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (E.S.); (D.S.)
| | - Antonio Cala Peralta
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Océane Gruet
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Pascal Richomme
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Denis Séraphin
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Guillaume Viault
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Luisa Kraus
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (L.K.); (P.H.-C.); (J.P.)
| | - Petra Huber-Cantonati
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (L.K.); (P.H.-C.); (J.P.)
| | - Elisabeth Schopfhauser
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (E.S.); (D.S.)
| | - Johanna Pachmayr
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (L.K.); (P.H.-C.); (J.P.)
| | - Janina Tokarz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (K.A.D.)
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (E.S.); (D.S.)
| | - Jean-Jacques Helesbeux
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Kenneth Allen Dyar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (K.A.D.)
| |
Collapse
|
20
|
Rodríguez I, Saavedra E, del Rosario H, Perdomo J, Quintana J, Prencipe F, Oliva P, Romagnoli R, Estévez F. Apoptosis Pathways Triggered by a Potent Antiproliferative Hybrid Chalcone on Human Melanoma Cells. Int J Mol Sci 2021; 22:ijms222413462. [PMID: 34948260 PMCID: PMC8706831 DOI: 10.3390/ijms222413462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization reported that approximately 324,000 new cases of melanoma skin cancer were diagnosed worldwide in 2020. The incidence of melanoma has been increasing over the past decades. Targeting apoptotic pathways is a potential therapeutic strategy in the transition to preclinical models and clinical trials. Some naturally occurring products and synthetic derivatives are apoptosis inducers and may represent a realistic option in the fight against the disease. Thus, chalcones have received considerable attention due to their potential cytotoxicity against cancer cells. We have previously reported a chalcone containing an indole and a pyridine heterocyclic rings and an α-bromoacryloylamido radical which displays potent antiproliferative activity against several tumor cell lines. In this study, we report that this chalcone is a potent apoptotic inducer for human melanoma cell lines SK-MEL-1 and MEL-HO. Cell death was associated with mitochondrial cytochrome c release and poly(ADP-ribose) polymerase cleavage and was prevented by a non-specific caspase inhibitor. Using SK-MEL-1 as a model, we found that the mechanism of cell death involves (i) the generation of reactive oxygen species, (ii) activation of the extrinsic and intrinsic apoptotic and mitogen-activated protein kinase pathways, (iii) upregulation of TRAIL, DR4 and DR5, (iv) downregulation of p21Cip1/WAF1 and, inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Irene Rodríguez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
| | - Ester Saavedra
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
- Instituto Canario de Investigación del Cáncer (ICIC), 35016 Las Palmas de Gran Canaria, Spain
| | - Henoc del Rosario
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
| | - Juan Perdomo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121 Ferrara, Italy; (F.P.); (P.O.); (R.R.)
| | - Paola Oliva
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121 Ferrara, Italy; (F.P.); (P.O.); (R.R.)
| | - Romeo Romagnoli
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121 Ferrara, Italy; (F.P.); (P.O.); (R.R.)
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
- Correspondence: ; Tel.: +34-928-451-443; Fax: +34-928-451-441
| |
Collapse
|
21
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
22
|
Moustafa G, Sabry E, Zayed EM, Mohamed GG. Structural characterization, spectroscopic studies, and molecular docking studies on metal complexes of new hexadentate cyclic peptide ligand. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gaber Moustafa
- Peptides Chemistry Department National Research Centre Giza Egypt
| | - Eman Sabry
- Pesticide Chemistry Department National Research Centre Giza Egypt
| | - Ehab M. Zayed
- Green Chemistry Department National Research Centre Giza Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
23
|
Pan T, Geng Y, Hao J, He X, Li J, Gao Y, Shang S, Song Z. Taking Advantage of the Renewable Forest Bioresource Turpentine to Prepare α,β-Unsaturated Compounds as Highly Efficient Fungicidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12985-12993. [PMID: 34723535 DOI: 10.1021/acs.jafc.1c05364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In a continuous study on the high-value-added exploration of a renewable forest bioresource turpentine in modern organic agriculture, two series of α-pinene derivatives containing amide and α,β-unsaturated ketone pharmacophores were prepared. Through an in-depth fungicidal activity study, the title compounds presented excellent inhibitory activity against common crop fungi, especially Sclerotinia sclerotiorum, and the notable EC50 values of α,β-unsaturated compounds 3u (funan containing) and 3v (thiophene containing) were 1.657 and 1.749 μg/mL, respectively. Further physiological and biochemical studies on S. sclerotiorum revealed that compounds 3u and 3v reduced the ergosterol content in the cell membrane and increased the permeability of the cell membrane. In combination with their effect on mycelial morphology, the title compounds might have inhibitory effects on the biosynthesis of ergosterol, which is a paramount component of the target cell membrane. Moreover, quantitative structure-activity relationship (QSAR) and SAR studies revealed that the charge distribution of α,β-unsaturated carbonyl ketone derivatives played an important role in the observed fungicidal activity. In summary, this study highlights the design and development of novel high-efficacy turpentine-based antifungal agents.
Collapse
Affiliation(s)
- Tingmin Pan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuanxiao Geng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jin Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| |
Collapse
|
24
|
Zayed EM, Zayed MA, Radwan MAA, Alminderej FM. Synthesis, characterization, antimicrobial, and docking study of novel 1‐(furanyl)‐3‐(pyrrolyl)propenone‐based ligand and its chelates of 3d‐transition metal ions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ehab M. Zayed
- Green Chemistry Department National Research Centre Giza Egypt
| | - Mohamed A. Zayed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | - Mohamed A. A. Radwan
- Applied Organic Chemistry Department National Research Centre Giza Egypt
- Department of Chemistry, College of Science Qassim University Buraydah Saudi Arabia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science Qassim University Buraydah Saudi Arabia
| |
Collapse
|
25
|
Yepes AF, Arias JD, Cardona-G W, Herrera-R A, Moreno G. New class of hybrids based on chalcone and melatonin: a promising therapeutic option for the treatment of colorectal cancer. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02805-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Novel Nitrogen-Based Chalcone Analogs Provoke Substantial Apoptosis in HER2-Positive Human Breast Cancer Cells via JNK and ERK1/ERK2 Signaling Pathways. Int J Mol Sci 2021; 22:ijms22179621. [PMID: 34502529 PMCID: PMC8431802 DOI: 10.3390/ijms22179621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Natural chalcones possess antitumor properties and play a role as inducers of apoptosis, antioxidants and cytotoxic compounds. We recently reported that novel nitrogen chalcone-based compounds, which were generated in our lab, have specific effects on triple-negative breast cancer cells. However, the outcome of these two new compounds on human epidermal growth factor receptor 2 (HER2)-positive breast cancer remains nascent. Thus, we herein investigated the effects of these compounds (DK-13 and DK-14) on two HER2-positive breast cancer cell lines, SKBR3 and ZR75. Our data revealed that these compounds inhibit cell proliferation, deregulate cell-cycle progression and significantly induce cell apoptosis in both cell lines. Furthermore, the two chalcone compounds cause a significant reduction in the cell invasion ability of SKBR3 and ZR75 cancer cells. In parallel, we found that DK-13 and DK-14 inhibit colony formation of both cell lines in comparison to their matched controls. On the other hand, we noticed that these two compounds can inhibit angiogenesis in the chorioallantoic membrane model. The molecular pathway analysis of chalcone compounds exposed cells revealed that these compounds inhibit the expression of both JNK1/2/3 and ERK1/2, the major plausible molecular pathways behind these events. Our findings implicate that DK-13 and DK-14 possess effective chemotherapeutic outcomes against HER2-positive breast cancer via the ERK1/2 and JNK1/2/3 signaling pathways.
Collapse
|
27
|
Khedr F, Ibrahim MK, Eissa IH, Abulkhair HS, El-Adl K. Phthalazine-based VEGFR-2 inhibitors: Rationale, design, synthesis, in silico, ADMET profile, docking, and anticancer evaluations. Arch Pharm (Weinheim) 2021; 354:e2100201. [PMID: 34411344 DOI: 10.1002/ardp.202100201] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
In the designed compounds, a new linker was inserted in the form of fragments with verified VEGFR-2 inhibitory potential, including an α,β-unsaturated ketonic fragment, pyrazole, and pyrimidine. Also, new distal hydrophobic moieties were attached to these linkers that are expected to increase the hydrophobic interaction with VEGFR-2 and, consequently, the affinity. These structural optimizations have led us to identify the novel dihydropyrazole derivative 6e as a promising hit molecule. All the new derivatives were evaluated to assess their anticancer activity against three human cancer cell lines, including HepG2, HCT-116, and MCF-7. The results of the in vitro anticancer evaluation study revealed the moderate to excellent cytotoxicity of 6c , 6e , 6g , and 7b , with IC50 values in the low micromolar range. The inhibitory activity of VEGFR-2 was investigated for 16 of the designed compounds. The enzyme assay results of the new compounds were compared with those of sorafenib as a reference VEGFR-2 inhibitor. The obtained results demonstrated that our derivatives are potent VEGFR-2 inhibitors. The most potent derivatives 6c , 6e , 6g , and 7b showed IC50 values in the range of 0.11-0.22 µM. Molecular docking and pharmacokinetic studies were also conducted to rationalize the VEGFR-2 inhibitory activity and to evaluate the ability of the most potent derivatives to be developed as good drug candidates.
Collapse
Affiliation(s)
- Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
28
|
Choi HR, Lim H, Lee JH, Park H, Kim HP. Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives. Biomol Ther (Seoul) 2021; 29:410-418. [PMID: 33653970 PMCID: PMC8255143 DOI: 10.4062/biomolther.2020.192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5- trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.
Collapse
Affiliation(s)
- Hye Ri Choi
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haeil Park
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
29
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
30
|
Wandee J, Srinontong P, Prawan A, Senggunprai L, Kongpetch S, Yenjai C, Kukongviriyapan V. Derrischalcone suppresses cholangiocarcinoma cells through targeting ROS-mediated mitochondrial cell death, Akt/mTOR, and FAK pathways. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1929-1940. [PMID: 34086099 DOI: 10.1007/s00210-021-02102-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Chemotherapy is a palliative treatment for unresectable patients with cholangiocarcinoma (CCA). However, drug resistance is a major cause of the failure of this treatment. Derrischalcone (DC), a novel chalcone isolated from Derris indica fruit, has been shown pharmacologically active; though, the effect of DC on CCA is unknown. The present study investigated the cytotoxic, antiproliferative, anti-migration, and anti-invasion effects and underlying mechanisms of DC on CCA KKU-M156 and KKU-100 cells. Cytotoxicity and apoptosis were evaluated by acridine orange and ethidium bromide fluorescent staining. Reactive oxygen species (ROS) was measured by dihydroethidium assay. Cell proliferation and reproductive cell death were assessed by sulforhodamine B staining and colony-forming assay. Migration and invasion were determined by wound healing and transwell chamber assays. Protein expressions associated with cell death, proliferation, migration, and invasion were analyzed by western immunoblotting. We found that DC induced cytotoxicity and apoptosis in association with ROS formation and oxidative stress. Treatment with N-acetylcysteine suppressed ROS formation and attenuated DC-induced cytotoxic and apoptotic effects. DC increased the expression of p53, p21, Bax, and cytochrome c proteins in association with cell death. DC-induced antiproliferation, colony formation, anti-migration, and anti-invasion were associated with the suppression of Akt/mTOR/cyclin D1 and FAK signaling pathways. These findings suggest that the multi-targeting strategies with DC may be a novel treatment for cancer therapy.
Collapse
Affiliation(s)
- Jaroon Wandee
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand. .,Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Piyarat Srinontong
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand.,Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
31
|
Mendanha D, Vieira de Castro J, Moreira J, Costa BM, Cidade H, Pinto M, Ferreira H, Neves NM. A New Chalcone Derivative with Promising Antiproliferative and Anti-Invasion Activities in Glioblastoma Cells. Molecules 2021; 26:molecules26113383. [PMID: 34205043 PMCID: PMC8199914 DOI: 10.3390/molecules26113383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is the most common and most deadly primary malignant brain tumor. Current therapies are not effective, the average survival of GBM patients after diagnosis being limited to few months. Therefore, the discovery of new treatments for this highly aggressive brain cancer is urgently needed. Chalcones are synthetic and naturally occurring compounds that have been widely investigated as anticancer agents. In this work, three chalcone derivatives were tested regarding their inhibitory activity and selectivity towards GBM cell lines (human and mouse) and a non-cancerous mouse brain cell line. The chalcone 1 showed the most potent and selective cytotoxic effects in the GBM cell lines, being further investigated regarding its ability to reduce critical hallmark features of GBM and to induce apoptosis and cell cycle arrest. This derivative showed to successfully reduce the invasion and proliferation capacity of tumor cells, both key targets for cancer treatment. Moreover, to overcome potential systemic side effects and its poor water solubility, this compound was encapsulated into liposomes. Therapeutic concentrations were incorporated retaining the potent in vitro growth inhibitory effect of the selected compound. In conclusion, our results demonstrated that this new formulation can be a promising starting point for the discovery of new and more effective drug treatments for GBM.
Collapse
Affiliation(s)
- Daniel Mendanha
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (D.M.); (J.V.d.C.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal;
| | - Joana Vieira de Castro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (D.M.); (J.V.d.C.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal;
| | - Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.M.); (H.C.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Bruno M. Costa
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal;
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.M.); (H.C.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.M.); (H.C.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (D.M.); (J.V.d.C.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal;
- Correspondence: (H.F.); (N.M.N.)
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (D.M.); (J.V.d.C.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal;
- Correspondence: (H.F.); (N.M.N.)
| |
Collapse
|
32
|
Egbujor MC, Saha S, Buttari B, Profumo E, Saso L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: a therapeutic road map for oxidative stress. Expert Rev Clin Pharmacol 2021; 14:465-480. [PMID: 33691555 DOI: 10.1080/17512433.2021.1901578] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction:Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a key role in diverse gene expressions responsible for protection against oxidative stress and xenobiotics. Chalcones with a common chemical scaffold of 1,3-diaryl-2- propen-1-one, are abundantly present in nature with a wide variety of pharmacological properties. This review will discuss the interactions of natural and synthetic chalcones with Nrf2 signaling.Areas covered:Chalcones are reportedly found to activate Nrf2 signaling pathway, expression of Nrf2-regulated antioxidant genes, induce cytoprotective proteins and upregulate multidrug resistance-associated proteins. Chalcones being soft electrophiles are less prone to hostile off-target effects and unlikely to induce carcinogenicity and mutagenicity. Furthermore, their low toxicity, structural diversity, feasibility in structural reorganization and the presence of α,β-unsaturated carbonyl group which makes them suitable drug candidates targeting Nrf2-dependent diseases.Expert opinion:Nrf2-Keap1 signaling pathway plays a central role in redox signaling. However, available therapeutic agents for Nrf2 activation have limited practical applications due to their associated risks, relatively low efficacy and bioavailability. The designing and fabrication of new chemical entities with chalcone scaffold-based Michael acceptor mechanism should be aimed as potential therapeutic Nrf2 activators to target oxidative stress and inflammation-mediated diseases such as atherosclerosis, Parkinson's disease and many more.
Collapse
Affiliation(s)
- Melford Chuka Egbujor
- Department of Industrial Chemistry, Renaissance University, Ugbawka, Enugu State, Nigeria
| | - Sarmistha Saha
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Wang Z, Liang X, Xiong A, Ding L, Li W, Yang L, Wu X, Shi H, Zhou Y, Wang Z. Helichrysetin and TNF‑α synergistically promote apoptosis by inhibiting overactivation of the NF‑κB and EGFR signaling pathways in HeLa and T98G cells. Int J Mol Med 2021; 47:49. [PMID: 33576459 PMCID: PMC7891838 DOI: 10.3892/ijmm.2021.4882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) has different effects on apoptosis depending on activation or inactivation of the nuclear factor‑κB (NF‑κB) and epidermal growth factor receptor (EGFR) signaling pathways. Helichrysetin, a natural chalcone, inhibits NF‑κB nuclear translocation in mouse pancreatic β cells. The present study aimed to identify the effect of helichrysetin on activation of the NF‑κB and EGFR signaling pathways induced by TNF‑α, and the synergistic effect of helichrysetin and TNF‑α on apoptosis of HeLa and T98G cells. Cell proliferation was measured by Cell Counting Kit‑8 assay, while apoptosis was measured by Hoechst 33258 and Annexin V/PI staining. NF‑κB activity was detected by luciferase assay, protein expression was measured by western blotting and mRNA expression was detected by quantitative PCR assay. The results revealed that in HeLa and T98G cells helichrysetin blocked the increased phosphorylation of NF‑κB p65 induced by TNF‑α. Although helichrysetin alone decreased cell viability, helichrysetin and TNF‑α synergistically decreased cell viability. Helichrysetin, not TNF‑α, promoted apoptosis, while the combination of helichrysetin and TNF‑α synergistically increased apoptosis. In addition, helichrysetin and TNF‑α synergistically enhanced the activation of caspase‑3 and poly‑(ADP‑ribose)‑polymerase compared with helichrysetin alone. Helichrysetin inhibited the phosphorylation of transforming growth factor‑β activated kinase (TAK1), IκB kinase‑α/β (IKK‑α/β), NF‑κB p65 and EGFR induced by TNF‑α. Consistent with the inhibition of NF‑κB activation, the increased TNF‑α‑induced mRNA expression levels of TNF‑α, IL‑1β, CCL2, CCL5 and CXCL10 were significantly downregulated by helichrysetin. Therefore, helichrysetin and TNF‑α synergistically promoted apoptosis by inhibiting TAK1/IKK/NF‑κB and TAK1/EGFR signaling pathways in HeLa and T98G cells, indicating a potential therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Zhiying Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiaohui Liang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Aizhen Xiong
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lili Ding
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Wei Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Li Yang
- Institute of Interdisciplinary Integrative Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yue Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
34
|
Huang GY, Cui H, Lu XY, Zhang LD, Ding XY, Wu JJ, Duan LX, Zhang SJ, Liu Z, Zhang RR. (+/-)-Dievodialetins A-G: Seven pairs of enantiomeric coumarin dimers with anti-acetylcholinesterase activity from the roots of Evodia lepta Merr. PHYTOCHEMISTRY 2021; 182:112597. [PMID: 33341030 DOI: 10.1016/j.phytochem.2020.112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Seven pairs of undescribed enantiomeric bis-coumarins, (±)-dievodialetins A-G, were separated from the roots of Evodia lepta Merr. Two coumarin nuclei were linked via a 1,4-dimethyl4-vinylcyclohexene moiety in (±)-dievodialetins C-G. The structures of the undescribed compounds, including their absolute configurations were elucidated by spectroscopic analyses, X-ray diffraction, and computational calculations. In the biosynthetic pathways, these bis-coumarins were presumably derived from the precursors demethylsuberosin and 3-(3-methylbut-2-enyl)umbelliferone via a [4 + 2] Diels-Alder reaction. Besides, all compounds exhibited neuroprotective effects by inhibiting acetylcholinesterase (AChE) activity with IC50 values ranging from 7.3 to 12.1 nM and they also suppressed oxidative stress (MDA and SOD) and neuroinflammation (IL-1β and IL-6).
Collapse
Affiliation(s)
- Guo-Yong Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Hui Cui
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xin-Yi Lu
- Department of Neurology, Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China; Department of Neurology, Biological Resource Center, Guangdong Provincial Hospital of Chinese Medicine, 510000, People's Republic of China
| | - Lu-Di Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiao-Ying Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jin-Jun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Li-Xin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Shi-Jie Zhang
- Department of Neurology, Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China; Department of Neurology, Biological Resource Center, Guangdong Provincial Hospital of Chinese Medicine, 510000, People's Republic of China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Rong-Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
35
|
Mathew B, Parambi DGT, Sivasankarapillai VS, Uddin MS, Suresh J, Mathew GE, Joy M, Marathakam A, Gupta SV. Perspective Design of Chalcones for the Management of CNS Disorders: A Mini-Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:432-445. [PMID: 31187716 DOI: 10.2174/1871527318666190610111246] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022]
Abstract
The development of chalcone-based compounds for CNS disorders has been explored by many research groups. Chalcones are being considered as a potent organic scaffold with widespread applications in the field of drug discovery and medicinal chemistry. The planar or semi-planar geometry of chalcones with various functionalities impinged on the terminal aromatic systems renders the molecule its bio-activity including anti-cancer, anti-malarial, anti-microbial, anti-fungal, antileishmanial, anti-viral, anti-diabetic, anti-hypertensive properties, etc. Moreover, cutting-edge research has been executed in the domain of Central Nervous System (CNS) based scheme, further, their identification and classifications also remain of high interest in the field of medicinal chemistry but the specific reviews are limited. Hence, the present review highlights the significance of chalcones toward their CNS activities (up to 2019), which include anti-depressant activity, anxiolytic activity, activity with GABA receptors, acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibitions, activity as adenosine receptor antagonists anti-Alzheimer's agents, β-amyloid plaques imaging agents, monoamine oxidase inhibition. To our knowledge, this is the first review exclusively for CNS activity profile of chalcones.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India
| | | | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Jerad Suresh
- Department of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai 600004, India
| | | | - Monu Joy
- School of Pure & Applied Physics, M.G. University, Kottayam 686560, India
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut 673602, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| |
Collapse
|
36
|
Espíndola C. Some Ways for the Synthesis of Chalcones - New Ways for the Synthesis of Flavon-3-ols. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190919111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The flavonoids by their natural properties and their diverse applications are a group of
compounds whose study of origin, characteristics and applications has been dedicated to extensive
research. For the organic synthesis of chalcones, due to their interest as precursor molecules of different
compounds, several pathways have been developed and reported in numerous works. Analyses
on the effect of some of these catalysts on chalcone yield (%), with respect to time and reaction temperature
are presented here. Given the importance of flavon-3-ols, as compounds of pharmacological
interest mainly, new synthesis routes are proposed, in addition to the existing ones. This paper presents
the main pathways for the synthesis of chalcones and analyzes their production. New routes for
the synthesis of flavon-3-ols that follow the Claisen-Schmidt condensation and the interconversion of
melacacidin are proposed.
Collapse
Affiliation(s)
- Cecilia Espíndola
- Department of Organic and Inorganic Chemistry, Facultad de Ciencias, Universidad de Extremadura, E-06071 Badajoz, Spain
| |
Collapse
|
37
|
Carboxylated Chalcone and Benzaldehyde Derivatives of Triosmium Carbonyl Clusters: Synthesis, Characterization and Biological Activity Towards MCF-7 Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-019-01684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Zhang Y, Yang J, Wen Z, Chen X, Yu J, Yuan D, Xu B, Luo H, Zhu J. A novel 3',5'-diprenylated chalcone induces concurrent apoptosis and GSDME-dependent pyroptosis through activating PKCδ/JNK signal in prostate cancer. Aging (Albany NY) 2020; 12:9103-9124. [PMID: 32427575 PMCID: PMC7288973 DOI: 10.18632/aging.103178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/16/2020] [Indexed: 01/21/2023]
Abstract
Although androgen deprivation therapy may initially be effective in prostate cancer, the disease can gradually progress to castration-resistant prostate cancer, at which point chemotherapy becomes the major clinical strategy. In this study, we demonstrated the anti-cancer potential of a novel 3’,5’-diprenylated chalcone (C10), which selectively inhibited the proliferation of PC3 cells in vitro and in vivo. C10 treatment elevated the proportion of PC3 cells in sub-G1 phase and induced programmed cell death. Interestingly, C10 elicited concurrent Caspase-dependent apoptotic and gasdermin E-dependent pyroptotic events. RNA-Seq and bioinformatics analyses revealed a strong correlation between protein kinase C delta (PKCδ) and mitogen-activated protein kinase pathway activation in prostate cancer. PKCδ silencing in PC3 cells suppressed the activation of the JNK pathway and the expression of its downstream genes, including Bax, interleukin-6 and interleukin-1β, which are involved in apoptotic and pyroptotic processes. Moreover, in PC3 cell xenograft tumor tissues, C10 treatment inhibited tumor growth and upregulated PKCδ. These findings suggest that C10 treatment induces the PKCδ/JNK pathway, thereby activating Caspase-3 and inducing the cleavage of PARP and gasdermin E to execute apoptosis and cell-lytic pyroptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China.,Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, P.R. China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, P.R. China
| | - Zhonghang Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, P.R. China
| | - Xiaoyue Chen
- Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, P.R. China
| | - Dongbo Yuan
- Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, P.R. China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, P.R. China
| | - Jianguo Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China.,Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, P.R. China
| |
Collapse
|
39
|
Novel Class of Chalcone Oxime Ethers as Potent Monoamine Oxidase-B and Acetylcholinesterase Inhibitors. Molecules 2020; 25:molecules25102356. [PMID: 32443652 PMCID: PMC7288026 DOI: 10.3390/molecules25102356] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the 24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was 105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs), respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM, which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50 values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B, with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B and AChE.
Collapse
|
40
|
Ashour HF, Abou-Zeid LA, El-Sayed MAA, Selim KB. 1,2,3-Triazole-Chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226. Eur J Med Chem 2020; 189:112062. [PMID: 31986406 DOI: 10.1016/j.ejmech.2020.112062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/23/2022]
Abstract
A new series of 1,2,3-triazole-chalcone hybrids has been synthesized and screened in vitro against a panel of 60 human cancer cell lines according to NCI (USA) protocol. Compound 4d having 3, 4-dimethoxyphenyl chalcone moiety, the most potent derivative, inhibited the growth of RPMI-8226 and SR leukemia cell lines by 99.73% and 94.95% at 10 μM, respectively. Also, it inhibited the growth of M14 melanoma, K-562 leukemia, and MCF7 breast cancer cell lines by more than 80% at the same test concentration. 4d showed IC50 values less than 1 μM on six types of tumor cells and high selectivity index reached to 104 fold on MCF7. Compound 4d showed superior activity than methotrexate and gefitinib against the most sensitive leukemia cell lines in addition to higher or comparable activity against the rest sensitive cell lines. Flow cytometry analysis in RPMI-8226 cells revealed that compound 4d caused cell cycle arrest at G2/M phase and induced apoptosis in a dose dependant manner. Mechanistic evaluation referred this apoptosis induction to triggering mitochondrial apoptotic pathway through inducing ROS accumulation, increasing Bax/Bcl-2 ratio and activation of caspases 3, 7 and 9.
Collapse
Affiliation(s)
- Heba F Ashour
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Dammeitta, Egypt
| | - Laila A Abou-Zeid
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University, Gamsaa, Egypt
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Dammeitta, Egypt.
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
41
|
Alshangiti AM, Tuboly E, Hegarty SV, McCarthy CM, Sullivan AM, O'Keeffe GW. 4-Hydroxychalcone Induces Cell Death via Oxidative Stress in MYCN-Amplified Human Neuroblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1670759. [PMID: 31885773 PMCID: PMC6915131 DOI: 10.1155/2019/1670759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/21/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022]
Abstract
Neuroblastoma is an embryonal malignancy that arises from cells of sympathoadrenal lineage during the development of the nervous system. It is the most common pediatric extracranial solid tumor and is responsible for 15% of childhood deaths from cancer. Fifty percent of cases are diagnosed as high-risk metastatic disease with a low overall 5-year survival rate. More than half of patients experience disease recurrence that can be refractory to treatment. Amplification of the MYCN gene is an important prognostic indicator that is associated with rapid disease progression and a poor prognosis, highlighting the need for new therapeutic approaches. In recent years, there has been an increasing focus on identifying anticancer properties of naturally occurring chalcones, which are secondary metabolites with variable phenolic structures. Here, we report that 4-hydroxychalcone is a potent cytotoxin for MYCN-amplified IMR-32 and SK-N-BE (2) neuroblastoma cells, when compared to non-MYCN-amplified SH-SY5Y neuroblastoma cells and to the non-neuroblastoma human embryonic kidney cell line, HEK293t. Moreover, 4-hydroxychalcone treatment significantly decreased cellular levels of the antioxidant glutathione and increased cellular reactive oxygen species. In addition, 4-hydroxychalcone treatment led to impairments in mitochondrial respiratory function, compared to controls. In support of this, the cytotoxic effect of 4-hydroxychalcone was prevented by co-treatment with either the antioxidant N-acetyl-L-cysteine, a pharmacological inhibitor of oxidative stress-induced cell death (IM-54) or the mitochondrial reactive oxygen species scavenger, Mito-TEMPO. When combined with the anticancer drugs cisplatin or doxorubicin, 4-hydroxychalcone led to greater reductions in cell viability than was induced by either anti-cancer agent alone. In summary, this study identifies a cytotoxic effect of 4-hydroxychalcone in MYCN-amplified human neuroblastoma cells, which rationalizes its further study in the development of new therapies for pediatric neuroblastoma.
Collapse
Affiliation(s)
- Amnah M. Alshangiti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Shane V. Hegarty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| |
Collapse
|
42
|
Lima RS, Perez CN, da Silva CC, Santana MJ, Queiroz Júnior LH, Barreto S, de Moraes MO, Martins FT. Structure and cytotoxic activity of terpenoid-like chalcones. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
43
|
Recent advances in α,β-unsaturated carbonyl compounds as mitochondrial toxins. Eur J Med Chem 2019; 183:111687. [DOI: 10.1016/j.ejmech.2019.111687] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
|
44
|
Li J, Zheng L, Yan M, Wu J, Liu Y, Tian X, Jiang W, Zhang L, Wang R. Activity and mechanism of flavokawain A in inhibiting P-glycoprotein expression in paclitaxel resistance of lung cancer. Oncol Lett 2019; 19:379-387. [PMID: 31897150 PMCID: PMC6923923 DOI: 10.3892/ol.2019.11069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common cancers, which is the leading cause of cancer-related death among various cancers worldwide. Flavokawain A (FKA), a chalcone found in the kava plant, exerts potent anticancer activity. However, the activity and mechanisms of FKA in inhibiting the viability of paclitaxel (PTX)-resistant lung cancer A549 (A549/T) have not been investigated. In the present study, the effect of FKA on the viability of A549/T and hepatotoxicity in normal liver epithelial cells was detected by Cell Counting Kit-8 assay. Flow cytometry, western blot analysis and Annexin V-FITC/PI apoptosis detection kit were used to assess cell apoptosis. The effect of FKA on permeability-glycoprotein (P-gp) expression was measured by reverse transcription-PCR and western blot analysis. The results indicated that FKA dose-dependently inhibited cell proliferation and induced cell apoptosis in PTX-resistant A549/T cells, with an IC50 value of ~21 µM, while the IC50 value of A549/T cells to PTX was 34.64 µM. FKA had no hepatic toxicity in liver epithelial cells. P-gp, which contributes to the chemoresistant phenotype, was not expressed in A549 cells but was remarkably enhanced in A549/T cells. FKA (30 µM) decreased P-gp protein expression at 24 h by 3-fold. Furthermore, FKA downregulated P-gp expression by blocking the PI3K/Akt pathway. These findings suggest FKA as a potential candidate for the treatment of PTX-resistant lung cancer.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lei Zheng
- Department of Pharmacy, Shandong Provincial Third Hospital, Jinan, Shandong 250031, P.R. China
| | - Mi Yan
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jing Wu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaona Tian
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wen Jiang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lu Zhang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Rongmei Wang
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
45
|
Menezes JC, Diederich MF. Natural dimers of coumarin, chalcones, and resveratrol and the link between structure and pharmacology. Eur J Med Chem 2019; 182:111637. [DOI: 10.1016/j.ejmech.2019.111637] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|
46
|
Phang CW, Gandah NA, Abd Malek SN, Karsani SA. Proteomic analysis of flavokawain C-induced cell death in HCT 116 colon carcinoma cell line. Eur J Pharmacol 2019; 853:388-399. [DOI: 10.1016/j.ejphar.2019.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
|
47
|
Sangpheak K, Tabtimmai L, Seetaha S, Rungnim C, Chavasiri W, Wolschann P, Choowongkomon K, Rungrotmongkol T. Biological Evaluation and Molecular Dynamics Simulation of Chalcone Derivatives as Epidermal Growth Factor-Tyrosine Kinase Inhibitors. Molecules 2019; 24:molecules24061092. [PMID: 30897725 PMCID: PMC6471738 DOI: 10.3390/molecules24061092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/02/2022] Open
Abstract
Targeted cancer therapy has become a high potential cancer treatment. Epidermal growth factor receptor (EGFR), which plays an important role in cell signaling, enhanced cell survival and proliferation, has been suggested as molecular target for the development of novel cancer therapeutics. In this study, a series of chalcone derivatives was screened by in vitro cytotoxicity against the wild type (A431 and A549) and mutant EGFR (H1975 and H1650) cancer cell lines, and, subsequently, tested for EGFR-tyrosine kinase (TK) inhibition. From the experimental screening, all chalcones seemed to be more active against the A431 than the A549 cell line, with chalcones 1c, 2a, 3e, 4e, and 4t showing a more than 50% inhibitory activity against the EGFR-TK activity and a high cytotoxicity with IC50 values of < 10 µM against A431 cells. Moreover, these five chalcones showed more potent on H1975 (T790M/L858R mutation) than H1650 (exon 19 deletion E746-A750) cell lines. Only three chalcones (1c, 2a and 3e) had an inhibitory activity against EGFR-TK with a relative inhibition percentage that was close to the approved drug, erlotinib. Molecular dynamics studies on their complexes with EGFR-TK domain in aqueous solution affirmed that they were well-occupied within the ATP binding site and strongly interacted with seven hydrophobic residues, including the important hinge region residue M793. From the above information, as well as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, all three chalcones could serve as lead compounds for the development of EGFR-TK inhibitors.
Collapse
Affiliation(s)
- Kanyani Sangpheak
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Lueacha Tabtimmai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Chompoonut Rungnim
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Peter Wolschann
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria.
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria.
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
48
|
Kuthyala S, Nagaraja GK, Sheik S, Hanumanthappa M, Kumar S M. Synthesis of imidazo [1, 2-a]pyridine-chalcones as potent inhibitors against A549 cell line and their crystal studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
6'-Benzyloxy-4-bromo-2'-hydroxychalcone is cytotoxic against human leukaemia cells and induces caspase-8- and reactive oxygen species-dependent apoptosis. Chem Biol Interact 2019; 298:137-145. [PMID: 30576621 DOI: 10.1016/j.cbi.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/23/2018] [Accepted: 12/14/2018] [Indexed: 11/21/2022]
Abstract
In this study, we investigated the effects of synthetic 6'-benzyloxy-4-bromo-2'-hydroxychalcone on viabilities of seven human leukaemia cells. It was cytotoxic against U-937, HL-60, K-562, NALM-6, MOLT-3 cells, and also against Bcl-2-overexpressing U-937/Bcl-2 cells and P-glycoprotein-overexpressing K-562/ADR, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. This chalcone is a potent apoptotic inducer in human leukaemia U-937 cells. Cell death was (i) mediated by the activation and the cleavage of initiator and executioner caspases and poly(ADP-ribose) polymerase; (ii) prevented by the pan-caspase inhibitor z-VAD-fmk, and by the selective caspase-3/7, -6 and -8 inhibitors, and by a cathepsins B/L inhibitor; (iii) associated with the release of mitochondrial proteins, including cytochrome c and Smac/DIABLO; (iv) accompanied by dissipation of the mitochondrial membrane potential, (v) partially blocked by the inhibition of p38MAPK and (vi) mostly abrogated by catalase. In conclusion, the synthetic chalcone is cytotoxic against several types of human leukaemia cell with apoptosis being induced by activation of the extrinsic pathway and the generation of reactive oxygen species.
Collapse
|
50
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|