1
|
Naz A, Chowdhury A, Pareek S, Kumar P, Poddar NK. A critical review on the active anti-viral metabolites of bioprospecting traditionally used plant species from semi-arid regions of the subcontinent. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:412-439. [PMID: 39382949 DOI: 10.1515/jcim-2024-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Plants are crucial medicinal resources, with 80 % of people relying on them for primary healthcare. The search for natural antiviral compounds is increasing, especially in semi-arid ecosystems where abiotic stress promotes the production of beneficial secondary metabolites. This review highlights semi-arid plants with the potential as functional foods to combat viral diseases and other illnesses. Literature was searched in databases like ScienceDirect to gather information on novel compounds from stress-tolerant semi-arid plant species. These compounds have potential uses in treating viral infections and other health issues such as diabetes and high blood pressure. The review screened 61 semi-arid plants known for their antiviral metabolites. Eight plants were identified with novel antiviral compounds. Key metabolites include agathisflavone, pectic arabinogalactan, azadirachtin, aloin, aloe-emodin, aloesaponarin I, allicin, terpenoids, chlorogenic acids, curcumin, chromones, β-sitosterol, lupeol, oleuropein, carissol, β-amyrin, and ∆-9-tetrahydrocannabinol. Stress-tolerant semi-arid plants are significant sources of metabolites for treating infectious diseases and boosting immune systems. Further research on these metabolites in animal models is needed to verify their efficacy for treating human diseases during endemic and pandemic outbreaks, such as COVID-19.
Collapse
Affiliation(s)
- Aliya Naz
- Jindal School of Liberal Arts and Humanities, O.P. Jindal Global University, Sonipat, Haryana, India
| | - Abhiroop Chowdhury
- Jindal School of Environment and Sustainability, O.P. Jindal Global University, Sonipat, Haryana, India
| | - Shubhra Pareek
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Pushpendra Kumar
- Department of Physics, 385092 Manipal University Jaipur , Jaipur, Rajasthan, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, 385092 Manipal University Jaipur , Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Lima Bezerra JJ, Lucena RB. Poisonings in ruminants by Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis (Fabaceae): A mini-review of teratogenic potential and phytochemical evidence. Toxicon 2024; 246:107794. [PMID: 38851021 DOI: 10.1016/j.toxicon.2024.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Teratogenic plants can be found in pastures in different parts of the world and represent a threat to the reproduction of ruminants. In the northeast region of Brazil, several studies have indicated that Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis is one of the main poisonous plants that causes reproductive problems in sheep and goats. In this context, the present study reviewed spontaneous and experimental poisonings reports by C. pyramidale in sheep and goats, as well as analyzing the phytochemical evidence related to this species. The scientific documents were retrieved from different databases and, after applying the selection criteria, a total of 16 articles published between 2000 and 2024 were included in this review. Cenostigma pyramidale causes embryonic loss, abortion, and congenital malformations in pregnant sheep and goats in the Brazilian semi-arid region. The main malformations observed in newborn animals are arthrogryposis, scoliosis, micrognathia, multiple skull deformities, cleft palate, and brachygnathism. Many secondary metabolites have already been isolated from C. pyramidale, however, to date, no evidence has been found regarding the possible teratogenic compounds that occur in this plant. From this perspective, new phytochemical studies are necessary to help unravel the mechanisms of action of embryotoxic agents from C. pyramidale.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Av. da Engenharia, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Ricardo Barbosa Lucena
- Universidade Federal da Paraíba, Centro de Ciências Agrárias, Rodovia PB 079 - Km 12, 58397-000, Areia, PB, Brazil.
| |
Collapse
|
3
|
Owona BA, Mary A, Messi AN, Ravichandran KA, Mbing JN, Pegnyemb E, Moundipa PF, Heneka MT. Biflavonoid Methylchamaejasmin and Khaya grandifoliola Extract Inhibit NLRP3 Inflammasome in THP-1 Cell Model of Neuroinflammation. Mol Neurobiol 2024:10.1007/s12035-024-04365-4. [PMID: 39012444 DOI: 10.1007/s12035-024-04365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Neuroinflammation is a common hallmark of Alzheimer's disease (AD), with NLRP3 inflammasome proven to be activated in microglia of AD patients' brains. In this study, a newly isolated biflavonoid (7,7'-di-O-methylchamaejasmin/M8) and a crude extract of the plant Khaya grandifoliola (KG) were investigated for their inhibitory effect on inflammasome activation. In preliminary experiments, M8 and KG showed no cytotoxicity on human macrophage-like differentiated THP-1 cells and exhibited anti-inflammatory inhibition of nitric oxide produced following lipopolysaccharide stimulation. Furthermore, M8 and KG blocked IL-1β and IL-18 production by reducing NLRP3 inflammasome components including NFκB, NLRP3, Caspase-1, pro-IL-1β, and pro-IL-18 at the mRNA and protein levels. Regarding the formation of ASC (apoptosis-associated speck-like protein containing a CARD) specks during inflammasome activation, the size and fluorescent intensity of the existing specks were unchanged across all treatment conditions. However, M8 and KG treatments were shown to prevent further speck formation. In addition, experiments on amyloid β phagocytosis showed that M8 and KG pretreatments can restore the phagocytic activity of THP-1 cells, which was impaired following inflammasome activation. Altogether, our findings describe for the first time a promising role of biflavonoids and KG extract in preventing inflammasome activation and protecting against neuroinflammation, a key factor in AD development.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, AEFAS, P.O. Box 812, Yaoundé, Cameroon.
- German Center for Neurodegenerative Diseases, Venusberg, Campus 1/Gebäude 99, 53127, Bonn, Germany.
| | - Arnaud Mary
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Angelique N Messi
- Laboratory of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. BOX 812, Yaoundé, Cameroon
| | | | - Josephine Ngo Mbing
- Laboratory of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. BOX 812, Yaoundé, Cameroon
| | - Emmanuel Pegnyemb
- Laboratory of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. BOX 812, Yaoundé, Cameroon
| | - Paul F Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, AEFAS, P.O. Box 812, Yaoundé, Cameroon
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases, Venusberg, Campus 1/Gebäude 99, 53127, Bonn, Germany.
- Institute of Physiology II, University Hospital Bonn, Nußallee 11, 53115, Bonn, Germany.
- Institute of Innate Immunity, University Hospital, Venusberg, Campus 1/Gebäude 12, 53127, Bonn, Germany.
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg.
- Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, 55 Lake Avenue North Worcester, Worcester, MA, 01655, USA.
| |
Collapse
|
4
|
Ristovski JT, Matin MM, Kong R, Kusturica MP, Zhang H. In vitro testing and computational analysis of specific phytochemicals with antiviral activities considering their possible applications against COVID-19. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:248-258. [PMID: 35165493 PMCID: PMC8828436 DOI: 10.1016/j.sajb.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to investigate the reservoir of natural products against the SARS-CoV-2 virus and to identify suitable candidates in order to recommend appropriate phytotherapy. Adequately prepared 65 molecules from traditional Chinese medicine with proven antiviral properties were subjected to docking analysis using AutoDock Vina 4 software with the aim to investigate binding affinity and interactions of compounds with Mpro from the SARS-CoV-2 virus. Biflavonoids and tannins show best docking scores with -9,80 kcal/mol for biflavonoids and -9,00 kcal/mol for tannins. Biflavonoids: amentoflavone, agathistaflavone, robustaflavone, hinokiflavone and rhusflavanone were tested for their radical scavenging activity. Partition coefficients were examined by RP-HPLC. Evaluation of drug-likeness properties of investigated biflavonoids suggested rhusflavanone as a molecule with the best ADMET characteristics. Anti-inflammatory activity of rhusflavanone was investigated in LPS stimulated RAW264.7 macrophages. Tested biflavonoids exibit beneficial effects against inflammation by scavenging free radicals and by suppressing the production of proinflammatory mediators by macrophages. Both predictions of affinity spectra for substances (PASS) and in vitro testing showed promising biological activity of investigated biflavonoids. A Quantum chemical study was performed in order to calculate the thermodynamic, molecular orbital, and electrostatic potential of selected molecules and to compare their biological and chemical features. Our results highlighted antioxidant, anti-inflammatory and antiviral properties of investigated compounds, emphasizing the significance of biflavonoid moiety to selected characteristics, which encourage further investigational strategies against COVID-19.
Collapse
Affiliation(s)
| | - Mohammed Mahbubul Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Milica Paut Kusturica
- University of Novi Sad, Faculty of Medicine, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Hao Zhang
- Graduate School of Hebei, Medical University, Shijiazhuang 050017, China
| |
Collapse
|
5
|
Chaves OA, Lima CR, Fintelman-Rodrigues N, Sacramento CQ, de Freitas CS, Vazquez L, Temerozo JR, Rocha ME, Dias SS, Carels N, Bozza PT, Castro-Faria-Neto HC, Souza TML. Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases. Int J Biol Macromol 2022; 222:1015-1026. [PMID: 36183752 PMCID: PMC9525951 DOI: 10.1016/j.ijbiomac.2022.09.204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
Despite the fast development of vaccines, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still circulates through variants of concern (VoC) and escape the humoral immune response. SARS-CoV-2 has provoked over 200,000 deaths/months since its emergence and only a few antiviral drugs showed clinical benefit up to this moment. Thus, chemical structures endowed with anti-SARS-CoV-2 activity are important for continuous antiviral development and natural products represent a fruitful source of substances with biological activity. In the present study, agathisflavone (AGT), a biflavonoid from Anacardium occidentale was investigated as a candidate anti-SARS-CoV-2 compound. In silico and enzymatic analysis indicated that AGT may target mainly the viral main protease (Mpro) and not the papain-like protease (PLpro) in a non-competitive way. Cell-based assays in type II pneumocytes cell lineage (Calu-3) showed that SARS-CoV-2 is more susceptible to AGT than to apigenin (APG, monomer of AGT), in a dose-dependent manner, with an EC50 of 4.23 ± 0.21 μM and CC50 of 61.3 ± 0.1 μM and with a capacity to inhibit the level of pro-inflammatory mediator tumor necrosis factor-alpha (TNF-α). These results configure AGT as an interesting chemical scaffold for the development of novel semisynthetic antivirals against SARS-CoV-2.
Collapse
|
6
|
Cho WK, Lee MM, Ma JY. Antiviral Effect of Isoquercitrin against Influenza A Viral Infection via Modulating Hemagglutinin and Neuraminidase. Int J Mol Sci 2022; 23:13112. [PMID: 36361900 PMCID: PMC9653704 DOI: 10.3390/ijms232113112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Isoquercitrin (IQC) is a component abundantly present in many plants and is known to have an anti-viral effect against various viruses. In this study, we demonstrate that IQC exhibits strong anti-influenza A virus infection, and its effect is closely related to the suppression of hemagglutinin (HA) and neuraminidase (NA) activities. We used green fluorescent protein-tagged Influenza A/PR/8/34 (H1N1), A/PR/8/34 (H1N1), and HBPV-VR-32 (H3N2) to evaluate the anti-IAV effect of IQC. The fluorescence microscopy and fluorescence-activated cell sorting analysis showed that IQC significantly decreases the levels of GFP expressed by IAV infection, dose-dependently. Consistent with that, IQC inhibited cytopathic effects by H1N1 or H3N2 IAV infection. Immunofluorescence analysis confirmed that IQC represses the IAV protein expression. Time-of-addition assay showed that IQC inhibits viral attachment and entry and exerts a strong virucidal effect during IAV infection. Hemagglutination assay confirmed that IQC affects IAV HA. Further, IQC potently reduced the NA activities of H1N1 and H3N2 IAV. Collectively, IQC prevents IAV infection at multi-stages via virucidal effects, inhibiting attachment, entry and viral release. Our results indicate that IQC could be developed as a potent antiviral drug to protect against influenza viral infection.
Collapse
Affiliation(s)
- Won-Kyung Cho
- Correspondence: (W.-K.C.); (J.Y.M.); Tel.: +82-53-940-3870 (W.-K.C.); +82-53-940-3812 (J.Y.M.)
| | | | - Jin Yeul Ma
- Correspondence: (W.-K.C.); (J.Y.M.); Tel.: +82-53-940-3870 (W.-K.C.); +82-53-940-3812 (J.Y.M.)
| |
Collapse
|
7
|
Abdizadeh R, Hadizadeh F, Abdizadeh T. Evaluation of apigenin-based biflavonoid derivatives as potential therapeutic agents against viral protease (3CLpro) of SARS-CoV-2 via molecular docking, molecular dynamics and quantum mechanics studies. J Biomol Struct Dyn 2022:1-31. [PMID: 35848354 DOI: 10.1080/07391102.2022.2098821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic COVID-19 disease that affects human respiratory function. Despite the scientific progression made in the development of the vaccine, there is an urgent need for the discovery of antiviral drugs for better performance at different stages of SARS-CoV-2 reproduction. The main protease (Mpro or 3CLpro) plays a pivotal role in the life cycle of the virus, making it an attractive target for the development of antiviral agents effective against the new strains of coronaviruses (CoVs). In this study, a series of apigenin-based natural biflavonoid derivatives as potential inhibitors of coronaviruses 3CLpro was investigated by in silico approaches. For this purpose, the molecular docking was performed to analyze the interaction of the natural biflavonoids with SARS-Cov-2 main protease and for further investigation, docking to the 3CLpro of SARS-CoV and MERS-CoV. Based on docking scores and comparison with the reference inhibitors (ritonavir and lopinavir), more than half of the biflavonoids had strong interactions with the residues of the binding pocket of the coronaviruses 3CLpro and exhibited better binding affinities toward the main protease than ritonavir and lopinavir. The top biflavonoids were further explored through molecular dynamics simulation, binding free energy calculation and residual energy contributions estimated by the MM-PBSA. Also, drug likeness property investigation by Swiss ADME tools and density functional theory (DFT) calculations were performed. The results confirmed that the 3CLpro-amentoflavone, 3CLpro-bilobetin, 3CLpro-ginkgetin, and 3CLpro-sotetsuflavone complexes possess a large amount of dynamic properties such as high stability, significant binding energy and fewer conformation fluctuations. Also, the pharmacokinetics and drug-likeness studies and HOMO-LUMO and DFT descriptor values indicated a promising result of the selected natural biflavonoids. Overall findings indicate that the apigenin-based biflavonoids may inhibit COVID-19 by significant interactions in the binding pocket and those results can pave the way in drug discovery although the effectiveness of these bioactive compounds should be further validated by in-vitro and in-vivo investigations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Akindele AJ, Sowemimo A, Agunbiade FO, Sofidiya MO, Awodele O, Ade-Ademilua O, Orabueze I, Ishola IO, Ayolabi CI, Salu OB, Akinleye MO, Oreagba IA. Bioprospecting for Anti-COVID-19 Interventions From African Medicinal Plants: A Review. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) that emanated from Wuhan in China in 2019 has become a global concern. The current situation warrants ethnomedicinal drug discovery and development for delivery of phytomedicines with potential for the treatment of COVID-19. The aim of this review is to provide a detailed evaluation of available information on plant species used in African traditional medicines with antiviral, anti-inflammatory, immunomodulatory, and COVID-19 symptoms relieving effects. Literature from scientific databases such as Scopus, PubMed, Google scholar, African Journals OnLine (AJOL), Science Direct, and Web of Science were used for this review. A total of 35 of the 38 reviewed plants demonstrated a wide range of antiviral activities. Bryophyllum pinnatum, Aframomum melegueta, Garcinia kola, Sphenocentrum jollyanum, Adansonia digitata, Sutherlandia frutescens, Hibiscus sabdariffa, Moringa oleifera, and Nigella sativa possess a combination of antiviral, immunomodulatory, anti-inflammatory, and COVID-19 symptoms relieving activities. Nine, 13, and 10 of the plants representing 23.7%, 34.2%, and 26.3% of the plants studied had antiviral activity with 3 other activities, antiviral activity with 2 other activities, and antiviral with one pharmacological activity alone, respectively. The plants studied were reported to be relatively safe at the subchronic toxicity level, except for 2. The study provides baseline information on the pharmacological activities, toxicity, and chemical components of 9 African medicinal plants with antiviral, immunomodulatory, anti-inflammatory, and symptoms relieving activities, thereby making the plants candidates for further investigation for effectiveness against COVID-19.
Collapse
Affiliation(s)
- Abidemi J. Akindele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abimbola Sowemimo
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Foluso O. Agunbiade
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Chemistry, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Margaret O. Sofidiya
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Olufunsho Awodele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Omobolanle Ade-Ademilua
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Botany, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Ifeoma Orabueze
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ismail O. Ishola
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christianah I. Ayolabi
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Medical Microbiology & Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Moshood O. Akinleye
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ibrahim A. Oreagba
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | |
Collapse
|
9
|
Gayozo E, Rojas L. Interacción in silico de las moléculas Agathisflavona, Amentoflavona y Punicalina con la Importina α1 humana. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2022. [DOI: 10.15446/rev.colomb.biote.v23n2.94466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Varios virus con genoma de ARN en fases iniciales de la infección realizan la translocación de proteínas al interior del núcleo de la célula hospedera mediante la vía de las importinas α1. Este transporte es fundamental para el éxito de la replicación viral y se ha convertido en un blanco para la búsqueda y desarrollo de nuevos antivirales. El objetivo de este estudio fue determinar y caracterizar interacciones entre la Agatisflavona, Amentoflavona, Punicalina con el sitio mayor de unión de las Importinas α1 humanas mediante el análisis in silico del acoplamiento molecular y simulaciones de dinámica molecular. Las pruebas de acoplamiento molecular se realizaron entre estos fitoconstituyentes y la estructura de la importina α1 humana. Las afinidades de interacción fueron detectadas con la Agatisflavona, Amentoflavona y Punicalina (ΔGb = -8,8, -9,1 y -8,8 kcal.mol-1 respectivamente), con afinidades de interacción específicamente a los dominios ARM2–ARM5 (sitio mayor de unión) de las importinas α1. Las simulaciones de dinámica molecular revelaron interacciones significativamente favorables (P<0,001) con los ligandos Agatisflavona y Amentoflavona (ΔGb= -18,60±0,35 y -22,55±2,41 kcal.mol-1) mientras que la Punicalina registró mayores valores de energía de interacción (ΔGb= -5,33±1,72 kcal.mol-1). Los hallazgos obtenidos en este estudio computacional sugieren que las moléculas Agatisflavona y Amentoflavona presentan interacciones favorables con el sitio mayor de unión de las Importinas α1, en comparación a lo registrado con la Punicalina, sin embargo, se recomienda realizar ensayos in vitro a modo de confirmar estas observaciones.
Collapse
|
10
|
Abstract
Depending on the strain, influenza A virus causes animal, zoonotic, pandemic, or seasonal influenza with varying degrees of severity. Two surface glycoprotein spikes, hemagglutinin (HA) and neuraminidase (NA), are the most important influenza A virus antigens. NA plays an important role in the propagation of influenza virus by removing terminal sialic acid from sialyl decoy receptors and thereby facilitating the release of viruses from traps such as in mucus and on infected cells. Some NA inhibitors have become widely used drugs for treatment of influenza. However, attempts to develop effective and safe NA inhibitors that can be used for treatment of anti-NA drugs-resistant influenza viruses have continued. In this chapter, we describe the following updates on influenza A NA inhibitor development: (i) N-acetylneuraminic acid (Neu5Ac)-based derivatives, (ii) covalent NA inhibitors, (iii) sulfo-sialic acid analogs, (iv) N-acetyl-6-sulfo-β-D-glucosaminide-based inhibitors, (v) inhibitors targeting the 150-loop of group 1 NAs, (vi) conjugation inhibitors, (vii) acylhydrazone derivatives, (viii) monoclonal antibodies, (ix) PVP-I, and (x) natural products. Finally, we provide future perspectives on the next-generation anti-NA drugs.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
11
|
He X, Yang F, Huang X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021; 26:molecules26196088. [PMID: 34641631 PMCID: PMC8512048 DOI: 10.3390/molecules26196088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023] Open
Abstract
Biflavonoids, composed of two monoflavonoid residues, occur naturally in angiosperms, bryophytes, ferns, and gymnosperms. More than 592 biflavonoids have been structurally elucidated, and they can be classified into two groups of C-C and C-linear fragments-C, based on whether the linker between the two residues contains an atom. As the linker can be established on two arbitrary rings from different residues, the C-C type contains various subtypes, as does the C-linear fragment-C type. Biflavonoids have a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, antidiabetic, antitumor, and cytotoxic properties, and they can be applied in Alzheimer's disease and Parkinson's disease. This review mainly summarizes the distribution and chemistry of biflavonoids; additionally, their bioactivities, pharmacokinetics, and synthesis are discussed.
Collapse
Affiliation(s)
- Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Fan Yang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Xin’an Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Correspondence: ; Tel.: +86-020-36585450
| |
Collapse
|
12
|
Nallusamy S, Mannu J, Ravikumar C, Angamuthu K, Nathan B, Nachimuthu K, Ramasamy G, Muthurajan R, Subbarayalu M, Neelakandan K. Exploring Phytochemicals of Traditional Medicinal Plants Exhibiting Inhibitory Activity Against Main Protease, Spike Glycoprotein, RNA-dependent RNA Polymerase and Non-Structural Proteins of SARS-CoV-2 Through Virtual Screening. Front Pharmacol 2021; 12:667704. [PMID: 34305589 PMCID: PMC8295902 DOI: 10.3389/fphar.2021.667704] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) being a causative agent for global pandemic disease nCOVID’19, has acquired much scientific attention for the development of effective vaccines and drugs. Several attempts have been made to explore repurposing existing drugs known for their anti-viral activities, and test the traditional herbal medicines known for their health benefiting and immune-boosting activity against SARS-CoV-2. In this study, efforts were made to examine the potential of 605 phytochemicals from 37 plant species (of which 14 plants were endemic to India) and 139 antiviral molecules (Pubchem and Drug bank) in inhibiting SARS-CoV-2 multiple protein targets through a virtual screening approach. Results of our experiments revealed that SARS-CoV-2 MPro shared significant disimilarities against SARS-CoV MPro and MERS-CoV MPro indicating the need for discovering novel drugs. This study has screened the phytochemical cyanin (Zingiber officinale) which may exhibit broad-spectrum inhibitory activity against main proteases of SARS-CoV-2, SARS-CoV and MERS-CoV with binding energies of (−) 8.3 kcal/mol (−) 8.2 kcal/mol and (−) 7.7 kcal/mol respectively. Amentoflavone, agathisflavone, catechin-7-o-gallate and chlorogenin were shown to exhibit multi-target inhibitory activity. Further, Mangifera indica, Anacardium occidentale, Vitex negundo, Solanum nigrum, Pedalium murex, Terminalia chebula, Azadirachta indica, Cissus quadrangularis, Clerodendrum serratum and Ocimum basilicumaree reported as potential sources of phytochemicals for combating nCOVID’19. More interestingly, this study has highlighted the anti-viral properties of the traditional herbal formulation “Kabasura kudineer” recommended by AYUSH, a unit of Government of India. Short listed phytochemicals could be used as leads for future drug design and development. Genomic analysis of identified herbal plants will help in unraveling molecular complexity of therapeutic and anti-viral properties which proffer lot of chance in the pharmaceutical field for researchers to scout new drugs in drug discovery.
Collapse
Affiliation(s)
- Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Caroline Ravikumar
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kandavelmani Angamuthu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Bharathi Nathan
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kumaravadivel Nachimuthu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gnanam Ramasamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Mohankumar Subbarayalu
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | | |
Collapse
|
13
|
Khazeei Tabari MA, Iranpanah A, Bahramsoltani R, Rahimi R. Flavonoids as Promising Antiviral Agents against SARS-CoV-2 Infection: A Mechanistic Review. Molecules 2021; 26:3900. [PMID: 34202374 PMCID: PMC8271800 DOI: 10.3390/molecules26133900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
A newly diagnosed coronavirus in 2019 (COVID-19) has affected all human activities since its discovery. Flavonoids commonly found in the human diet have attracted a lot of attention due to their remarkable biological activities. This paper provides a comprehensive review of the benefits of flavonoids in COVID-19 disease. Previously-reported effects of flavonoids on five RNA viruses with similar clinical manifestations and/or pharmacological treatments, including influenza, human immunodeficiency virus (HIV), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Ebola, were considered. Flavonoids act via direct antiviral properties, where they inhibit different stages of the virus infective cycle and indirect effects when they modulate host responses to viral infection and subsequent complications. Flavonoids have shown antiviral activity via inhibition of viral protease, RNA polymerase, and mRNA, virus replication, and infectivity. The compounds were also effective for the regulation of interferons, pro-inflammatory cytokines, and sub-cellular inflammatory pathways such as nuclear factor-κB and Jun N-terminal kinases. Baicalin, quercetin and its derivatives, hesperidin, and catechins are the most studied flavonoids in this regard. In conclusion, dietary flavonoids are promising treatment options against COVID-19 infection; however, future investigations are recommended to assess the antiviral properties of these compounds on this disease.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran;
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Kermanshah USERN Office, Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran;
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran;
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
14
|
Artificial Intelligence Assisted Ultrasonic Extraction of Total Flavonoids from Rosa sterilis. Molecules 2021; 26:molecules26133835. [PMID: 34201870 PMCID: PMC8270336 DOI: 10.3390/molecules26133835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023] Open
Abstract
Flavonoids in Rosa sterilis were studied. The flavonoids in Rosa sterilis were extracted by ultrasonic method, and the extraction conditions were modeled and optimized by response the surface methodology and the artificial intelligence method. The results show that the ultrasonic method can effectively extract total flavonoids, and the extraction rate is close to the prediction value of ANN-GA algorithm, which proves the rationality of the model. The order of the effects of the parameters on the experiment was material liquid ratio > extraction power > extraction time > ethanol concentration. In addition, the scavenging effects of flavonoids on DPPH, O2−· and ·OH were also determined, and these indicated that flavonoids have strong antioxidant activities. The kinetics of the extraction process was studied by using the data of the extraction process, and it was found that the extraction process conformed to Fick’s first law.
Collapse
|
15
|
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microbes broadly constitute several organisms like viruses, protozoa, bacteria, and fungi present in our biosphere. Fast-paced environmental changes have influenced contact of human populations with newly identified microbes resulting in diseases that can spread quickly. These microbes can cause infections like HIV, SARS-CoV2, malaria, nosocomial Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), or Candida infection for which there are no available vaccines/drugs or are less efficient to prevent or treat these infections. In the pursuit to find potential safe agents for therapy of microbial infections, natural biflavonoids like amentoflavone, tetrahydroamentoflavone, ginkgetin, bilobetin, morelloflavone, agathisflavone, hinokiflavone, Garcinia biflavones 1 (GB1), Garcinia biflavones 2 (GB2), robustaflavone, strychnobiflavone, ochnaflavone, dulcisbiflavonoid C, tetramethoxy-6,6″-bigenkwanin and other derivatives isolated from several species of plants can provide effective starting points and become a source of future drugs. These biflavonoids show activity against influenza, severe acute respiratory syndrome (SARS), dengue, HIV-AIDS, coxsackieviral, hepatitis, HSV, Epstein-Barr virus (EBV), protozoal (Leishmaniasis, Malaria) infections, bacterial and fungal infections. Some of the biflavonoids can provide antiviral and protozoal activity by inhibition of neuraminidase, chymotrypsin-like protease, DV-NS5 RNA dependant RNA polymerase, reverse transcriptase (RT), fatty acid synthase, DNA polymerase, UL54 gene expression, Epstein-Barr virus early antigen activation, recombinant cysteine protease type 2.8 (r-CPB2.8), Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase or cause depolarization of parasitic mitochondrial membranes. They may also provide anti-inflammatory therapeutic activity against the infection-induced cytokine storm. Considering the varied bioactivity of these biflavonoids against these organisms, their structure-activity relationships are derived and wherever possible compared with monoflavones. Overall, this review aims to highlight these natural biflavonoids and briefly discuss their sources, reported mechanism of action, pharmacological uses, and comment on resistance mechanism, flavopiridol repurposing and the bioavailability aspects to provide a starting point for anti-microbial research in this area.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Vinícius R Campos
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Campus do Valonguinho, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Sargin SA. Potential anti-influenza effective plants used in Turkish folk medicine: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113319. [PMID: 32882361 PMCID: PMC7458060 DOI: 10.1016/j.jep.2020.113319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Due to the outbreaks such as SARS, bird flu and swine flu, which we frequently encounter in our century, we need fast solutions with no side effects today more than ever. Due to having vast ethnomedical experience and the richest flora (34% endemic) of Europe and the Middle East, Turkey has a high potential for research on this topic. Plants that locals have been using for centuries for the prevention and treatment of influenza can offer effective alternatives to combat this problem. In this context, 224 herbal taxa belonging to 45 families were identified among the selected 81 studies conducted in the seven regions of Turkey. However, only 35 (15.6%) of them were found to be subjected to worldwide in vitro and in vivo research conducted on anti-influenza activity. Quercetin and chlorogenic acid, the effectiveness of which has been proven many times in this context, have been recorded as the most common (7.1%) active ingredients among the other 56 active substances identified. AIM OF THE STUDY This study has been carried out to reveal the inventory of plant species that have been used in flu treatment for centuries in Turkish folk medicine, which could be used in the treatment of flu or flu-like pandemics, such as COVID 19, that humanity has been suffering with, and also compare them with experimental studies in the literature. MATERIALS AND METHODS The investigation was conducted in two stages on the subject above by using electronic databases, such as Web of Science, Scopus, ScienceDirect, ProQuest, Medline, Cochrane Library, EBSCO, HighWire Press, PubMed and Google Scholar. The results of both scans are presented in separate tables, together with their regional comparative analysis. RESULTS Data obtained on taxa are presented in a table, including anti-influenza mechanism of actions and the active substances. Rosa canina (58.7%) and Mentha x piperita (22.2%) were identified as the most common plants used in Turkey. Also, Sambucus nigra (11.6%), Olea europaea (9.3%), Eucalyptus spp., Melissa officinalis, and Origanum vulgare (7.0%) emerged as the most investigated taxa. CONCLUSION This is the first nationwide ethnomedical screening work conducted on flu treatment with plants in Turkey. Thirty-nine plants have been confirmed in the recent experimental anti-influenza research, which strongly shows that these plants are a rich pharmacological source. Also, with 189 (84.4%) taxa, detections that have not been investigated yet, they are an essential resource for both national and international pharmacological researchers in terms of new natural medicine searches. Considering that the production of antimalarial drugs and their successful use against COVID-19 has begun, this correlation was actually a positive and remarkable piece of data, since there are 15 plants, including Centaurea drabifolia subsp. Phlocosa (an endemic taxon), that were found to be used in the treatment of both flu and malaria.
Collapse
Affiliation(s)
- Seyid Ahmet Sargin
- Alanya Alaaddin Keykubat University, Faculty of Education, 07400, Alanya, Antalya, Turkey.
| |
Collapse
|
17
|
de Carvalho da Silva F, Ferreira VF, da Silva Magalhães Forezi L. New Developments in the Medicinal Chemistry Targeting Drug-Resistant Infection – Part-I. Curr Top Med Chem 2020; 20:87-88. [DOI: 10.2174/156802662002200219090340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Vitor Francisco Ferreira
- Universidade Federal Fluminense Departamento de Tecnologia Farmaceutica Faculdade de Farmacia Niteroi, RJ, 24241-002, Brazil
| | | |
Collapse
|