1
|
Gao Y, Cui J, Cao S, Guo J, Liu Z, Long S. Recent advances in peptoids as promising antimicrobial agents to target diverse microbial species. Eur J Med Chem 2024; 280:116982. [PMID: 39461038 DOI: 10.1016/j.ejmech.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
The emergence of multidrug-resistant microbial species has become a global health concern, calling for novel antimicrobial agents. Peptoids, a class of synthetic peptidomimetics with unique structural properties, exhibit antimicrobial activity against a broad-spectrum of microbes, in addition to their stability to enzymatic degradation, selectivity, and relative ease of synthesis. Thus, peptoids have great potential in combating various drug-resistant pathogenic microbes. This review provides a comprehensive analysis of the recent advances in utilizing peptoids as effective antimicrobial agents against a wide range of bacteria, fungi, viruses, and parasites. In addition, some of the synthetic strategies and antimicrobial mechanisms are discussed. The imperfections of antimicrobial peptoids and the defects in current antimicrobial peptoids research are pointed out and promising directions for future development in peptoids are highlighted, to pave the way for innovating better antimicrobial peptoids to address the challenges posed by multidrug-resistant microbial species.
Collapse
Affiliation(s)
- Yi Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Jingliang Cui
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
2
|
Chen G, He H, Lv Q, Zhao L, Chen CYC. MMFA-DTA: Multimodal Feature Attention Fusion Network for Drug-Target Affinity Prediction for Drug Repurposing Against SARS-CoV-2. J Chem Theory Comput 2024. [PMID: 39269697 DOI: 10.1021/acs.jctc.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The continuous emergence of novel infectious diseases poses a significant threat to global public health security, necessitating the development of small-molecule inhibitors that directly target pathogens. The RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) of SARS-CoV-2 have been validated as potential key antiviral drug targets for the treatment of COVID-19. However, the conventional new drug R&D cycle takes 10-15 years, failing to meet the urgent needs during epidemics. Here, we propose a general multimodal deep learning framework for drug repurposing, MMFA-DTA, to enable rapid virtual screening of known drugs and significantly improve discovery efficiency. By extracting graph topological and sequence features from both small molecules and proteins, we design attention mechanisms to achieve dynamic fusion across modalities. Results demonstrate the superior performance of MMFA-DTA in drug-target affinity prediction over several state-of-the-art baseline methods on Davis and KIBA data sets, validating the benefits of heterogeneous information integration for representation learning and interaction modeling. Further fine-tuning on COVID-19-relevant bioactivity data enhances model predictions for critical SARS-CoV-2 enzymes. Case studies screening the FDA-approved drug library successfully identify etacrynic acid as the potential lead compound against both RdRp and Mpro. Molecular dynamics simulations further confirm the stability and binding affinity of etacrynic acid to these targets. This study proves the great potential and advantages of deep learning and drug repurposing strategies in supporting antiviral drug discovery. The proposed general and rapid response computational framework holds significance for preparedness against future public health events.
Collapse
Affiliation(s)
- Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Haohuai He
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiujie Lv
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lu Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Guangdong L-Med Biotechnology Co., Ltd, Meizhou, Guangdong 514699, China
| |
Collapse
|
3
|
Que H, Hong W, Lan T, Zeng H, Chen L, Wan D, Bi Z, Ren W, Luo M, Yang J, He C, Zhong A, Wei X. Tripterin liposome relieves severe acute respiratory syndrome as a potent COVID-19 treatment. Signal Transduct Target Ther 2022; 7:399. [PMID: 36566328 PMCID: PMC9789731 DOI: 10.1038/s41392-022-01283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/25/2022] Open
Abstract
For coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 15-30% of patients are likely to develop COVID-19-related acute respiratory distress syndrome (ARDS). There are still few effective and well-understood therapies available. Novel variants and short-lasting immunity are posing challenges to vaccine efficacy, so finding antiviral and antiinflammatory treatments remains crucial. Here, tripterin (TP), a traditional Chinese medicine, was encapsulated into liposome (TP lipo) to investigate its antiviral and antiinflammatory effects in severe COVID-19. By using two severe COVID-19 models in human ACE2-transgenic (hACE2) mice, an analysis of TP lipo's effects on pulmonary immune responses was conducted. Pulmonary pathological alterations and viral burden were reduced by TP lipo treatment. TP lipo inhibits SARS-CoV-2 replication and hyperinflammation in infected cells and mice, two crucial events in severe COVID-19 pathophysiology, it is a promising drug candidate to treat SARS-CoV-2-induced ARDS.
Collapse
Affiliation(s)
- Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hao Zeng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ailing Zhong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Sen S, Singh B, Biswas G. Corticosteroids: A boon or bane for COVID-19 patients? Steroids 2022; 188:109102. [PMID: 36029810 PMCID: PMC9400384 DOI: 10.1016/j.steroids.2022.109102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Abstract
Several drugs and antibodies have been repurposed to treat COVID-19. Since the outcome of the drugs and antibodies clinical studies have been mostly inconclusive or with lesser effects, therefore the need for alternative treatments has become unavoidable. However, corticosteroids, which have a history of therapeutic efficacy against coronaviruses (SARS and MERS), might emerge into one of the pandemic's heroic characters. Corticosteroids serve an immunomodulatory function in the post-viral hyper-inflammatory condition (the cytokine storm, or release syndrome), suppressing the excessive immunological response and preventing multi-organ failure and death. Therefore, corticosteroids have been used to treat COVID-19 patients for more than last two years. According to recent clinical trials and the results of observational studies, corticosteroids can be administered to patients with severe and critical COVID-19 symptoms with a favorable risk-benefit ratio. Corticosteroids like Hydrocortisone, dexamethasone, Prednisolone and Methylprednisolone has been reported to be effective against SARS-CoV-2 virus in comparison to that of non-steroid drugs, by using non-genomic and genomic effects to prevent and reduce inflammation in tissues and the circulation. Clinical trials also show that inhaled budesonide (a synthetic corticosteroid) increases time to recovery and has the potential to reduce hospitalizations or fatalities in persons with COVID-19. There is also a brief overview of the industrial preparation of common glucocorticoids.
Collapse
Affiliation(s)
- Subhadeep Sen
- Department of Chemistry, Cooch Behar Panchanan Barma University, Panchanan Nagar, Cooch Behar 736101, West Bengal, India
| | - Bhagat Singh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Panchanan Nagar, Cooch Behar 736101, West Bengal, India.
| |
Collapse
|
5
|
Jansen-van Vuuren RD, Jedlovčnik L, Košmrlj J, Massey TE, Derdau V. Deuterated Drugs and Biomarkers in the COVID-19 Pandemic. ACS OMEGA 2022; 7:41840-41858. [PMID: 36440130 PMCID: PMC9685803 DOI: 10.1021/acsomega.2c04160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/18/2022] [Indexed: 06/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initially identified in Wuhan (China) in December 2019, COVID-19 rapidly spread globally, resulting in the COVID-19 pandemic. Carriers of the SARS-CoV-2 can experience symptoms ranging from mild to severe (or no symptoms whatsoever). Although vaccination provides extra immunity toward SARS-CoV-2, there has been an urgent need to develop treatments for COVID-19 to alleviate symptoms for carriers of the disease. In seeking a potential treatment, deuterated compounds have played a critical role either as therapeutic agents or as internal MS standards for studying the pharmacological properties of new drugs by quantifying the parent compounds and metabolites. We have identified >70 examples of deuterium-labeled compounds associated with treatment of COVID-19. Of these, we found 9 repurposed drugs and >20 novel drugs studied for potential therapeutic roles along with a total of 38 compounds (drugs, biomarkers, and lipids) explored as internal mass spectrometry standards. This review details the synthetic pathways and modes of action of these compounds (if known), and a brief analysis of each study.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Luka Jedlovčnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thomas E. Massey
- Department
of Biomedical and Molecular Sciences, School of Medicine, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Volker Derdau
- Research
& Development, Integrated Drug Discovery, Isotope Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst G876, Frankfurt/Main 65926, Germany
| |
Collapse
|
6
|
Kim J, Hwang SY, Kim D, Kim M, Baek K, Kang M, An S, Gong J, Park S, Kandeel M, Lee Y, Noh M, Kwon HJ. Abiraterone Acetate Attenuates SARS-CoV-2 Replication by Interfering with the Structural Nucleocapsid Protein. Biomol Ther (Seoul) 2022; 30:427-434. [PMID: 35548881 PMCID: PMC9424333 DOI: 10.4062/biomolther.2022.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
The drug repurposing strategy has been applied to the development of emergency COVID-19 therapeutic medicines. Current drug repurposing approaches have been directed against RNA polymerases and viral proteases. Recently, we found that the inhibition of the interaction between the SARS-CoV-2 structural nucleocapsid (N) and spike (S) proteins decreased viral replication. In this study, drug repurposing candidates were screened by in silico molecular docking simulation with the SARS-CoV-2 structural N protein. In the ChEMBL database, 1994 FDA-approved drugs were selected for the in silico virtual screening against the N terminal domain (NTD) of the SARS-CoV-2 N protein. The tyrosine 109 residue in the NTD of the N protein was used as the center of the ligand binding grid for the docking simulation. In plaque forming assays performed with SARS-CoV-2 infected Vero E6 cells, atovaquone, abiraterone acetate, and digoxin exhibited a tendency to reduce the size of the viral plagues without affecting the plaque numbers. Abiraterone acetate significantly decreased the accumulation of viral particles in the cell culture supernatants in a concentration-dependent manner. In addition, abiraterone acetate significantly decreased the production of N protein and S protein in the SARS-CoV-2-infected Vero E6 cells. In conclusion, abiraterone acetate has therapeutic potential to inhibit the viral replication of SARS-CoV-2.
Collapse
Affiliation(s)
- Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seok Young Hwang
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Mijeong Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-hofuf 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
7
|
Fan C, Wu Y, Rui X, Yang Y, Ling C, Liu S, Liu S, Wang Y. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduct Target Ther 2022; 7:220. [PMID: 35798699 PMCID: PMC9261903 DOI: 10.1038/s41392-022-01087-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is the most consequential pandemic of this century. Since the outbreak in late 2019, animal models have been playing crucial roles in aiding the rapid development of vaccines/drugs for prevention and therapy, as well as understanding the pathogenesis of SARS-CoV-2 infection and immune responses of hosts. However, the current animal models have some deficits and there is an urgent need for novel models to evaluate the virulence of variants of concerns (VOC), antibody-dependent enhancement (ADE), and various comorbidities of COVID-19. This review summarizes the clinical features of COVID-19 in different populations, and the characteristics of the major animal models of SARS-CoV-2, including those naturally susceptible animals, such as non-human primates, Syrian hamster, ferret, minks, poultry, livestock, and mouse models sensitized by genetically modified, AAV/adenoviral transduced, mouse-adapted strain of SARS-CoV-2, and by engraftment of human tissues or cells. Since understanding the host receptors and proteases is essential for designing advanced genetically modified animal models, successful studies on receptors and proteases are also reviewed. Several improved alternatives for future mouse models are proposed, including the reselection of alternative receptor genes or multiple gene combinations, the use of transgenic or knock-in method, and different strains for establishing the next generation of genetically modified mice.
Collapse
Affiliation(s)
- Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Xiong Rui
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yuansong Yang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Chen Ling
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- College of Life Sciences, Northwest University; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Shunan Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| |
Collapse
|
8
|
Asif M, Amir M, Hussain A, Achakzai NM, Natesan Pushparaj P, Rasool M. Role of tyrosine kinase inhibitor in chronic myeloid leukemia patients with SARS-CoV-2 infection: A narrative Review. Medicine (Baltimore) 2022; 101:e29660. [PMID: 35777011 PMCID: PMC9239670 DOI: 10.1097/md.0000000000029660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) caused by a novel coronavirus-2 (CoV-2), also known as COVID-19, has spread rapidly worldwide since it is recognized as a public health emergency and has now been declared a pandemic on March 11, 2020, by the World Health Organization. The genome of SARS-CoV-2 comprises a single-stranded positive-sense RNA approximately 27 to 30 kb in size. The virus is transmitted through droplets from humans to humans. Infection with the SARS virus varies from asymptomatic to lethal, such as fever, cough, sore throat, and headache, but in severe cases, pneumonia and acute respiratory distress syndrome. Recently, no specific and effective treatment has been recommended for patients infected with the SARS virus. However, several options can be investigated to control SARS-CoV-2 infection, including monoclonal antibodies, interferons, therapeutic vaccines, and molecular-based targeted drugs. In the current review, we focus on tyrosine kinase inhibitor management and their protective role in SARS-CoV-2 patients with chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
- Office of Research Innovation and Commercialization, BUITEMS, Quetta, Pakistan
| | - Muhammad Amir
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Abrar Hussain
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Niaz M. Achakzai
- Department of Molecular Biology, City Medical Complex, Kabul, Afghanistan
- Department of Molecular Biology, DNA section, Legal Medicine Directorate, Ministry of Public Health, Kabul, Afghanistan
- *Correspondence: Niaz M. Achakzai, Senior forensic DNA specialist, Department of Molecular Biology, DNA section, Legal Medicine Directorate, Ministry of Public Health, Kabul, Afghanistan (e-mail: ),
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Parihar A, Sonia ZF, Akter F, Ali MA, Hakim FT, Hossain MS. Phytochemicals-based targeting RdRp and main protease of SARS-CoV-2 using docking and steered molecular dynamic simulation: A promising therapeutic approach for Tackling COVID-19. Comput Biol Med 2022; 145:105468. [PMID: 35390745 PMCID: PMC8964014 DOI: 10.1016/j.compbiomed.2022.105468] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/05/2023]
Abstract
The ongoing COVID-19 pandemic has affected millions of people worldwide and caused substantial socio-economic losses. Few successful vaccine candidates have been approved against SARS-CoV-2; however, their therapeutic efficacy against the mutated strains of the virus remains questionable. Furthermore, the limited supply of vaccines and promising antiviral drugs have created havoc in the present scenario. Plant-based phytochemicals (bioactive molecules) are promising because of their low side effects and high therapeutic value. In this study, we aimed to screen for suitable phytochemicals with higher therapeutic value using the two most crucial proteins of SARS-CoV-2, the RNA-dependent RNA polymerase (RdRp) and main protease (Mpro). We used computational tools such as molecular docking and steered molecular dynamics simulations to gain insights into the different types of interactions and estimated the relative binding forces between the phytochemicals and their respective targets. To the best of our knowledge, this is the first report that not only involves a search for a therapeutic bioactive molecule but also sheds light on the mechanisms underlying target inhibition in terms of calculations of force and work needed to extractthe ligand from the pocket of its target. The complexes showing higher binding forces were subjected to 200 ns molecular dynamic simulations to check the stability of the ligand inside the binding pocket. Our results suggested that isoskimmiwallin and terflavin A are potential inhibitors of RdRp, whereas isoquercitrin and isoorientin are the lead molecules against Mpro. Collectively, our findings could potentially aid in the development of novel therapeutics against COVID-19.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India,Corresponding author
| | - Zannatul Ferdous Sonia
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Farjana Akter
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Md Ackas Ali
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Fuad Taufiqul Hakim
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Md Shahadat Hossain
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| |
Collapse
|
10
|
Panahi Y, Dadkhah M, Talei S, Gharari Z, Asghariazar V, Abdolmaleki A, Matin S, Molaei S. Can anti-parasitic drugs help control COVID-19? Future Virol 2022. [PMID: 35359702 PMCID: PMC8940209 DOI: 10.2217/fvl-2021-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Novel COVID-19 is a public health emergency that poses a serious threat to people worldwide. Given the virus spreading so quickly, novel antiviral medications are desperately needed. Repurposing existing drugs is the first strategy. Anti-parasitic drugs were among the first to be considered as a potential treatment option for this disease. Even though many papers have discussed the efficacy of various anti-parasitic drugs in treating COVID-19 separately, so far, no single study comprehensively discussed these drugs. This study reviews some anti-parasitic recommended drugs to treat COVID-19, in terms of function and in vitro as well as clinical results. Finally, we briefly review the advanced techniques, such as artificial intelligence, that have been used to find effective drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gharari
- Department of Biotechnology, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.,Bio Science & Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Somayeh Matin
- Department of Internal Medicine, Imam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
11
|
Li PY, Li SQ, Gao SG, Dong DY. A one-step platform for screening high-efficient and minimal off-target CRISPR/Cas13 crRNAs to eradicate SARS-CoV-2 virus for treatment of COVID-19 patients. Med Hypotheses 2022; 159:110754. [PMID: 35002020 PMCID: PMC8723761 DOI: 10.1016/j.mehy.2021.110754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and now spreads globally. Currently, therapeutics and effective treatment options remain scarce and there is no proven drug to treat COVID-19. Targeting the positive-sense RNA genome and viral mRNAs of SARS-CoV-2 to simultaneously degrade viral genome templates for replication and viral mRNAs for essential gene expression would be a strategy to completely realize virus elimination. Type VI CRISPR enzymes Cas13 have recently been identified as programmable RNA-guided, RNA-targeting Cas proteins with nuclease activity that allows for RNA cleavage and degradation. The precise viral RNA detection and antiviral application of the CRISPR/Cas13 system depend on high-efficient and minimal off-target crRNAs. Although a computer-based algorithm has been applied for the design of crRNAs targeting SRAS-CoV-2, the experimental screening system to identify optimal crRNA is not available. We develop a one-step experimental screening system to identify high-efficient crRNAs with minimal off-target effects for CRISPR/Cas13-based SARS-CoV-2 elimination. This platform provides the foundation for CRISPR/Cas13-based diagnostics and therapeutics for COVID-19. This platform is versatile and could also be applied for crRNAs screening for other RNA viruses.
Collapse
Affiliation(s)
- Pu-Yu Li
- Department of General Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, China
| | - San-Qiang Li
- Henan Centre for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, College of Basic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - She-Gan Gao
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, China
| | - Dao-Yin Dong
- Department of Public Health, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
12
|
Gwenzi W, Selvasembian R, Offiong NAO, Mahmoud AED, Sanganyado E, Mal J. COVID-19 drugs in aquatic systems: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1275-1294. [PMID: 35069060 PMCID: PMC8760103 DOI: 10.1007/s10311-021-01356-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
The outbreak of the human coronavirus disease 2019 (COVID-19) has induced an unprecedented increase in the use of several old and repurposed therapeutic drugs such as veterinary medicines, e.g. ivermectin, nonsteroidal anti-inflammatory drugs, protein and peptide therapeutics, disease-modifying anti-rheumatic drugs and antimalarial drugs, antiretrovirals, analgesics, and supporting agents, e.g. azithromycin and corticosteroids. Excretion of drugs and their metabolites in stools and urine release these drugs into wastewater, and ultimately into surface waters and groundwater systems. Here, we review the sources, behaviour, environmental fate, risks, and remediation of those drugs. We discuss drug transformation in aquatic environments and in wastewater treatment systems. Degradation mechanisms and metabolite toxicity are poorly known. Potential risks include endocrine disruption, acute and chronic toxicity, disruption of ecosystem functions and trophic interactions in aquatic organisms, and the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401 India
| | - Nnanake-Abasi O. Offiong
- International Centre for Energy and Environmental Sustainability Research (ICEESR), University of Uyo, Uyo, Nigeria
- Department of Chemical Sciences, Faculty of Computing and Applied Sciences, Topfaith University, Mkpatak, Nigeria
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, 515063 China
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh India
| |
Collapse
|
13
|
Identification of a dual acting SARS-CoV-2 proteases inhibitor through in silico design and step-by-step biological characterization. Eur J Med Chem 2021; 226:113863. [PMID: 34571172 PMCID: PMC8457654 DOI: 10.1016/j.ejmech.2021.113863] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
COVID-19 pandemic, starting from the latest 2019, and caused by SARS-CoV-2 pathogen, led to the hardest health-socio-economic disaster in the last century. Despite the tremendous scientific efforts, mainly focused on the development of vaccines, identification of potent and efficient anti-SARS-CoV-2 therapeutics still represents an unmet need. Remdesivir, an anti-Ebola drug selected from a repurposing campaign, is the only drug approved, so far, for the treatment of the infection. Nevertheless, WHO in later 2020 has recommended against its use in COVID-19. In the present paper, we describe a step-by-step in silico design of a small library of compounds as main protease (Mpro) inhibitors. All the molecules were screened by an enzymatic assay on Mpro and, then, cellular activity was evaluated using Vero cells viral infection model. The cellular screening disclosed compounds 29 and 34 as in-vitro SARS-CoV-2 replication inhibitors at non-toxic concentrations (0.32 < EC50 < 5.98 μM). To rationalize these results, additional in-vitro assays were performed, focusing on papain like protease (PLpro) and spike protein (SP) as potential targets for the synthesized molecules. This pharmacological workflow allowed the identification of compound 29, as a dual acting SARS-CoV-2 proteases inhibitor featuring micromolar inhibitory potency versus Mpro (IC50 = 1.72 μM) and submicromolar potency versus PLpro (IC50 = 0.67 μM), and of compound 34 as a selective SP inhibitor (IC50 = 3.26 μM).
Collapse
|
14
|
Fallah A, Razavi Nikoo H, Abbasi H, Mohammad-Hasani A, Hosseinzadeh Colagar A, Khosravi A. Features of Pathobiology and Clinical Translation of Approved Treatments for Coronavirus Disease 2019. Intervirology 2021; 65:119-133. [PMID: 34666335 PMCID: PMC8805078 DOI: 10.1159/000520234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is currently the most important etiological agent of acute respiratory distress syndrome (ARDS) with millions of infections and deaths in the last 2 years worldwide. Several reasons and parameters are responsible for the difficult management of coronavirus disease-2019 (COVID-19) patients; the first is virus behavioral factors such as high transmission rate, and the different molecular and cellular mechanisms of pathogenesis remain a matter of controversy, which is another factor. SUMMARY In the present review, we attempted to explain about features of SARS-COV-2, particularly focusing on the various aspects of pathogenesis and treatment strategies. KEY MESSAGES We note evidence for the understanding of the precise molecular and cellular mechanisms of SARS-CoV-2 pathogenesis, which can help design the appropriate drug or vaccine. Additionally, and importantly, we reported the updated issues associated with the history and development of treatment strategies such as, drugs, vaccines, and other medications that have been approved or under consideration in clinics and markets worldwide.
Collapse
Affiliation(s)
- Ali Fallah
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamidreza Abbasi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Mohammad-Hasani
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ayyoob Khosravi
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
15
|
Mousavizadeh L, Soltani R, Abedini K, Ghasemi S. The Relation of the Viral Structure of SARS-CoV2, High-Risk Condition, and Plasma Levels of IL-4, IL-10, and IL-15 in COVID-19 Patients compared to SARS and MERS Infections. Curr Mol Med 2021; 22:584-593. [PMID: 34607539 DOI: 10.2174/1566524021666211004110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has high mortality due to the widespread infection and the strong immune system reaction. Interleukins (ILs) are among the main immune factors contributing to the deterioration of the immune response and the formation of cytokine storms in coronavirus disease 2019 (COVID-19) infections. INTRODUCTION This review article investigated the relationship between virus structure, risk factors, and patient plasma interleukin levels in infections caused by the coronavirus family. METHOD The keywords "interleukin," "coronavirus structure," "plasma," and "risk factors" were the main words searched to find a relationship among different interleukins, coronavirus structures, and risk factors in ISI, PUBMED, SCOPUS, and Google Scholar databases. RESULT Patients with high-risk conditions with independent panels of immune system markers are more susceptible to death caused by SARS-CoV2. IL-4, IL-10, and IL-15 are probably secreted at different levels in patients with coronavirus infections despite the similarity of inflammatory markers during coronavirus infections. SARS-CoV2 and SARS-CoV increase the secretion of IL-4 in the Middle East respiratory syndrome coronavirus (MERS-CoV) infection, while it remains unchanged in MERS-CoV infection. MERS-CoV infection demonstrates increased IL-10 levels. However, IL-10 levels increase during SARS-CoV infection, and different levels are recorded in SARS-CoV2. MERS-CoV increases IL-15 secretion while its levels remain unchanged in SARS-CoV2. CONCLUSION In conclusion, the different structures of SARS-CoV2, such as length of spike or nonstructural proteins (NSPs), and susceptibility of patients based on their risk factors may lead to differences in immune marker secretion and pathogenicity. Therefore, identifying and controlling interleukin levels can play a significant role in controlling the symptoms and the development of individual-specific treatments.
Collapse
Affiliation(s)
- Leila Mousavizadeh
- Department of Virus-Host Interaction, Heinrich-Pette-Institut (HPI), Martinistrasse 52, 20251 Hamburg. Germany
| | - Ramin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Kosar Abedini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran. Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| |
Collapse
|
16
|
Mir JM, Khan MW, Shalla AH, Maurya RC. A Nonclinical Spectroscopic Approach for Diagnosing Covid-19: A Concise Perspective. JOURNAL OF APPLIED SPECTROSCOPY 2021; 88:765-771. [PMID: 34538886 PMCID: PMC8435118 DOI: 10.1007/s10812-021-01238-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 05/08/2023]
Abstract
With the COVID-19 outbreak, many challenges are posed before the scientific world to curb this pandemic. The diagnostic testing, treatment, and vaccine development for this infection caught the scientific community's immediate attention. Currently, despite the global proliferation of COVID-19 vaccination, the specific treatment for this disease is yet unknown. Meanwhile, COVID-19 detection or diagnosis using polymerase chain reaction (PCR)-based me hods is expensive and less reliable. Moreover, this technique needs much time to furnish the results. Thus, the elaboration of a highly sensitive and fast method of COVID-19 diagnostics is of great importance. The spectroscopic approach is herein suggested as an efficient detection methodology for COVID-19 diagnosis, particularly Raman spectroscopy, infrared spectroscopy, and mass spectrometry.
Collapse
Affiliation(s)
- J. M. Mir
- Department of Chemistry, Islamic University of Science and Technology-Awantipora, J&K, Awantipora, 192122 India
- Coordination, Metallopharmaceutical and Computational Chemistry Laboratory, Department of PG Studies and Research in Chemistry and Pharmacy, RD University, Jabalpur, MP India
| | - M. W. Khan
- Coordination, Metallopharmaceutical and Computational Chemistry Laboratory, Department of PG Studies and Research in Chemistry and Pharmacy, RD University, Jabalpur, MP India
| | - A. H. Shalla
- Department of Chemistry, Islamic University of Science and Technology-Awantipora, J&K, Awantipora, 192122 India
| | - R. C. Maurya
- Coordination, Metallopharmaceutical and Computational Chemistry Laboratory, Department of PG Studies and Research in Chemistry and Pharmacy, RD University, Jabalpur, MP India
| |
Collapse
|
17
|
Lozada C, Barlow TMA, Gonzalez S, Lubin-Germain N, Ballet S. Identification and Characteristics of Fusion Peptides Derived From Enveloped Viruses. Front Chem 2021; 9:689006. [PMID: 34497798 PMCID: PMC8419435 DOI: 10.3389/fchem.2021.689006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Membrane fusion events allow enveloped viruses to enter and infect cells. The study of these processes has led to the identification of a number of proteins that mediate this process. These proteins are classified according to their structure, which vary according to the viral genealogy. To date, three classes of fusion proteins have been defined, but current evidence points to the existence of additional classes. Despite their structural differences, viral fusion processes follow a common mechanism through which they exert their actions. Additional studies of the viral fusion proteins have demonstrated the key role of specific proteinogenic subsequences within these proteins, termed fusion peptides. Such peptides are able to interact and insert into membranes for which they hold interest from a pharmacological or therapeutic viewpoint. Here, the different characteristics of fusion peptides derived from viral fusion proteins are described. These criteria are useful to identify new fusion peptides. Moreover, this review describes the requirements of synthetic fusion peptides derived from fusion proteins to induce fusion by themselves. Several sequences of the viral glycoproteins E1 and E2 of HCV were, for example, identified to be able to induce fusion, which are reviewed here.
Collapse
Affiliation(s)
- Camille Lozada
- BioCIS, CNRS, CY Cergy-Paris Université, Cergy-Pontoise, France
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas M. A. Barlow
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Simon Gonzalez
- BioCIS, CNRS, CY Cergy-Paris Université, Cergy-Pontoise, France
| | | | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Adhikari N, Banerjee S, Baidya SK, Ghosh B, Jha T. Robust classification-based molecular modelling of diverse chemical entities as potential SARS-CoV-2 3CL pro inhibitors: theoretical justification in light of experimental evidences. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:473-493. [PMID: 34011224 DOI: 10.1080/1062936x.2021.1914721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
COVID-19 is the most unanticipated incidence of 2020 affecting the human population worldwide. Currently, it is utmost important to produce novel small molecule anti-SARS-CoV-2 drugs urgently that can save human lives globally. Based on the earlier SARS-CoV and MERS-CoV infection along with the general characters of coronaviral replication, a number of drug molecules have been proposed. However, one of the major limitations is the lack of experimental observations with different drug molecules. In this article, 70 diverse chemicals having experimental SARS-CoV-2 3CLproinhibitory activity were accounted for robust classification-based QSAR analysis statistically validated with 4 different methodologies to recognize the crucial structural features responsible for imparting the activity. Results obtained from all these methodologies supported and validated each other. Important observations obtained from these analyses were also justified with the ligand-bound crystal structure of SARS-CoV-2 3CLpro enzyme. Our results suggest that molecules should contain a 2-oxopyrrolidine scaffold as well as a methylene (hydroxy) sulphonic acid warhead in proper orientation to achieve higher inhibitory potency against SARS-CoV-2 3CLpro. Outcomes of our study may be able to design and discover highly effective SARS-CoV-2 3CLpro inhibitors as potential anticoronaviral therapy to crusade against COVID-19.
Collapse
Affiliation(s)
- N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - B Ghosh
- Department of Pharmacy, BITS-Pilani, Hyderabad, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
19
|
Dessie G, Malik T. Role of Serine Proteases and Host Cell Receptors Involved in Proteolytic Activation, Entry of SARS-CoV-2 and Its Current Therapeutic Options. Infect Drug Resist 2021; 14:1883-1892. [PMID: 34079299 PMCID: PMC8163626 DOI: 10.2147/idr.s308176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The current global pandemic of a novel severe acute respiratory syndrome coronavirus-2 continues with its public health disaster beginning from late December 2019 in Wuhan, Hubei province, China. The scientific community has tried to fight against this novel coronavirus through vaccine development and designing different candidate drugs. However, there is no well-defined therapy to prevent 2019-nCov infection, thus complete prevention of the virus remains difficult. Therefore, it is a critical factor for death of millions worldwide. Many clinical trials and insights are ongoing in the struggle with this pandemic of SARS-CoV-2. SARS-CoV-2 entry into the host cell requires host cell angiotensin-converting enzyme-2 (ACE2) and glucose regulated protein 78 (GRP78). On the other hand, proteolytic activation of the viral spike protein (S protein) needs the host cell serine proteases, including transmembrane serine protease 2 (TMPRSS2), cathepsins, trypsin and furin. This review focuses on the protein involved in the mechanism of entry, and proteolytic activation. In addition, it looks at current therapeutic options for SARS-CoV-2.
Collapse
Affiliation(s)
- Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tabarak Malik
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
20
|
Diamond G, Molchanova N, Herlan C, Fortkort JA, Lin JS, Figgins E, Bopp N, Ryan LK, Chung D, Adcock RS, Sherman M, Barron AE. Potent Antiviral Activity against HSV-1 and SARS-CoV-2 by Antimicrobial Peptoids. Pharmaceuticals (Basel) 2021; 14:ph14040304. [PMID: 33807248 PMCID: PMC8066833 DOI: 10.3390/ph14040304] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections, such as those caused by Herpes Simplex Virus-1 (HSV-1) and SARS-CoV-2, affect millions of people each year. However, there are few antiviral drugs that can effectively treat these infections. The standard approach in the development of antiviral drugs involves the identification of a unique viral target, followed by the design of an agent that addresses that target. Antimicrobial peptides (AMPs) represent a novel source of potential antiviral drugs. AMPs have been shown to inactivate numerous different enveloped viruses through the disruption of their viral envelopes. However, the clinical development of AMPs as antimicrobial therapeutics has been hampered by a number of factors, especially their enzymatically labile structure as peptides. We have examined the antiviral potential of peptoid mimics of AMPs (sequence-specific N-substituted glycine oligomers). These peptoids have the distinct advantage of being insensitive to proteases, and also exhibit increased bioavailability and stability. Our results demonstrate that several peptoids exhibit potent in vitro antiviral activity against both HSV-1 and SARS-CoV-2 when incubated prior to infection. In other words, they have a direct effect on the viral structure, which appears to render the viral particles non-infective. Visualization by cryo-EM shows viral envelope disruption similar to what has been observed with AMP activity against other viruses. Furthermore, we observed no cytotoxicity against primary cultures of oral epithelial cells. These results suggest a common or biomimetic mechanism, possibly due to the differences between the phospholipid head group makeup of viral envelopes and host cell membranes, thus underscoring the potential of this class of molecules as safe and effective broad-spectrum antiviral agents. We discuss how and why differing molecular features between 10 peptoid candidates may affect both antiviral activity and selectivity.
Collapse
Affiliation(s)
- Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA;
- Correspondence: (G.D.); (A.E.B.)
| | - Natalia Molchanova
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Claudine Herlan
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - John A. Fortkort
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
| | - Jennifer S. Lin
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
| | - Erika Figgins
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA;
| | - Nathen Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lisa K. Ryan
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida School of Medicine, Gainesville, FL 32601, USA;
| | - Donghoon Chung
- Center for Predictive Medicine, Department of Microbiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.C.); (R.S.A.)
| | - Robert Scott Adcock
- Center for Predictive Medicine, Department of Microbiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.C.); (R.S.A.)
| | - Michael Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.M.); (C.H.); (J.A.F.); (J.S.L.)
- Correspondence: (G.D.); (A.E.B.)
| |
Collapse
|
21
|
Aggregation hot spots in the SARS-CoV-2 proteome may constitute potential therapeutic targets for the suppression of the viral replication and multiplication. ACTA ACUST UNITED AC 2021; 12:1-13. [PMID: 33613009 PMCID: PMC7882052 DOI: 10.1007/s42485-021-00057-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
The emergence of novel coronavirus SARS-CoV-2 is responsible for causing coronavirus disease-19 (COVID-19) imposing serious threat to global public health. Infection of SARS-CoV-2 to the host cell is characterized by direct translation of positive single stranded (+ ss) RNA to form large polyprotein polymerase 1ab (pp1ab), which acts as precursor for a number of nonstructural and structural proteins that play vital roles in replication of viral genome and biosynthesis of new virus particles. The maintenance of viral protein homeostasis is essential for continuation of viral life cycle in the host cell. To test whether the protein homeostasis of SARS-CoV-2 can be disrupted by inducing specific protein aggregation, we made an effort to examine whether the viral proteome contains any aggregation prone regions (APRs) that can be explored for inducing toxic protein aggregation specifically in viral proteins and without affecting the host cell. This curiosity leads to the identification of several (> 70) potential APRs in SARS-CoV-2 proteome. The length of the APRs ranges from 5 to 25 amino acid residues. Nearly 70% of total APRs investigated are relatively smaller and found to be in the range of 5–10 amino acids. The maximum number of ARPs (> 50) was observed in pp1ab. On the other hand, the structural proteins such as, spike (S), nucleoprotein (N), membrane (M) and envelope (E) proteins also possess APRs in their primary structures which altogether constitute 30% of the total APRs identified. Our findings may provide new windows of opportunities to design specific peptide-based, anti-SARS-CoV-2 therapeutic molecules against COVID-19.
Collapse
|
22
|
Nejabat M, Ghodsi R, Hadizadeh F. Coumarins and Quinolones as Effective Multiple Targeted Agents Versus Covid-19: An in Silico Study. Med Chem 2021; 18:220-237. [PMID: 33563156 DOI: 10.2174/1573406417666210208223924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/08/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Covid-19 virus emerged a few months ago in China and infections rapidly escalated into a pandemic. OBJECTIVE To date, there is no selective antiviral agent for the management of pathologies associated with covid-19 and the need for an effective agent against it is essential. METHOD In this work two home-made databases from synthetic quinolines and coumarins were virtually docked against viral proteases (3CL and PL), human cell surface proteases (TMPRSS2 and furin) and spike proteins (S1 and S2). Chloroquine, a reference drug without a clear mechanism against coronavirus was also docked on mentioned targets and the binding affinities compared with title compounds. RESULT The best compounds of synthetic coumarins and quinolines for each target were determined. All compounds against all targets showed binding affinity between -5.80 to -8.99 kcal/mol in comparison with the FDA-approved drug, Chloroquine, with binding affinity of -5.7 to -7.98 kcal/mol. Two compounds, quinoline-1 and coumarin-24, were found to be effective on three targets - S2, TMPRSS2 and furin - simultaneously, with good predicted affinity between -7.54 to -8.85 kcal/mol. In silico ADME studies also confirmed good oral absorption for them. Furthermore, PASS prediction was calculated and coumarin-24 had higher probable activity (Pa) than probable inactivity (Pi) with acceptable protease inhibitory as well as good antiviral activity against Hepatitis C virus (HCV), Human immunodeficiency virus (HIV) and influenza. CONCLUSION Quinoline-1 and Coumarin-24 have the potential to be used against Covid-19. Hence these agents could be useful in combating covid-19 infection after further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, . Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, . Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, . Iran
| |
Collapse
|
23
|
Rzymski P, Borkowski L, Drąg M, Flisiak R, Jemielity J, Krajewski J, Mastalerz-Migas A, Matyja A, Pyrć K, Simon K, Sutkowski M, Wysocki J, Zajkowska J, Fal A. The Strategies to Support the COVID-19 Vaccination with Evidence-Based Communication and Tackling Misinformation. Vaccines (Basel) 2021; 9:109. [PMID: 33535716 PMCID: PMC7912910 DOI: 10.3390/vaccines9020109] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 vaccinations are about to begin in various countries or are already ongoing. This is an unprecedented operation that is also met with a loud response from anti-vaccine communities-currently using all available channels to manipulate public opinion. At the same time, the strategy to educate on vaccinations, explain their mechanism of action, and build trust in science is subdued in different world parts. Such actions should go much beyond campaigns promoting the COVID-19 vaccines solely on the information provided by the health institutions and national authorities. In this paper, actions provided by independent expert groups needed to counteract the anti-vaccine propaganda and provide scientific-based information to the general public are offered. These actions encompass organizing groups continuously communicating science on COVID-19 vaccines to the general public; tracking and tackling emerging and circulating fake news; and equipping celebrities and politicians with scientific information to ensure the quality of messages they communicate, as well as public letters, and statements of support for vaccination by healthcare workers, recognized scientists, VIPs, and scientific societies; and no tolerance to false and manipulated claims on vaccination spread via traditional and social media as well as by health professionals, scientists, and academics. These activities should be promptly implemented worldwide, regardless of the current status and availability of the COVID-19 vaccine in a particular region. If we are about to control the pandemic for the sake of public benefit, it is high time to collectively speak out as academic and medical societies with support from decision-makers. Otherwise, the battle will be lost to those who stand against scientific evidence while offering no feasible solution to the problem.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | | | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-540 Białystok, Poland;
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - Jacek Krajewski
- The Federation of Healthcare Employers’ Unions “Porozumienie Zielonogórskie”, 65-048 Zielona Góra, Poland;
| | | | - Andrzej Matyja
- Supreme Medical Council of the Polish Supreme Chamber of Physicians and Dentists, 00-764 Warsaw, Poland;
- 2nd Department of General Surgery, Jagiellonian University Medical College of Krakow, 30-688 Kraków, Poland
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Krzysztof Simon
- Department of Infectious Diseases and Hepatology, Wrocław Medical University, 51-149 Wrocław, Poland;
| | - Michał Sutkowski
- College of Family Physicians in Poland, 00-209 Warsaw, Poland;
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | - Jacek Wysocki
- Department of Preventive Medicine, Poznań University of Medical Sciences, 60-179 Poznań, Poland;
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540 Białystok, Poland;
| | - Andrzej Fal
- Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland
| |
Collapse
|
24
|
Poloznikov AA, Nersisyan SA, Hushpulian DM, Kazakov EH, Tonevitsky AG, Kazakov SV, Vechorko VI, Nikulin SV, Makarova JA, Gazaryan IG. HIF Prolyl Hydroxylase Inhibitors for COVID-19 Treatment: Pros and Cons. Front Pharmacol 2021; 11:621054. [PMID: 33584306 PMCID: PMC7878396 DOI: 10.3389/fphar.2020.621054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The review analyzes the potential advantages and problems associated with using HIF prolyl hydroxylase inhibitors as a treatment for COVID-19. HIF prolyl hydroxylase inhibitors are known to boost endogenous erythropoietin (Epo) and activate erythropoiesis by stabilizing and activating the hypoxia inducible factor (HIF). Recombinant Epo treatment has anti-inflammatory and healing properties, and thus, very likely, will be beneficial for moderate to severe cases of COVID-19. However, HIF PHD inhibition may have a significantly broader effect, in addition to stimulating the endogenous Epo production. The analysis of HIF target genes reveals that some HIF-targets, such as furin, could play a negative role with respect to viral entry. On the other hand, HIF prolyl hydroxylase inhibitors counteract ferroptosis, the process recently implicated in vessel damage during the later stages of COVID-19. Therefore, HIF prolyl hydroxylase inhibitors may serve as a promising treatment of COVID-19 complications, but they are unlikely to aid in the prevention of the initial stages of infection.
Collapse
Affiliation(s)
| | | | - Dmitry M Hushpulian
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Eliot H Kazakov
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY, United States
| | | | - Sergey V Kazakov
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Valery I Vechorko
- City Clinical Hospital No 15 Named After O. M. Filatov, Moscow, Russia
| | - Sergey V Nikulin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Julia A Makarova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Irina G Gazaryan
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY, United States.,Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States.,Chemical Enzymology Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
25
|
Zhang Y, Tang LV. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. J Proteome Res 2021; 20:49-59. [PMID: 33347311 PMCID: PMC7770889 DOI: 10.1021/acs.jproteome.0c00526] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 01/18/2023]
Abstract
Since the novel coronavirus pandemic, people around the world have been touched in varying degrees, and this pandemic has raised a major global health concern. As there is no effective drug or vaccine, it is urgent to find therapeutic drugs that can serve to deal with the current epidemic situation in all countries and regions. We searched drugs and response measures for SARS-CoV-2 in the PubMed database, and then updated the potential targets and therapeutic drugs from the perspective of the viral replication cycle. The drug research studies of the viral replication cycle are predominantly focused on the process of the virus entering cells, proteases, and RdRp. The inhibitors of the virus entry to cells and RdRp, such as Arbidol, remdesivir, favipiravir, EIDD-2081, and ribavirin, are in clinical trials, while most of the protease inhibitors are mainly calculated by molecular docking technology, which needs in vivo and in vitro experiments to prove the effect for SARS-CoV-2. This review summarizes the drugs targeting the viral replication process and provides a basis and directions for future drug development and reuse on the protein level of COVID-19.
Collapse
Affiliation(s)
- Yi Zhang
- Institute
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang V. Tang
- Institute
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
26
|
Witika BA, Makoni PA, Mweetwa LL, Ntemi PV, Chikukwa MTR, Matafwali SK, Mwila C, Mudenda S, Katandula J, Walker RB. Nano-Biomimetic Drug Delivery Vehicles: Potential Approaches for COVID-19 Treatment. Molecules 2020; 25:E5952. [PMID: 33339110 PMCID: PMC7765509 DOI: 10.3390/molecules25245952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Larry L. Mweetwa
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
| | - Pascal V. Ntemi
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Melissa T. R. Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Jonathan Katandula
- Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| |
Collapse
|
27
|
Rajpoot S, Alagumuthu M, Baig MS. Dual targeting of 3CL pro and PL pro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Curr Res Struct Biol 2020; 3:9-18. [PMID: 33319212 PMCID: PMC7726703 DOI: 10.1016/j.crstbi.2020.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
With the rapid growth of the COVID-19 (coronavirus disease 2019) pandemic across the globe, therapeutic attention must be directed to fight the novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). However, developing new antiviral drugs and vaccines is time-consuming, so one of the best solutions to tackle this virus at present is to repurpose ready-to-use drugs. This paper proposes the repurposing of the Food and Drug Administration (FDA)-approved, purchasable, and naturally occurring drugs for preventive and therapeutic use. We propose to design a dual-inhibitor for the SARS-CoV-2 cysteine proteases-3 Chemotrypsin-like protease or main protease (3CLpro or Mpro) and Papain-like protease (PLpro) responsible for processing the translated polyprotein chain from the viral RNA yielding functional viral proteins. For virtual screening, an unbiased blind docking was performed from which the top nine dual-targeting inhibitors for 3CLpro and PLpro were selected. The nine repurposed drugs, block the catalytic dyad (His41 and Cys145) of 3CLpro as well as the catalytic triad (Cys111, His272, and Asp286) of PLpro. Repurposing known drugs will not only pave the way for rapid in-vitro and in-vivo studies to battle the SARS-CoV-2 but will also expedite the quest for a potent anti-coronaviral drug.
Collapse
Affiliation(s)
- Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore, MP, India
| | - Manikandan Alagumuthu
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore, MP, India
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore, MP, India
| |
Collapse
|
28
|
Adhikari N, Amin SA, Jha T. Dissecting the Drug Development Strategies Against SARS-CoV-2 Through Diverse Computational Modeling Techniques. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/7653_2020_46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Dong X, Tian Z, Shen C, Zhao C. An overview of potential therapeutic agents to treat COVID-19. Biosci Trends 2020; 14:318-327. [PMID: 33100290 DOI: 10.5582/bst.2020.03345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The emerging novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has swept across the world and become a global threat to public health. More than 200 countries and territories worldwide are suffering from this COVID-19 pandemic. Worryingly, no specific vaccines or drugs have been approved for the prevention or treatment of COVID-19. Under the pressure of a sustained rise in the incidence and mortality of COVID-19, an unprecedented global effort is being implemented to identify effective drugs to combat the current coronavirus. As the understanding of SARS-CoV-2 virology, the underlying mechanism by which it attacks host cells, and the host response to the infection rapidly evolves, drugs are being repurposed and novel drugs are being identified and designed to target the SARS-CoV-2 pathogenesis. Presented here is a brief overview of both virus-based and host-based potential therapeutic drugs that are currently being investigated.
Collapse
Affiliation(s)
- Xueqin Dong
- Community Health Service Center of the Qianfo Mountain Office, the People's Hospital of Lixia District of Jinan, Ji'nan, Shandong, China
| | - Zhenxue Tian
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Cuirong Zhao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| |
Collapse
|
30
|
Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sci 2020; 257:118056. [PMID: 32645344 PMCID: PMC7336130 DOI: 10.1016/j.lfs.2020.118056] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Various human pathogenic viruses employ envelope glycoproteins for host cell receptor recognition and binding, membrane fusion and viral entry. The spike (S) glycoprotein of betacoronavirus SARS-CoV-2 is a homotrimeric class I fusion protein that exists in a metastable conformation for cleavage by host cell proteases furin and TMPRSS2, thereby undergoing substantial structural rearrangement for ACE2 host cell receptor binding and subsequent viral entry by membrane fusion. The S protein is densely decorated with N-linked glycans protruding from the trimer surface that affect S protein folding, processing by host cell proteases and the elicitation of humoral immune response. Deep insight into the sophisticated structure of SARS-CoV-2 S protein may provide a blueprint for vaccination strategies, as reviewed herein.
Collapse
Affiliation(s)
- Ariane Sternberg
- Center and Network for Targeted Oncology, Muehlackerweg 8, D-69239 Heidelberg, Germany
| | - Cord Naujokat
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Abstract
In December 2019, the first cases of a new contagious disease were diagnosed in the city of Wuhan, the capital of Hubei province in China. Within a short period of time the outbreak developed exponentially into a pandemic that infected millions of people, with a global death toll of more than 500,000 during its first 6 months. Eventually, the novel disease was named coronavirus disease 2019 (COVID-19), and the new virus was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Similar to all known pandemics throughout history, COVID-19 has been accompanied by a large degree of fear, anxiety, uncertainty, and economic disaster worldwide. Despite multiple publications and increasing knowledge regarding the biological secrets of SARS-CoV-2, as of the writing of this paper, there is neither an approved vaccine nor medication to prevent infection or cure for this highly infectious disease. Past pandemics were caused by a wide range of microbes, primarily viruses, but also bacteria. Characteristically, a significant proportion of them originated in different animal species (zoonoses). Since an understanding of the microbial cause of these diseases was unveiled relatively late in human history, past pandemics were often attributed to strange causes including punishment from God, demonic activity, or volatile unspecified substances. Although a high case fatality ratio was common to all pandemic diseases, some striking clinical characteristics of each disease allowed contemporaneous people to clinically diagnose the infection despite null microbiological information. In comparison to past pandemics, SARS-CoV-2 has tricky and complex mechanisms that have facilitated its rapid and catastrophic spread worldwide.
Collapse
|
32
|
Abstract
The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insurmountable damage both to the human lives and global economy. There is an immediate need for identification of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing to identify the best drug combination to address the disease. In this review, an attempt has been made to understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts from the scientific community to effectively address the issue and prevent further loss of human lives and health.
Collapse
Affiliation(s)
- Ambrish Saxena
- Indian Institute of Technology Tirupati, Tirupati, India
| |
Collapse
|