1
|
Han R, Gaurav A, Mai CW, Gautam V, Gabriel Akyirem A. Phosphodiesterase Inhibitors of Natural Origin. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155251390230927064442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 01/09/2025]
Abstract
Abstract:
Phosphodiesterases (PDEs) function to hydrolyze intracellular cyclic adenosine monophosphate
(cAMP) and cyclic guanosine monophosphate (cGMP), regulating a variety of intracellular
signal transduction and physiological activities. PDEs can be divided into 11 families
(PDE1~11) and the diversity and complex expression of PDE family genes suggest that different
subtypes may have different mechanisms. PDEs are involved in various disease pathologies such
as inflammation, asthma, depression, and erectile dysfunction and are thus targets of interest for
several drug discovery campaigns. Natural products have always been an important source of bioactive
compounds for drug discovery, over the years several natural compounds have shown potential
as inhibitors of PDEs. In this article, phosphodiesterase inhibitors of natural origin have been
reviewed with emphasis on their chemistry and biological activities.
Collapse
Affiliation(s)
- Rui Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Anand Gaurav
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
- Department of Pharmaceutical Sciences, School of Health Sciences and
Technology, UPES, Dehradun, 248007, Uttarakhand, India
- Faculty of Health Sciences, Villa College, QI Campus,
Rahdhebai Hingun, Male', 20373, Republic of Maldives
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Vertika Gautam
- Institute of Pharmaceutical Research, GLA University,
Mathura, 281406, Uttar Pradesh, India
| | - Akowuah Gabriel Akyirem
- School of Pharmacy, Monash University Malaysia Jalan Lagoon Selatan,
47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Balykina A, Naida L, Kirkgöz K, Nikolaev VO, Fock E, Belyakov M, Whaley A, Whaley A, Shpakova V, Rukoyatkina N, Gambaryan S. Antiplatelet Effects of Flavonoid Aglycones Are Mediated by Activation of Cyclic Nucleotide-Dependent Protein Kinases. Int J Mol Sci 2024; 25:4864. [PMID: 38732081 PMCID: PMC11084604 DOI: 10.3390/ijms25094864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.
Collapse
Affiliation(s)
- Anna Balykina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
- Faculty of General Medicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Lidia Naida
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia;
| | - Kürsat Kirkgöz
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.K.); (V.O.N.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.K.); (V.O.N.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| | - Michael Belyakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg 188663, Russia;
| | - Anastasiia Whaley
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
- Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia;
| | - Andrei Whaley
- Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia;
| | - Valentina Shpakova
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, UK;
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| |
Collapse
|
3
|
Navarrete A, Balderas-López JL, Rosas-Canales JG, Tapia-Álvarez GR, Alfaro-Romero A, Aviles-Rosas VH, Rodríguez-Ramos F, Avula B, Khan IA. Flavones isolated from Pseudognaphalium liebmannii with tracheal smooth muscle relaxant properties. Nat Prod Res 2024:1-6. [PMID: 38189356 DOI: 10.1080/14786419.2023.2300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024]
Abstract
The inflorescences of Pseudognaphalium liebmannii are used as folk medicine to treat various respiratory diseases. In this work, we report the isolation of seven known flavones: 5-hydroxy-3,7-dimethoxyflavone 1, 5,8-dihydroxy-3,7-dimethoxyflavone 2, 5,7-dihydroxy-3,8-dimethoxyflavone 3 (gnaphaliin A), 3,5-dihydroxy-7,8-dimethoxyflavone 4 (gnaphaliin B), 3,5-dihydroxy-6,7,8-trimethoxyflavone 5, 3,5,7-trimethoxyflavone 6 and 3-O-methylquercetin 7. All these flavones except 1 and 6 showed a relaxant effect on guinea pig tracheal preparation with EC50 between 69.91 ± 15.32 and 118.72 ± 7.06 µM. Aminophylline (EC50 = 122.03 ± 7.05 µM) was used as a relaxant reference drug. The active flavones shifted the concentration-response curves of forskolin and nitroprusside leftward, and significantly reduced the EC50 values of these drugs. Furthermore, these flavones dose-dependently inhibited phosphodiesterase (PDE) in an in vitro assay. This reveals that the inflorescences of P. liebmannii contain several flavones with relaxant effect on airway smooth muscle and with PDEs inhibition that contribute to supporting the anti-asthmatic traditional use.
Collapse
Affiliation(s)
- Andrés Navarrete
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
- National Center for Natural Products Research, School of Pharmacy, University of MS, University, MS, USA
| | - José Luis Balderas-López
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - José Guadalupe Rosas-Canales
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Gabriela Rubí Tapia-Álvarez
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Alejandro Alfaro-Romero
- Preparatoria SantaTeresa, Universidad LaSalle Campus Ciudad de México, Tlalpan, Ciudad de México, México
| | - Víctor Hugo Aviles-Rosas
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Fernando Rodríguez-Ramos
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, Mexico
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of MS, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of MS, University, MS, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
4
|
Ahmad V, Khan MI, Jamal QMS, Alzahrani FA, Albiheyri R. Computational Molecular Docking and Simulation-Based Assessment of Anti-Inflammatory Properties of Nyctanthes arbor-tristis Linn Phytochemicals. Pharmaceuticals (Basel) 2023; 17:18. [PMID: 38256852 PMCID: PMC10820488 DOI: 10.3390/ph17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The leaves, flowers, seeds, and bark of the Nyctanthes arbor-tristis Linn plant have been pharmacologically evaluated to signify the medicinal importance traditionally described for various ailments. We evaluated the anti-inflammatory potentials of 26 natural compounds using AutoDock 4.2 and Molecular Dynamics (MDS) performed with the GROMACS tool. SwissADME evaluated ADME (adsorption, distribution, metabolism, and excretion) parameters. Arb_E and Beta-sito, natural compounds of the plant, showed significant levels of binding affinity against COX-1, COX-2, PDE4, PDE7, IL-17A, IL-17D, TNF-α, IL-1β, prostaglandin E2, and prostaglandin F synthase. The control drug celecoxib exhibited a binding energy of -9.29 kcal/mol, and among the tested compounds, Arb_E was the most significant (docking energy: -10.26 kcal/mol). Beta_sito was also observed with high and considerable docking energy of -8.86 kcal/mol with the COX-2 receptor. COX-2 simulation in the presence of Arb_E and control drug celecoxib, RMSD ranged from 0.15 to 0.25 nm, showing stability until the end of the simulation. Also, MM-PBSA analysis showed that Arb_E bound to COX-2 exhibited the lowest binding energy of -277.602 kJ/mol. Arb_E and Beta_sito showed interesting ADME physico-chemical and drug-like characteristics with significant drug-like effects. Therefore, the studied natural compounds could be potential anti-inflammatory molecules and need further in vitro/in vivo experimentation to develop novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, Jeddah 21499, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Faisal A. Alzahrani
- Embryonic Stem Cell Unit, Department of Biochemistry, Faculty of Science, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Jehle A, Garaschuk O. The Interplay between cGMP and Calcium Signaling in Alzheimer's Disease. Int J Mol Sci 2022; 23:7048. [PMID: 35806059 PMCID: PMC9266933 DOI: 10.3390/ijms23137048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger and a key molecule in many important signaling cascades in the body and brain, including phototransduction, olfaction, vasodilation, and functional hyperemia. Additionally, cGMP is involved in long-term potentiation (LTP), a cellular correlate of learning and memory, and recent studies have identified the cGMP-increasing drug Sildenafil as a potential risk modifier in Alzheimer's disease (AD). AD development is accompanied by a net increase in the expression of nitric oxide (NO) synthases but a decreased activity of soluble guanylate cyclases, so the exact sign and extent of AD-mediated imbalance remain unclear. Moreover, human patients and mouse models of the disease present with entangled deregulation of both cGMP and Ca2+ signaling, e.g., causing changes in cGMP-mediated Ca2+ release from the intracellular stores as well as Ca2+-mediated cGMP production. Still, the mechanisms governing such interplay are poorly understood. Here, we review the recent data on mechanisms underlying the brain cGMP signaling and its interconnection with Ca2+ signaling. We also discuss the recent evidence stressing the importance of such interplay for normal brain function as well as in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|