1
|
Qiu H, Shi M, Zhong Z, Hu H, Sang H, Zhou M, Feng Z. Causal Relationship between Aging and Anorexia Nervosa: A White-Matter-Microstructure-Mediated Mendelian Randomization Analysis. Biomedicines 2024; 12:1874. [PMID: 39200338 PMCID: PMC11351342 DOI: 10.3390/biomedicines12081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study employed a two-step Mendelian randomization analysis to explore the causal relationship between telomere length, as a marker of aging, and anorexia nervosa and to evaluate the mediating role of changes in the white matter microstructure across different brain regions. We selected genetic variants associated with 675 diffusion magnetic resonance imaging phenotypes representing changes in brain white matter. F-statistics confirmed the validity of the instruments, ensuring robust causal inference. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy tests, and leave-one-out tests, validated the results. The results show that telomere length is significantly negatively correlated with anorexia nervosa in a unidirectional manner (p = 0.017). Additionally, changes in specific white matter structures, such as the internal capsule, corona radiata, posterior thalamic radiation, left cingulate gyrus, left longitudinal fasciculus, and left forceps minor (p < 0.05), were identified as mediators. These findings enhance our understanding of the neural mechanisms, underlying the exacerbation of anorexia nervosa with aging; emphasize the role of brain functional networks in disease progression; and provide potential biological targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Hunini Sang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Rosberg A, Merisaari H, Lewis JD, Hashempour N, Lukkarinen M, Rasmussen JM, Scheinin NM, Karlsson L, Karlsson H, Tuulari JJ. Associations between maternal pre-pregnancy BMI and infant striatal mean diffusivity. BMC Med 2024; 22:140. [PMID: 38528552 PMCID: PMC10964641 DOI: 10.1186/s12916-024-03340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND It is well-established that parental obesity is a strong risk factor for offspring obesity. Further, a converging body of evidence now suggests that maternal weight profiles may affect the developing offspring's brain in a manner that confers future obesity risk. Here, we investigated how pre-pregnancy maternal weight status influences the reward-related striatal areas of the offspring's brain during in utero development. METHODS We used diffusion tensor imaging to quantify the microstructure of the striatal brain regions of interest in neonates (N = 116 [66 males, 50 females], mean gestational weeks at birth [39.88], SD = 1.14; at scan [43.56], SD = 1.05). Linear regression was used to test the associations between maternal pre-pregnancy body mass index (BMI) and infant striatal mean diffusivity. RESULTS High maternal pre-pregnancy BMI was associated with higher mean MD values in the infant's left caudate nucleus. Results remained unchanged after the adjustment for covariates. CONCLUSIONS In utero exposure to maternal adiposity might have a growth-impairing impact on the mean diffusivity of the infant's left caudate nucleus. Considering the involvement of the caudate nucleus in regulating eating behavior and food-related reward processing later in life, this finding calls for further investigations to define the prognostic relevance of early-life caudate nucleus development and weight trajectories of the offspring.
Collapse
Affiliation(s)
- Aylin Rosberg
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland.
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland.
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Diagnostic Radiology, Turku University Hospital, Turku, Finland
| | - John D Lewis
- The Hospital for Sick Children (SickKids) Research Institute, Toronto, ON, Canada
| | - Niloofar Hashempour
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Satakunta Wellbeing Services County, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Mohammadi S, Ghaderi S. Advanced magnetic resonance neuroimaging techniques: feasibility and applications in long or post-COVID-19 syndrome - a review. Ann Med Surg (Lond) 2024; 86:1584-1589. [PMID: 38463042 PMCID: PMC10923379 DOI: 10.1097/ms9.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Long-term or post-COVID-19 syndrome (PCS) is a condition that affects people infected with SARS‑CoV‑2, the virus that causes COVID-19. PCS is characterized by a wide range of persistent or new symptoms that last months after the initial infection, such as fatigue, shortness of breath, cognitive dysfunction, and pain. Advanced magnetic resonance (MR) neuroimaging techniques can provide valuable information on the structural and functional changes in the brain associated with PCS as well as potential biomarkers for diagnosis and prognosis. In this review, we discuss the feasibility and applications of various advanced MR neuroimaging techniques in PCS, including perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), functional MR imaging (fMRI), diffusion tensor imaging (DTI), and tractography. We summarize the current evidence on neuroimaging findings in PCS, the challenges and limitations of these techniques, and the future directions for research and clinical practice. Although still uncertain, advanced MRI techniques show promise for gaining insight into the pathophysiology and guiding the management of COVID-19 syndrome, pending larger validation studies.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Franco-O´Byrne D, Gonzalez-Gomez R, Morales Sepúlveda JP, Vergara M, Ibañez A, Huepe D. The impact of loneliness and social adaptation on depressive symptoms: Behavioral and brain measures evidence from a brain health perspective. Front Psychol 2023; 14:1096178. [PMID: 37077845 PMCID: PMC10108715 DOI: 10.3389/fpsyg.2023.1096178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction Early detection of depression is a cost-effective way to prevent adverse outcomes on brain physiology, cognition, and health. Here we propose that loneliness and social adaptation are key factors that can anticipate depressive symptoms. Methods We analyzed data from two separate samples to evaluate the associations between loneliness, social adaptation, depressive symptoms, and their neural correlates. Results For both samples, hierarchical regression models on self-reported data showed that loneliness and social adaptation have negative and positive effects on depressive symptoms. Moreover, social adaptation reduces the impact of loneliness on depressive symptoms. Structural connectivity analysis showed that depressive symptoms, loneliness, and social adaptation share a common neural substrate. Furthermore, functional connectivity analysis demonstrated that only social adaptation was associated with connectivity in parietal areas. Discussion Altogether, our results suggest that loneliness is a strong risk factor for depressive symptoms while social adaptation acts as a buffer against the ill effects of loneliness. At the neuroanatomical level, loneliness and depression may affect the integrity of white matter structures known to be associated to emotion dysregulation and cognitive impairment. On the other hand, socio-adaptive processes may protect against the harmful effects of loneliness and depression. Structural and functional correlates of social adaptation could indicate a protective role through long and short-term effects, respectively. These findings may aid approaches to preserve brain health via social participation and adaptive social behavior.
Collapse
Affiliation(s)
- Daniel Franco-O´Byrne
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Raul Gonzalez-Gomez
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Juan Pablo Morales Sepúlveda
- Pontificia Universidad Católica de Chile Programa de Doctorado en Neurociencias Centro Interdisciplinario de Neurocienciass, Santiago, Chile
- Facultad de Educación Psicología y Familia, Universidad Finis Terrae, Santiago, Chile
| | - Mayte Vergara
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustin Ibañez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| |
Collapse
|
5
|
Takeuchi H, Shiota Y, Yaoi K, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. Mercury levels in hair are associated with reduced neurobehavioral performance and altered brain structures in young adults. Commun Biol 2022; 5:529. [PMID: 35655003 PMCID: PMC9163068 DOI: 10.1038/s42003-022-03464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe detrimental effects of high-level mercury exposure on the central nervous system as well as effects of low-level exposure during early development have been established. However, no previous studies have investigated the effects of mercury level on brain morphometry using advance imaging techniques in young adults. Here, utilizing hair analysis which has been advocated as a method for biological monitoring, data of regional gray matter volume (rGMV), regional white matter volume (rWMV), fractional anisotropy (FA) and mean diffusivity (MD), cognitive functions, and depression among 920 healthy young adults in Japan, we showed that greater hair mercury levels were weakly but significantly associated with diminished cognitive performance, particularly on tasks requiring rapid processing (speed measures), lower depressive tendency, lower rGMV in areas of the thalamus and hippocampus, lower rWMV in widespread areas, greater FA in bilaterally distributed white matter areas overlapping with areas of significant rWMV reductions and lower MD of the widely distributed gray and white matter areas particularly in the bilateral frontal lobe and the right basal ganglia. These results suggest that even normal mercury exposure levels in Japan are weakly associated with differences of brain structures and lower neurobehavioral performance and altered mood among young adults.
Collapse
|
6
|
Wang B, Wang H, Cen Z, Yuan J, Yang D, Chen X, Xie F, Wang L, Wu S, Ouyang Z, Zang YF, Luo W. White matter alterations in familial cortical myoclonic tremor with epilepsy type 1. Epilepsia 2022; 63:1093-1103. [PMID: 35247271 DOI: 10.1111/epi.17213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Although previous imaging studies have reported cerebellar gray matter loss in patients with familial cortical myoclonic tremor with epilepsy (FCMTE), the corresponding white matter alterations remain unknown. We investigated white matter structural changes in FCMTE1 and compared them with clinical and electrophysiological features. METHODS We enrolled 36 patients carrying heterozygous pathogenic intronic pentanucleotide insertions in the SAMD12 gene and 52 age- and sex-matched healthy controls. Diffusion tensor imaging-derived metrics, including fractional anisotropy, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated along with white matter voxel-based morphometry (VBM) analysis. We also examined correlations between MR metrics and clinical and electrophysiological features. RESULTS We detected widespread white matter reductions in MD, RD, and AD values in FCMTE patients, including in the commissural, projection, and association fibers. VBM analysis revealed that increases in white matter volume predominantly occurred in the right cerebellum and sagittal stratum. MD, RD, AD, and VBM analysis clearly indicated changes in the sagittal stratum. We found a positive correlation between VBM values in the right cerebellum and SEP P25-N33 amplitude. Decreased MD and AD values in the right sagittal stratum were detected in patients with versus without photophobia. SIGNIFICANCE FCMTE is a network disorder involving a wide range of cortical and subcortical structures, including the cerebellum, thalamus, thalamo-cortical connections, and cortico-cortical connections. The right sagittal stratum is closely related with visual symptoms, especially photophobia. Our findings indicate that cerebellum and cortical hyperexcitability are closely linked, and emphasize the important role of the cerebellum in the pathophysiological mechanisms of cortical tremor.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haotian Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiachen Yuan
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dehao Yang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiyuan Ouyang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Liu Y, Liu C, Qin C, Zhang X, Feng H, Wang Z, Li J. Evaluation of the effect of myelotomy on nerve function in rats with spinal cord injury by diffusion tensor imaging. Acta Radiol 2021; 62:1666-1673. [PMID: 33287549 DOI: 10.1177/0284185120975182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe central nervous system injury that can generally induce different degrees of sensory and motor dysfunction. PURPOSE To clarify the changes of diffusion tensor imaging (DTI) parameters after spinal cord myelotomy in rats with SCI. MATERIAL AND METHODS Eighteen Sprague Dawley (SD) rats were randomly divided into the Sham group (n=6), SCI group (n=6), and Mye group (n=6), respectively. The DTI values at 1, 3, 7, and 21 days after modeling were collected by magnetic resonance imaging (MRI). The spinal specimen at the injury site was collected on the 21st day for Nissl's staining to assess the changes in neurons. RESULTS The fractional anisotropy (FA) values in both the SCI group and Mye group significantly decreased. In addition, the FA values between the two groups were statistically significant (P < 0.001). The apparent diffusion coefficient (ADC), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values all decreased and then increased (P < 0.001). Pearson correlation test showed that the ADC, MD, and AD values were positively correlated with the Basso Beattie Bresnahan (BBB) score. Nissl's staining showed a higher number of Nissl's bodies, and deep staining of Nissl's bodies in the Mye group, while the morphology of neurons was relatively good. The number of neurons in the Mye group was significantly higher after myelotomy compared to the SCI group (P < 0.001). CONCLUSION The DTI parameters, especially ADC values, could non-invasively and quantifiably evaluate the efficacy of myelotomy for rats with SCI.
Collapse
Affiliation(s)
- Yi Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Beijing, PR China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Hao Feng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Zhanjing Wang
- Medical Experiment and Test Center, Capital Medical University, Beijing, PR China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| |
Collapse
|
8
|
Cortico-striatal-thalamic loop as a neural correlate of neuroticism in the mind-body interface. J Psychosom Res 2021; 149:110590. [PMID: 34385032 DOI: 10.1016/j.jpsychores.2021.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Although brain structural studies have demonstrated the neural correlates of neuroticism, the outcomes are not easily identified because of the various possible brain regions involved, low statistical power (low number of subjects), and brain structural measures available, such as mean diffusivity (MD), which are more suitable than standard regional measures of grey and white-matter volume (rGMV, rWMV) and fractional anisotropy (FA). We hypothesized that neuroticism neural correlates could be detected by MD and differentially identified using other measures. We aimed to visualize the neural correlates of neuroticism. METHODS A voxel-by-voxel regression analysis was performed using the MD, rGMV, rWMV, or FA value as the dependent variable and with neuroticism scores based on the NEO-FFI and its confounding factors as independent variables in 1207 (693 men and 514 women; age, 20.7 ± 1.8, 18-27 years), non-clinical students in a cross-sectional study. RESULTS MD in the cortico- (orbitofrontal cortex, anterior cingulate cortex, and posterior insula) striatal- (caudate and putamen) thalamic loop regions, including the right posterior limb of the internal capsule, were positively associated with neuroticism using the threshold-free cluster enhancement method with a family-wise error-corrected threshold of P < 0.0125 (0.05/4, Bonferroni correction for four types of MRI data [MD, rGMV, rWMV, and FA]) at the whole-brain level. CONCLUSIONS An increased MD has generally been associated with reduced neural tissues and possibly area function. Accordingly, this finding helps elucidate the mechanism of somatization in neuroticism because the regions related to neuroticism are considered neural correlates of somatoform disorders.
Collapse
|
9
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Daniele M, Sassa Y, Kawashima R. Lead exposure is associated with functional and microstructural changes in the healthy human brain. Commun Biol 2021; 4:912. [PMID: 34312468 PMCID: PMC8313694 DOI: 10.1038/s42003-021-02435-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Lead is a toxin known to harm many organs in the body, particularly the central nervous system, across an individual's lifespan. To date, no study has yet investigated the associations between body lead level and the microstructural properties of gray matter areas, and brain activity during attention-demanding tasks. Here, utilizing data of diffusion tensor imaging, functional magnetic resonance imaging and cognitive measures among 920 typically developing young adults, we show greater hair lead levels are weakly but significantly associated with (a) increased working memory-related activity in the right premotor and pre-supplemental motor areas, (b) lower fractional anisotropy (FA) in white matter areas near the internal capsule, (c) lower mean diffusivity (MD) in the dopaminergic system in the left hemisphere and other widespread contingent areas, and (d) greater MD in the white matter area adjacent to the right fusiform gyrus. Higher lead levels were also weakly but significantly associated with lower performance in tests of high-order cognitive functions, such as the psychometric intelligence test, greater impulsivity measures, and higher novelty seeking and extraversion. These findings reflect the weak effect of daily lead level on the excitability and microstructural properties of the brain, particularly in the dopaminergic system.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- grid.69566.3a0000 0001 2248 6943Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- grid.69566.3a0000 0001 2248 6943Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- grid.69566.3a0000 0001 2248 6943Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoichi Yokoyama
- grid.31432.370000 0001 1092 3077School of Medicine, Kobe University, Kobe, Japan
| | - Yuka Kotozaki
- grid.411582.b0000 0001 1017 9540Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- grid.69566.3a0000 0001 2248 6943Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan ,grid.412755.00000 0001 2166 7427Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- grid.69566.3a0000 0001 2248 6943Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.419280.60000 0004 1763 8916Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- grid.69566.3a0000 0001 2248 6943Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sugiko Hanawa
- grid.69566.3a0000 0001 2248 6943Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- grid.69566.3a0000 0001 2248 6943Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- grid.69566.3a0000 0001 2248 6943Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- grid.32197.3e0000 0001 2179 2105Research Institute for the Earth Inclusive Sensing, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- grid.69566.3a0000 0001 2248 6943Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susum Yokota
- grid.177174.30000 0001 2242 4849Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Magistro Daniele
- grid.12361.370000 0001 0727 0669Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Yuko Sassa
- grid.69566.3a0000 0001 2248 6943Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- grid.69566.3a0000 0001 2248 6943Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Maeda CT, Takeuchi H, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Shigeyuki I, Yokota S, Magistro D, Sassa Y, Taki Y, Kawashima R. Brain Microstructural Properties Related to Subjective Well-Being: Diffusion Tensor Imaging Analysis. Soc Cogn Affect Neurosci 2021; 16:1079-1090. [PMID: 33987641 PMCID: PMC8483277 DOI: 10.1093/scan/nsab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/15/2021] [Accepted: 05/13/2021] [Indexed: 12/05/2022] Open
Abstract
Although it is known that health is not merely the absence of disease, the positive aspects of mental health have been less comprehensively researched compared with its negative aspects. Subjective well-being (SWB) is one of the indicators of positive psychology, and high SWB is considered to benefit individuals in multiple ways. However, the neural mechanisms underlying individual differences in SWB remain unclear, particularly in terms of brain microstructural properties as detected by diffusion tensor imaging. The present study aimed to investigate the relationship between measurements of diffusion tensor imaging [mean diffusivity (MD) and fractional anisotropy] and the degree of SWB as measured using a questionnaire. Voxel-based analysis was used to investigate the association between MD and SWB scores in healthy young adults (age, 20.7 ± 1.8 years; 695 males and 514 females). Higher levels of SWB were found to be associated with lower MD in areas surrounding the right putamen, insula, globus pallidus, thalamus and caudate. These results indicated that individual SWB is associated with variability in brain microstructural properties.
Collapse
Affiliation(s)
- Chiaki Terao Maeda
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai, Japan.,Smart Aging Research Center, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan.,Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kunio Iizuka
- Department of Psychiatry Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Research Institute for the Earth Inclusive Sensing, Tokyo Institute of Technology, Tokyo, Japan
| | - Ikeda Shigeyuki
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Faculty of arts and science, Kyushu University, Fukuoka, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology Nottingham Trent University, Nottingham, UK
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Human Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Childhood socioeconomic status is associated with psychometric intelligence and microstructural brain development. Commun Biol 2021; 4:470. [PMID: 33927305 PMCID: PMC8084976 DOI: 10.1038/s42003-021-01974-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/10/2021] [Indexed: 02/02/2023] Open
Abstract
Childhood socioeconomic status is robustly associated with various children's cognitive factors and neural mechanisms. Here we show the association of childhood socioeconomic status with psychometric intelligence and mean diffusivity and fractional anisotropy using diffusion tensor imaging at the baseline experiment (N = 285) and longitudinal changes in these metrics after 3.0 ± 0.3 years (N = 223) in a large sample of normal Japanese children (mean age = 11.2 ± 3.1 years). After correcting for confounding factors, cross-sectional and longitudinal analyses show that higher childhood socioeconomic status is associated with greater baseline and baseline to follow-up increase of psychometric intelligence and mean diffusivity in areas around the bilateral fusiform gyrus. These results demonstrate that higher socioeconomic status is associated with higher psychometric intelligence measures and altered microstructural properties in the fusiform gyrus which plays a key role in reading and letter recognition and further augmentation of such tendencies during development. Definitive conclusions regarding the causality of these relationships requires intervention and physiological studies. However, the current findings should be considered when developing and revising policies regarding education.
Collapse
|
12
|
Zhao Z, Yao S, Zweerings J, Zhou X, Zhou F, Kendrick KM, Chen H, Mathiak K, Becker B. Putamen volume predicts real-time fMRI neurofeedback learning success across paradigms and neurofeedback target regions. Hum Brain Mapp 2021; 42:1879-1887. [PMID: 33400306 PMCID: PMC7978128 DOI: 10.1002/hbm.25336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Real-time fMRI guided neurofeedback training has gained increasing interest as a noninvasive brain regulation technique with the potential to modulate functional brain alterations in therapeutic contexts. Individual variations in learning success and treatment response have been observed, yet the neural substrates underlying the learning of self-regulation remain unclear. Against this background, we explored potential brain structural predictors for learning success with pooled data from three real-time fMRI data sets. Our analysis revealed that gray matter volume of the right putamen could predict neurofeedback learning success across the three data sets (n = 66 in total). Importantly, the original studies employed different neurofeedback paradigms during which different brain regions were trained pointing to a general association with learning success independent of specific aspects of the experimental design. Given the role of the putamen in associative learning this finding may reflect an important role of instrumental learning processes and brain structural variations in associated brain regions for successful acquisition of fMRI neurofeedback-guided self-regulation.
Collapse
Affiliation(s)
- Zhiying Zhao
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Nakagawa S, Iizuka K, Sakaki K, Araki T, Nozawa T, Ikeda S, Yokota S, Hanawa S, Magistro D, Kotozaki Y, Sasaki Y, Dos S Kawata KH, Kawashima R. The associations of BMI with mean diffusivity of basal ganglia among young adults with mild obesity and without obesity. Sci Rep 2020; 10:12566. [PMID: 32724120 PMCID: PMC7387490 DOI: 10.1038/s41598-020-69438-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Obesity causes a wide range of systemic diseases and is associated with mood and anxiety disorders. It is also associated with dopaminergic reward system function. However, the relationships between microstructural properties of the dopaminergic system and body mass index (BMI) have not been investigated. In this study, we investigated the associations of BMI with mean diffusivity (MD), diffusion tensor imaging measure in areas of the dopaminergic system (MDDS) in 435 healthy young adults with mild obesity and without obesity (BMI < 40). We detected the association between greater BMI and lower MD of the right globus pallidus and the right putamen. These results suggest that the property of the dopaminergic system is associated with BMI among young adults with mild obesity and without obesity.
Collapse
Affiliation(s)
- Hikarua Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kunio Iizuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Takayuki Nozawa
- Collaborative Research Center for Happiness Co-Creation Society Through Intelligent Communications, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- National Centre for Sport and Exercise Medicine (NCSEM), The NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, England
| | - Yuka Kotozaki
- Division of Clinical Research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukako Sasaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Sassa Y, Nozawa T, Ikeda S, Yokota S, Daniele M, Kawashima R. Mean diffusivity associated with trait emotional intelligence. Soc Cogn Affect Neurosci 2020; 14:871-883. [PMID: 31593230 PMCID: PMC6847659 DOI: 10.1093/scan/nsz059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
Previous neuroimaging studies have suggested that the neural bases of trait emotional intelligence (TEI) lie in the social cognition network (SCN) and the somatic marker circuitry (SMC). The current study was the first to investigate the associations of total TEI factors and subfactors with mean diffusivity (MD) of these networks as well as regional MD of the dopaminergic system (MDDS). We found that TEI intrapersonal factor score and total TEI score were negatively correlated with regional MDDS in the vicinity of the right putamen and right pallidum and that TEI intrapersonal factor score was negatively correlated with MD values of the fusiform gyrus. Total TEI score and TEI factor scores were positively correlated with MD values of various areas within or adjacent to SCN components, SMC structures and the lateral prefrontal cortex (LPFC). Our MD findings demonstrated the importance of the dopaminergic system to TEI and implicate the SCN, SMC and LPFC in TEI. Future studies are required to investigate the implications of positive and negative associations with MD values.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yasuyuki Taki
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai 980-8575, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8575, Japan.,Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Yuka Kotozaki
- Division of Clinical Research, Medical-Industry Translational Research Center, School of Medicine, Fukushima Medical University, Fukushima 960-1925, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuki Yamamoto
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tsuyoshi Araki
- Advantage Risk Management Co., Ltd, Tokyo 153-0051, Japan
| | - Carlos Makoto Miyauchi
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kohei Sakaki
- Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Takayuki Nozawa
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Magistro Daniele
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo 152-8550, Japan.,Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG11 8NS
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
15
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Daniele M, Sassa Y, Kawashima R. Association of iron levels in hair with brain structures and functions in young adults. J Trace Elem Med Biol 2020; 58:126436. [PMID: 31760327 DOI: 10.1016/j.jtemb.2019.126436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/02/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Iron plays a critical role in normal brain functions and development, but it has also been known to have adverse neurological effects. METHODS Here, we investigated the associations of iron levels in hair with regional gray matter volume (rGMV), regional cerebral blood flow (rCBF), fractional anisotropy (FA), mean diffusivity (MD), and cognitive differences in a study cohort of 590 healthy young adults. RESULTS Our findings showed that high iron levels were associated with lower rGMV in areas including the hippocampus, lower rCBF in the anterior and posterior parts of the brain, greater FA in areas including the part of the splenium of the corpus callosum, lower MD in the overlapping area including the splenium of the corpus callosum, as well as greater MD in the left hippocampus and areas including the frontal lobe. CONCLUSION These results are compatible with the notion that iron plays diverse roles in neural mechanisms in healthy young adults.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan; Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Magistro Daniele
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Kang SY, Bang M, Hong JY, Oh J, Kim JS, Han YM, Chang SK, Lee SA, Yoon U, Shin NY. Neural and dopaminergic correlates of fatigue in Parkinson's disease. J Neural Transm (Vienna) 2020; 127:301-309. [PMID: 31894419 DOI: 10.1007/s00702-019-02130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
Fatigue is one of the most common non-motor symptoms in Parkinson's disease (PD). Despite its clinical importance, there are few studies on the cause or mechanism of fatigue. Our aim was to find brain areas related to fatigue and to explore the association between striatal dopaminergic dysfunction and fatigue. We consecutively screened forty-seven patients with de novo PD from 2012 to 2017 and enrolled 32 patients. The gray matter volumes, white matter tracts, and striatal dopaminergic activity between PD without fatigue and with fatigue were compared. The correlation between fatigue and striatal dopaminergic activity was also analyzed. Our data did not show any significant difference in gray matter volume between PD without fatigue and with fatigue (familywise error [FWE] corrected p > 0.05) but revealed significantly higher mean fractional anisotropy (FA) values for all analyzed white matter tracts in PD with fatigue (false discovery rate [FDR] corrected p < 0.05), except left cingulum-hippocampus (CH), right superior longitudinal fasciculus, and right longitudinal fasciculus temporal part (FDR corrected p > 0.06); lower mean diffusivity (MD) values for all analyzed white matter tracts in PD with fatigue (FDR corrected p < 0.05), except in the left CH and uncinate fasciculus (FDR corrected p > 0.05). The mean radial diffusivity (RD) values, except for the left CH (FDR corrected p = 0.0576), were also significantly lower (FDR corrected p < 0.05). There was no difference in dopaminergic deficits between PD without fatigue and PD with fatigue (p > 0.50). The alteration of the white matter tract may reflect the degree of fatigue in PD. This is not true of the gray matter and striatal dopaminergic activity. These results show the possibility that white matter changes can be used as a biomarker for fatigue.
Collapse
Affiliation(s)
- Suk Yun Kang
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7, Keunjaebong-gil, Hwaseong, Gyeonggi-do, 18450, Republic of Korea.
| | - Mirim Bang
- Department of Radiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jing Yong Hong
- Department of Neurology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jungsu Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - You Mie Han
- Department of Nuclear Medicine, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, Republic of Korea
| | - Suk Ki Chang
- Department of Radiology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Seun Ah Lee
- Department of Radiology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Uicheul Yoon
- Department of Biomedical Engineering, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - Na-Young Shin
- Department of Radiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
17
|
Abstract
Empathizing is defined as “the drive to identify another’s mental states and to respond to these with an appropriate emotion” and systemizing is defined as “the drive to the drive to analyze and construct rule-based systems”. While mean diffusivity (MD) has been robustly associated with several cognitive traits and disorders related with empathizing and systemizing, its direct correlation with empathizing and systemizing remains to be investigated. We undertook voxel-by-voxel investigations of regional MD to discover microstructural correlates of empathizing, systemizing, and the discrepancy between them (D score: systemizing − empathizing). Whole-brain analyses of covariance revealed that across both sexes, empathizing was positively correlated with MD of (a) an anatomical cluster that primarily spreads in the areas in and adjacent to the left dorsolateral prefrontal cortex, left anterior to the middle cingulate cortex, and left insula and (b) an anatomical cluster of the left postcentral gyrus and left rolandic operculum. The former overlaps with positive MD correlates of cooperativeness. The D score and systemizing did not show significant correlations. In conclusion, while increased MD has generally been associated with reduced neural tissues and possibly area function, higher empathizing and cooperativeness were commonly reflected by greater MD values in areas (a) that mainly overlap with areas that play a key role in emotional salience and empathy. In addition, higher empathizing was correlated with greater MD values in areas (b) that play a key role in the mirror neuron system.
Collapse
|
18
|
Association of copper levels in the hair with gray matter volume, mean diffusivity, and cognitive functions. Brain Struct Funct 2019; 224:1203-1217. [PMID: 30656448 DOI: 10.1007/s00429-019-01830-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Although copper plays a critical role in normal brain functions and development, it is known that excess copper causes toxicity. Here we investigated the associations of copper levels in the hair with regional gray matter volume (rGMV), mean diffusivity (MD), and cognitive differences in a study cohort of 924 healthy young adults. Our findings showed that high copper levels were associated mostly with low cognitive abilities (low scores on the intelligence test consisting of complex speed tasks, involving reasoning task, a complex arithmetic task, and a reading comprehension task) as well as lower reverse Stroop interference, high rGMV over widespread areas of the brain [mainly including the bilateral lateral and medial parietal cortices, medial temporal structures (amygdala, hippocampus, and parahippocampal gyrus), middle cingulate cortex, orbitofrontal cortex, insula, perisylvian areas, inferior temporal lobe, temporal pole, occipital lobes, and supplementary motor area], as well as high MD of the right substantia nigra and bilateral hippocampus, which are indicative of low density in brain tissues. These results suggest that copper levels are associated with mostly aberrant cognitive functions, greater rGMV in extensive areas, greater MD (which are indicative of low density in brain tissues) in subcortical structures in the healthy young adults, possibly reflecting copper's complex roles in neural mechanisms.
Collapse
|
19
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Shinada T, Sakaki K, Nozawa T, Ikeda S, Yokota S, Daniele M, Sassa Y, Kawashima R. Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain. Sci Rep 2018; 8:5833. [PMID: 29643448 PMCID: PMC5895621 DOI: 10.1038/s41598-018-24226-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 03/28/2018] [Indexed: 01/30/2023] Open
Abstract
Poor sleep quality is associated with unfavorable psychological measurements, whereas sleep duration has complex relationships with such measurements. The aim of this study was to identify the associations between microstructural properties of the brain and sleep duration/sleep quality in a young adult. The associations between mean diffusivity (MD), a measure of diffusion tensor imaging (DTI), and sleep duration/sleep quality were investigated in a study cohort of 1201 normal young adults. Positive correlations between sleep duration and MD of widespread areas of the brain, including the prefrontal cortex (PFC) and the dopaminergic systems, were identified. Negative correlations between sleep quality and MD of the widespread areas of the brain, including the PFC and the right hippocampus, were also detected. Lower MD has been previously associated with more neural tissues in the brain. Further, shorter sleep duration was associated with greater persistence and executive functioning (lower Stroop interference), whereas good sleep quality was associated with states and traits relevant to positive affects. These results suggest that bad sleep quality and longer sleep duration were associated with aberrant neurocognitive measurements in the brain in healthy young adults.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Psychiatry, Tohoku Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| | - Takamitsu Shinada
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Magistro Daniele
- School of Electronic, Electrical and Systems Engineering, Loughborough University, England, UK
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|