1
|
Kong X, Barone GD, Jin D, Mao Y, Nan F, Xu L, Wang Z, Deng Y, Cernava T. Pollution Status, Ecological Effects, and Bioremediation Strategies of Phthalic Acid Esters in Agricultural Ecosystems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27668-27678. [PMID: 39620367 DOI: 10.1021/acs.jafc.4c07884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Phthalic acid esters (PAEs) are common organic contaminants in farmland soil throughout agricultural systems, posing significant threats to human health and thus closely associated with food safety concerns. Here, we consolidate the latest findings regarding the distribution, ecological effects, bioremediation methods, and microbial degradation pathways of PAEs in agricultural ecosystems. Generally, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-isobutyl phthalate (DiBP) exhibit the highest detection frequencies and concentrations in soil, air and agricultural products. The presence of these PAEs in agricultural ecosystems can significantly affect soil and plant-associated microbial communities, leading to decreased yield and quality of agricultural products. Bioremediation techniques, such as microbial degradation and phytoremediation, are frequently explored to address these issues. Overall, this review provides a comprehensive overview of current research on PAEs in China's agricultural systems and offers insights into potential problems and future research directions.
Collapse
Affiliation(s)
- Xiao Kong
- School of Public Health, Qingdao University, Qingdao 266021, China
| | | | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiting Mao
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Fengting Nan
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhigang Wang
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
2
|
Kim JH, Lee JH, Nan Z, Choi JW, Song JW. Di(2-ethylhexyl) phthalate exposure aggravates hypoxia/reoxygenation injury in cerebral endothelial cells by downregulating epithelial cadherin expression. Toxicol Res (Camb) 2024; 13:tfae163. [PMID: 39371678 PMCID: PMC11447374 DOI: 10.1093/toxres/tfae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that has adverse health effects. Most phthalates exhibit reproductive toxicity and are associated with diseases such as cardiovascular disorders. However, the effect of DEHP exposure on acute hypoxia/reperfusion injury remains unknown. Therefore, we assessed whether hypoxia/reperfusion injury is aggravated by exposure to DEHP and investigated plausible underlying mechanisms, including oxidative stress and expression of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and endothelial junctional proteins. bEnd.3 cells were exposed to DEHP and subsequently subjected to oxygen-glucose deprivation (OGD). Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay. The effect of DEHP/OGD/reoxygenation (R) was evaluated by assessing the levels of NO, reactive oxygen species (ROS), and PGE2. The expression of COX-2, cleaved caspase-3, cleaved PARP, inducible nitric oxide synthase (iNOS), and the endothelial tight junction proteins claudin-5 and ZO-1 was evaluated using quantitative polymerase chain reaction and western blotting. OGD/R decreased cell viability, and DEHP exposure before OGD/R further aggravated cell viability. DEHP/OGD/R significantly increased NO, PGE2, and ROS production following OGD/R. In the DEHP/OGD/R group, iNOS, COX-2, cleaved caspase-3, and cleaved PARP expression increased, and claudin-5 and ZO-1 levels decreased compared with those in the OGD/R group. E-Cadherin expression decreased significantly after DEHP/OGD/R exposure compared with that after OGD/R; this decrease in expression was recovered by treatment with the COX-2 inhibitor indomethacin and antioxidant N-acetylcysteine. Exposure to DEHP exacerbated hypoxia-reoxygenation injury. The enhanced damage upon DEHP exposure was associated with increased oxidative stress and COX-2 expression, leading to E-cadherin downregulation and increased apoptosis.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae Hoon Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Zhengyu Nan
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ja Woo Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Ashaari S, Jamialahmadi T, Davies NM, Almahmeed W, Sahebkar A. Di (2-ethyl hexyl) phthalate and its metabolite-induced metabolic syndrome: a review of molecular mechanisms. Drug Chem Toxicol 2024:1-19. [PMID: 39322993 DOI: 10.1080/01480545.2024.2405830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES Metabolic disorders, as multifactorial disorders, are induced by genetic susceptibility and exposure to environmental chemicals. Di (2-ethyl hexyl) phthalate (DEHP), a ubiquitous plasticizer, is well known as an endocrine-disrupting chemical in living organisms. In recent decades, researchers have focused on the potential of DEHP and its main metabolite (Mono (2-ethylhexyl) phthalate) (MEHP) to induce metabolic disorders. In the present review, we aimed to summarize studies regarding DEHP and MEHP-induced Metabolic syndrome (MetS) as well as address the involved mechanisms. METHODS A search has been carried out in Google Scholar, PubMed, Scopus, and Web of Science databases using appropriate keywords including 'Metabolic syndrome' or 'Metabolic disorder' or 'Obesity' or 'Hyperglycemia' or 'Hyperlipidemia' or 'Hypertension' or 'Non-alcoholic fatty liver disease' and 'DEHP' or 'Di (2-ethyl hexyl) phthalate' or 'Bis(2-ethylhexyl) phthalate' or 'MEHP' or 'Mono (2-ethylhexyl) phthalate'. Studies were chosen based on inclusion and exclusion criteria. Inclusion criteria are in vitro, in vivo, epidemiological studies, and English-written studies. Exclusion criteria are lack of access to the full text of studies, editorial articles, review articles, and conference articles. RESULTS Animal studies indicate that DEHP and MEHP disrupt insulin hemostasis, increase glucose content, and induce hyperlipidemia and hypertension as well as obesity, which could lead to type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). DEHP and its metabolite induce such effects directly through influence on nuclear receptors such as peroxisome proliferator-activated receptors (PPARs) or indirectly through reactive oxygen species (ROS) production. Both events led to the disruption of several molecular signaling pathways and subsequently metabolic syndrome (MetS). Furthermore, epidemiological studies showed that there was a correlation between DEHP metabolites levels and obesity, hyperglycemia, and hypertension. CONCLUSIONS According to studies, DEHP and its main metabolite have the potential to induce MetS by involving various molecular mechanisms. Epidemiological studies concerning the association of DEHP and MetS in humans are not sufficient. Therefore, more studies are needed in this regard.
Collapse
Affiliation(s)
- Sorour Ashaari
- Vice Chancellery for Research and Technology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Cao H, Li Z, Jin T, He S, Liu S, Li L, Wang Y, Gong Y, Wang G, Yang F, Dong W. Maslinic acid supplementation prevents di(2-ethylhexyl) phthalate-induced apoptosis via PRDX6 in peritubular myoid cells of Chinese forest musk deer. J Environ Sci (China) 2024; 143:47-59. [PMID: 38644023 DOI: 10.1016/j.jes.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 04/23/2024]
Abstract
Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Gang Wang
- Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
5
|
Sarangi P, Sahoo PK, Pradhan LK, Bhoi S, Sahoo BS, Chauhan NR, Raut S, Das SK. Concerted monoamine oxidase activity following exposure to di-2-ethylhexyl phthalate is associated with aggressive neurobehavioral response and neurodegeneration in zebrafish brain. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109970. [PMID: 38944366 DOI: 10.1016/j.cbpc.2024.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is the most commonly preferred synthetic organic chemical in plastics and its products for making them ductile, flexible and durable. As DEHP is not chemically bound to the macromolecular polymer of plastics, it can be easily leached out to accumulate in food and environment. Our recent report advocated that exposure to DEHP significantly transformed the innate bottom-dwelling and scototaxis behaviour of zebrafish. Our present study aimed to understand the possible role of DEHP exposure pertaining towards the development of aggressive behaviour and its association with amplified monoamine oxidase activity and neurodegeneration in the zebrafish brain. As heightened monoamine oxidase (MAO) is linked with genesis of aggressive behaviour, our observation also coincides with DEHP-persuaded aggressive neurobehavioral transformation in zebrafish. Our preliminary findings also showed that DEHP epitomized as a prime factor in transforming native explorative behaviour and genesis of aggressive behaviour through oxidative stress induction and changes in the neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. With the finding demarcating towards heightened chromatin condensation in the PGZ of zebrafish brain, our further observation by immunohistochemistry showed a profound augmentation in apoptotic cell death marker cleaved caspase 3 (CC3) expression following exposure to DEHP. Our further observation by immunoblotting study also demarcated a temporal augmentation in CC3 and tyrosine hydroxylase expression in the zebrafish brain. Therefore, the gross findings of the present study delineate the idea that chronic exposure to DEHP is associated with MAO-instigated aggressive neurobehavioral transformation and neurodegeneration in the zebrafish brain.
Collapse
Affiliation(s)
- Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Centre of Excellence, Natural Products and Therapeutics Laboratory, Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India
| | - Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Institute of Life Sciences, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Nishant Ranjan Chauhan
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha 756003, India.
| |
Collapse
|
6
|
Oh J, Schweitzer JB, Buckley JP, Upadhyaya S, Kannan K, Herbstman JB, Ghassabian A, Schmidt RJ, Hertz-Picciotto I, Bennett DH. Early childhood exposures to phthalates in association with attention-deficit/hyperactivity disorder behaviors in middle childhood and adolescence in the ReCHARGE study. Int J Hyg Environ Health 2024; 259:114377. [PMID: 38692176 PMCID: PMC11567690 DOI: 10.1016/j.ijheh.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Early-life exposure to phthalates alters behaviors in animals. However, epidemiological evidence on childhood phthalate exposure and attention-deficit/hyperactivity disorder (ADHD) behaviors is limited. METHODS This study included 243 children from the ReCHARGE (Revisiting Childhood Autism Risks from Genetics and Environment) study, who were previously classified as having autism spectrum disorder (ASD), developmental delay, other early concerns, and typical development in the CHARGE case-control study. Twenty phthalate metabolites were measured in spot urine samples collected from children aged 2-5 years. Parents reported on children's ADHD symptoms at ages 8-18 years using Conners-3 Parent Rating Scale. Covariate-adjusted negative binomial generalized linear models were used to investigate associations between individual phthalate metabolite concentrations and raw scores. Weighted quantile sum (WQS) regression with repeated holdout validation was used to examine mixture effects of phthalate metabolites on behavioral scores. Effect modification by child sex was evaluated. RESULTS Among 12 phthalate metabolites detected in >75% of the samples, higher mono-2-heptyl phthalate (MHPP) was associated with higher scores on Inattentive (β per doubling = 0.05, 95% confidence interval [CI]: 0.02, 0.08) and Hyperactive/Impulsive scales (β = 0.04, 95% CI: 0.00, 0.07), especially among children with ASD. Higher mono-carboxy isooctyl phthalate (MCiOP) was associated with higher Hyperactivity/Impulsivity scores (β = 0.07, 95% CI: -0.01, 0.15), especially among typically developing children. The associations of the molar sum of high molecular weight (HMW) phthalate metabolites and a phthalate metabolite mixture with Hyperactivity/Impulsivity scores were modified by sex, showing more pronounced adverse associations among females. CONCLUSION Exposure to phthalates during early childhood may impact ADHD behaviors in middle childhood and adolescence, particularly among females. Although our findings may not be broadly generalizable due to the diverse diagnostic profiles within our study population, our robust findings on sex-specific associations warrant further investigations.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sudhi Upadhyaya
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Jiang Q, Wan Y, Zhu K, Wang H, Feng Y, Xiang Z, Liu R, Zhao S, Zhu Y, Song R. Association of exposure to phthalates and phthalate alternatives with dyslexia in Chinese primary school children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28392-28403. [PMID: 38538993 DOI: 10.1007/s11356-024-32871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/05/2024] [Indexed: 04/30/2024]
Abstract
Previous studies have shown associations between children's exposure to phthalates and neurodevelopmental disorders. Whereas the impact of exposure to phthalate alternatives is understudied. This study aimed to evaluate the association of exposure to phthalates/their alternatives with the risk of dyslexia. We recruited 745 children (355 dyslexia and 390 non-dyslexia) via the Tongji Reading Environment and Dyslexia Research Project, and their urine samples were collected. A total of 26 metabolites of phthalates/their alternatives were measured. Multivariate logistic regression and quantile-based g-computation were used to estimate the associations of exposure to the phthalates/their alternatives with dyslexia. More than 80% of the children had 17 related metabolites detected in their urine samples. After adjustment, the association between mono-2-(propyl-6-hydroxy-heptyl) phthalate (OH-MPHP) with the risk of dyslexia was observed. Compared with the lowest quartile of OH-MPHP levels, the odds of dyslexia for the third quartile was 1.93 (95% CI 1.06, 3.57). Regarding mixture analyses, it was found that OH-MPHP contributed the most to the association. Further analyses stratified by sex revealed that this association was only observed in boys. Our results suggested a significantly adverse association of di-2-propylheptyl phthalate exposure with children's language abilities. It highlights the necessity to prioritize the protection of children's neurodevelopment by minimizing their exposure to endocrine-disrupting chemicals like di-2-propylheptyl phthalate.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, 430024, Hubei, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rundong Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Zhao
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Wei Z, Fang R, Wang Y, Dong J. Maternal exposure to di-(2-ethylhexyl) phthalate impaired the social interaction via activating microglia in male pups. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116069. [PMID: 38340601 DOI: 10.1016/j.ecoenv.2024.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a common endocrine-disrupting chemical (EDC), is widely used in daily articles, early exposure to DEHP is associated with many behavioral changes in pups. This study aimed to investigate the effects and underlying mechanisms of maternal exposure to DEHP on the impaired social interaction in pups. Pregnant rats were administered 0, 30, 300, or 750 mg/kg/d DEHP daily by oral gavage. Highly aggressive proliferating immortalized (HAPI) cells were treated with mono-(2-ethylhexyl) phthalate (MEHP) and tyrosine phosphorylation inhibitor (AG490). Our results showed that DEHP exposure induced the activation of microglias (MGs) via activating the janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, and increased the level of pro-inflammatory factors, then impaired the social behavior in male pups, but not female pups. Moreover, MEHP exposure could also activate HAPI via activating this signaling pathway, and AG490 could inhibit the activation of this signaling pathway caused by MEHP. Therefore, we indicated that maternal exposure to DEHP could cause the gender-specific impaired social interaction in pups that might be related to the activation of MGs.
Collapse
Affiliation(s)
- Zhixia Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China
| | - Rui Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 110004 Shenyang, China.
| | - Jing Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China Medical University, Shenyang, Liaoning 11012, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China.
| |
Collapse
|
9
|
Liang X, Liang J, Zhang S, Yan H, Luan T. Di-2-ethylhexyl phthalate disrupts hepatic lipid metabolism in obese mice by activating the LXR/SREBP-1c and PPAR-α signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169919. [PMID: 38199361 DOI: 10.1016/j.scitotenv.2024.169919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP), a widely utilized plasticizer, has been described as a potential obesogen based on in vivo disruption of hepatic lipid homeostasis and in vitro promotion of lipid accumulation. However, limited literature exists regarding the specific ramifications of DEHP exposure on obese individuals, and the precise mechanisms underlying the adverse effects of DEHP exposure remain unclear. This study aimed to assess the impact of DEHP on hepatic lipid metabolism in obese mice by comparing them to normal mice. Following a 10-week DEHP exposure period, the obese mice exhibited higher blood lipid levels, more severe hepatic steatosis, and more infiltrations of inflammatory cells in liver tissue than normal mice. Interestingly, the body weight of the mice exhibited no significant alteration. In addition, transcriptomic analyses revealed that both lipogenesis and fatty acid oxidation contributed to hepatic lipid metabolism dysregulation following DEHP exposure. More specifically, alterations in the transcription of genes associated with hepatic lipid metabolism were linked to the different responses to DEHP exposure observed in normal and obese mice. Additionally, the outcomes of in vitro experiments validated the in vivo findings and demonstrated that DEHP exposure could modify hepatic lipid metabolism in normal mice by activating the LXR/SREBP-1c signaling pathway to promote lipogenesis. At the same time, DEHP exposure led to inhibition of the Camkkβ/AMPK pathway to suppress β-fatty acid oxidation. Conversely, in obese mice, DEHP exposure was found to be associated with the stimulation of both lipogenesis and fatty acid oxidation via activation of the LXR/SREBP-1c and PPAR-α signaling pathways, respectively. The findings presented in this study first elucidate the contrasting mechanisms underlying DEHP-induced liver damage in obese and normal mice, thereby offering valuable insights into the pathogenesis of DEHP-induced liver damage in individuals with obesity.
Collapse
Affiliation(s)
- Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Jiehua Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengqi Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haowei Yan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China.; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
10
|
Huang G, Gong Q, Zhang K, Abdelhafez HEDH, Yu J, Guo J. Regulation of BTB (POZ) Structural Domain 6b by MicroRNA-222b in Zebrafish Embryos after Exposure to Di(2-ethylhexyl)phthalate at Low Concentrations. Chem Res Toxicol 2024; 37:311-322. [PMID: 38238692 DOI: 10.1021/acs.chemrestox.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a sort of endocrine disruptor that induces abnormal physiological and biochemical activities such as epigenetic alterations, apoptosis, and oxidative stress. MicroRNAs (miRNAs) are a class of short noncoding RNAs that may regulate the expression of many protein-coding genes when organisms are exposed to environmental chemicals. miR-222b is a differentially expressed miRNA after DEHP exposure. miRNA-mRNA prediction suggested that BTB (POZ) structural domain 6b (BTBD6B) might be a target mRNA of miR-222b, and DEHP exposure altered its expression. However, the correlation between miR-222b and BTBD6B has not been experimentally confirmed. The aim of this study was to investigate the regulation of BTBD6B by miR-222b in zebrafish embryos under the effect of low concentration of DEHP. Dual fluorescent protein assays and dual luciferase reporter gene assays confirmed the interaction between miR-222b and the 3'-untranslated region (3'-UTR) of BTBD6B. Ectopic expression assays showed that miR-222b could negatively regulate BTBD6B in ZF4 cells. However, the relative expression of miR-222b and BTBD6B was significantly higher at both transcriptional and post-transcriptional levels in zebrafish embryos exposed to low concentrations of DEHP. The results of this study improved our understanding of the molecular mechanism of DEHP exposure toxicity. It identified that the aberrant expression of miR-222b/BTBD6B may be one of the mechanisms of DEHP toxicity, which can provide a theoretical reference and scientific basis for environmental management and biological health risk assessment.
Collapse
Affiliation(s)
- Ge Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Qi Gong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Kai Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Hossam El Din H Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Lab, Agricultural Research Center, Ministry of Agriculture, Giza11435, Egypt
| | - Junjie Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| |
Collapse
|
11
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
12
|
Zhang H, Yi X, Hu W, Zhu G, Fu X, Jin W, Qin L, Li M. MEHP activates JNK to inhibit the migration of human foreskin fibroblasts. Syst Biol Reprod Med 2023; 69:423-434. [PMID: 37812750 DOI: 10.1080/19396368.2023.2262082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023]
Abstract
This study aimed to investigate the impact of mono(2-ethylhexyl) phthalate (MEHP) on the proliferation, apoptosis, and migration of human foreskin fibroblast cells (HFF-1) and the role of the JNK signaling pathway in cell migration. HFF-1 cells were randomly assigned to the control group with 0 MEHP exposure (M0) or the experimental groups with 25, 50, 100, 200, and 400 μmol/L MEHP exposure (M25, M50, M100, M200, and M400, respectively). After 24 and 48 h of MEHP exposure, the proliferation of HFF-1 cells in any group had no significant change. However, compared with the M0 group, the M200 and M400 groups presented substantially increased apoptosis of HFF-1 cells. Moreover, cell migration ability significantly decreased in all groups (p < 0.05). Additionally, the transcription and phosphorylated protein activation of JNK kinase in HFF-1 cells were substantially upregulated with the increase in MEHP exposure. Subsequently, HFF-1 cells were randomly divided into three groups: the DMSO blank control group, the 100 μM MEHP experimental group (M100), and the 100 μM MEHP plus 10 μM SP600125 (specific JNK inhibitor) experimental group (S10). The activation of JNK protein in HFF-1 cells was substantially downregulated in the S10 group. HFF-1 cells were also divided into the blank control group (M0). They were treated with 100 μM MEHP and varying concentrations of SP600125 (5, 10, and 15 μM for S5, S10, and S15, respectively). As the concentration of the antagonist increased, the migration ability of HFF-1 cells was returned to normal. Finally, the ROS in HFF-1 cells increased under MEHP exposure. This finding indicates that the regulation of cell migration by the JNK signaling pathway may be important in the occurrence of hypospadias.
Collapse
Affiliation(s)
- Hu Zhang
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xuan Yi
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Wei Hu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Guoqiang Zhu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xiaowen Fu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Wei Jin
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Long Qin
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Mingyong Li
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
13
|
Wang HR, Li MZ, Cui JG, Zhang H, Zhao Y, Li JL. Lycopene Prevents Phthalate-Induced Cognitive Impairment via Modulating Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16727-16738. [PMID: 37871231 DOI: 10.1021/acs.jafc.3c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is frequently used as a plasticizer in industrial and agricultural products. DEHP can cause severe neurotoxicity, such as impaired learning and memory function. Lycopene (LYC) as a carotenoid exerts excellent antioxidant capacity and therapeutic effects in neurodegenerative diseases. However, whether LYC can prevent the cognitive impairment induced by DEHP and the specific mechanisms are unclear. In the present study, the behavioral test results suggested that LYC alleviated the learning and memory impairment induced by DEHP. The histopathological data revealed that LYC attenuated DEHP-induced disordered arrangement of the neurons in the CA1 and CA3 regions of the hippocampus tissue. Moreover, LYC inhibited the occurrence of DEHP-induced ferroptosis via regulating iron metabolism, inhibiting lipid peroxidation, and activating the cysteine transporter and nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (NrF2/HO-1) signaling pathway. Overall, the study contributes novel perspectives into the potential mechanisms of LYC preventing phthalate-induced cognitive impairment in the hippocampus.
Collapse
Affiliation(s)
- Hao-Ran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
14
|
Qiu F, He S, Zhang Z, Dai S, Wang J, Liu N, Li Z, Hu X, Xiang S, Wei C. MiR-93 alleviates DEHP plasticizer-induced neurotoxicity by negatively regulating TNFAIP1 and inhibiting ubiquitin-mediated degradation of CK2β. Food Chem Toxicol 2023:113888. [PMID: 37302538 DOI: 10.1016/j.fct.2023.113888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in various products, such as plastic packaging in food industries. As an environmental endocrine disruptor, it induces adverse effects on brain development and function. However, the molecular mechanisms by which DEHP induces learning and memory impairment remain poorly understood. Herein, we found that DEHP impaired learning and memory in pubertal C57BL/6 mice, decreased the number of neurons, downregulated miR-93 and the β subunit of casein kinase 2 (CK2β), upregulated tumor necrosis factor-induced protein 1 (TNFAIP1), and inhibited Akt/CREB pathway in mouse hippocampi. Coimmunoprecipitation and western blotting assays revealed that TNFAIP1 interacted with CK2β and promoted its degradation by ubiquitination. Bioinformatics analysis showed a miR-93 binding site in the 3'-untranslated region of Tnfaip1. A dual-luciferase reporter assay revealed that miR-93 targeted TNFAIP1 and negatively regulated its expression. MiR-93 overexpression prevented DEHP-induced neurotoxicity by downregulating TNFAIP1 and then activating CK2/Akt/CREB pathway. These data indicate that DEHP upregulates TNFAIP1 expression by downregulating miR-93, thus promoting ubiquitin-mediated degradation of CK2β, subsequently inhibiting Akt/CREB pathway, and finally inducing learning and memory impairment. Therefore, miR-93 can relieve DEHP-induced neurotoxicity and may be used as a potential molecular target for prevention and treatment of related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Simei He
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zilong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Siyu Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhiwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
15
|
Yang L, Zou J, Zang Z, Wang L, Du Z, Zhang D, Cai Y, Li M, Li Q, Gao J, Xu H, Fan X. Di-(2-ethylhexyl) phthalate exposure impairs cortical development in hESC-derived cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161251. [PMID: 36587670 DOI: 10.1016/j.scitotenv.2022.161251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous environmental endocrine disruptor, is widely used in consumer products. Increasing evidence implies that DEHP influences the early development of the human brain. However, it lacks a suitable model to evaluate the neurotoxicity of DEHP. Using an established human cerebral organoid model, which reproduces the morphogenesis of the human cerebral cortex at the early stage, we demonstrated that DEHP exposure markedly suppressed cell proliferation and increased apoptosis, thus impairing the morphogenesis of the human cerebral cortex. It showed that DEHP exposure disrupted neurogenesis and neural progenitor migration, confirmed by scratch assay and cell migration assay in vitro. These effects might result from DEHP-induced dysplasia of the radial glia cells (RGs), the fibers of which provide the scaffolds for cell migration. RNA sequencing (RNA-seq) analysis of human cerebral organoids showed that DEHP-induced disorder in cell-extracellular matrix (ECM) interactions might play a pivotal role in the neurogenesis of human cerebral organoids. The present study provides direct evidence of the neurodevelopmental toxicity of DEHP after prenatal exposure.
Collapse
Affiliation(s)
- Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
16
|
Adam N, Mhaouty-Kodja S. Behavioral Effects of Exposure to Phthalates in Female Rodents: Evidence for Endocrine Disruption? Int J Mol Sci 2022; 23:2559. [PMID: 35269705 PMCID: PMC8910129 DOI: 10.3390/ijms23052559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/18/2022] Open
Abstract
Phthalates have been widely studied for their reprotoxic effects in male rodents and in particular on testosterone production, for which reference doses were established. The female rodent brain can also represent a target for exposure to these environmental endocrine disruptors. Indeed, a large range of behaviors including reproductive behaviors, mood-related behaviors, and learning and memory are regulated by sex steroid hormones. Here we review the experimental studies addressing the effects and mechanisms of phthalate exposure on these behaviors in female rodents, paying particular attention to the experimental conditions (period of exposure, doses, estrous stage of analyses etc.). The objective of this review is to provide a clear picture of the consistent effects that can occur in female rodents and the gaps that still need to be filled in terms of effects and mode(s) of action for a better risk assessment for human health.
Collapse
Affiliation(s)
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine—Institut de Biologie Paris Seine, 7 quai Saint Bernard, 75005 Paris, France;
| |
Collapse
|