1
|
Khan Z, Messiri NE, Iqbal E, Hassan H, Tanweer MS, Sadia SR, Taj M, Zaidi U, Yusuf K, Syed NI, Zaidi M. On the role of epigenetic modifications of HPA axis in posttraumatic stress disorder and resilience. J Neurophysiol 2025; 133:742-759. [PMID: 39842807 DOI: 10.1152/jn.00345.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Stress is a fundamental adaptive response that invokes amygdala and hypothalamus-pituitary-adrenal (HPA) axis along with other brain regions. Extreme or chronic stress, however, can result in a multitude of neuropsychiatric disorders, including anxiety, paranoia, bipolar disorder (BP), major depressive disorder (MDD), and posttraumatic stress disorder (PTSD). Despite widespread exposure to trauma (70.4%), the incidence of PTSD is relatively low (6.8%), suggesting that either individual susceptibility or adaptability driven by epigenetic and genetic mechanisms are likely at play. PTSD takes hold from exposure to traumatic events, such as death threats or severe abuse, with its severity being impacted by the magnitude of trauma, its frequency, and the nature. This comprehensive review examines how traumatic experiences and epigenetic modifications in hypothalamic-pituitary axis (HPA), such as DNA methylation, histone modifications, noncoding RNAs, and chromatin remodeling, are transmitted across generations, and impact genes such as FKBP prolyl isomerase 5 (FKBP5), nuclear receptor subfamily 3 group C member 1 (NR3C1), brain-derived neurotrophic factor (BDNF), and solute carrier family 6 member 4 (SLC6A4). It also provides a comprehensive overview on trauma reversal, resilience mechanisms, and pro-resilience factors such as histone acetyltransferases (HATs)/histone deacetylases (HDACs) ratio, dehydroepiandrosterone (DHEA)/cortisol ratio, testosterone levels, and neuropeptide Y, thus highlighting potential therapeutic approaches for trauma-related disorders. The studies highlighted here underscore the narrative, for the first time, that the examination and treatment of PTSD and other depressive disorders must invoke a multitude of approaches to seek out the most effective and personalized strategies. We also hope that the discussion emanating from this review will also inform government policies directed toward intergenerational trauma and PTSD.
Collapse
Affiliation(s)
- Zainab Khan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nour El Messiri
- Department of Epidemiology, The University of Texas Health Science Center at Houston, Houston, Texas, United States
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Emann Iqbal
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Hadi Hassan
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mohammad S Tanweer
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Syeda R Sadia
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Moizzuddin Taj
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| | - Umar Zaidi
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Natural Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kamran Yusuf
- Section of Neonatology, Department of Pediatrics, School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Mukarram Zaidi
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Adeline Dorothy PD, Rajan KE. Prenatal maternal life adversity impacts on learning and memory in offspring: implication to transgenerational epigenetic inheritance. Front Neurosci 2025; 19:1518046. [PMID: 40018363 PMCID: PMC11865043 DOI: 10.3389/fnins.2025.1518046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Maternal stress exposure during pregnancy is known to affect offspring behavior, including learning and memory. We hypothesized that maternal stress-induced changes transmit this effect through maternal line mediated transgenerational epigenetic inheritance. To test our hypothesis, pregnant rats (F0) were undisturbed (Control, Ctrl)/exposed to social stress during gestational days (GD) 16-18 (PMS)/exposed to social stress and treated with oxytocin during GD-16 to 18 (PMS+OXT). Subsequently, F1 female offspring from Ctrl, PMS, and PMS+OXT were mated with Ctrl F1 males to examine maternal line mediated transgenerational impacts. Female animals (F1 and F2) were subjected to behavioral test and the levels of global H3K4me2/H3K4me3 methylation, methylation in the CRH promoter, expression of Crh, Crh receptors (Crhr1, Crhr2), and BDNF were determined. It was found that prenatal maternal stress (PMS) reduced reference and working memory in F1 and F2 offspring, increased global and specific H3K4me2, H3K4me3 methylation in the CRH promoter, expression of Crh, Crh receptors, and corticosterone (CORT), and down-regulated the expression of pro-and mature BDNF by differentially regulating Bdnf transcripts III, IV and VI in the amygdala. Oxytocin exposure reduced PMS-induced global and specific H3K4me2/3 changes, which repressed the expression of Crh, Crh receptors, reduced CORT levels, up-regulated the expression of pro-BDNF and mature BDNF, and improved memory in F1 and F2 offspring. Collectively, our study revealed that PMS reduced reference and working memory performance in F1 and F2 offspring through maternal line transgenerational inheritance of H3K4me2, H3K4me3 methylation, and associated mechanisms that regulate BDNF expression and synaptic plasticity.
Collapse
Affiliation(s)
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
3
|
Zhao R, Wang J, Chung SK, Xu B. New insights into anti-depression effects of bioactive phytochemicals. Pharmacol Res 2025; 212:107566. [PMID: 39746497 DOI: 10.1016/j.phrs.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Depression is one of the most common psychological disorders, and due to its high prevalence and mortality rates, it imposes a significant disease burden. Contemporary treatments for depression involve various synthetic drugs, which have limitations such as side effects, single targets, and slow onset of action. Unlike synthetic medications, phytochemicals offer the benefits of a multi-target and multi-pathway mode of treatment for depression. In this literature review, we describe the pharmacological actions, experimental models, and clinical trials of the antidepressant effects of various phytochemicals. Additionally, we summarize the potential mechanisms by which these phytochemicals prevent depression, including regulating neurotransmitters and their receptors, the HPA axis, inflammatory responses, managing oxidative stress, neuroplasticity, and the gut microbiome. Phytochemicals exert therapeutic effects through multiple pathways and targets, making traditional Chinese medicine (TCM) a promising adjunctive antidepressant for the prevention, alleviation, and treatment of depression. Therefore, this review aims to provide robust evidence for subsequent research into developing phytochemical resources as effective antidepressant agents.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
4
|
Kovarova V, Bordes J, Mitra S, Narayan S, Springer M, Brix LM, Deussing JM, Schmidt MV. Deep phenotyping reveals CRH and FKBP51-dependent behavioral profiles following chronic social stress exposure in male mice. Neuropsychopharmacology 2025; 50:556-567. [PMID: 39438757 PMCID: PMC11736030 DOI: 10.1038/s41386-024-02008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The co-chaperone FKBP51, encoded by FKBP5 gene, is recognized as a psychiatric risk factor for anxiety and depressive disorders due to its crucial role in the stress response. Another key modulator in stress response regulation is the corticotropin releasing hormone (CRH), which is co-expressed with FKBP51 in many stress-relevant brain-regions and cell-types. Together, they intricately influence the balance of the hypothalamic-pituitary-adrenal (HPA) axis, one of the primary stress response systems. Previous research underscores the potential moderating effects these genes have on the regulation of the stressful life events towards the vulnerability of major depressive disorder (MDD). However, the specific function of FKBP51 in CRH-expressing neurons remains largely unexplored. Here, through deep behavioral phenotyping, we reveal heightened stress effects in mice lacking FKBP51 in CRH co-expressing neurons (CRHFKBP5-/-), particularly evident in social contexts. Our findings highlight the importance of considering cell-type specificity and context in comprehending stress responses and advocate for the utilization of machine-learning-driven phenotyping of mouse models. By elucidating these intricacies, we lay down the groundwork for personalized interventions aimed at enhancing stress resilience and individual well-being.
Collapse
Affiliation(s)
- Veronika Kovarova
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lea Maria Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
5
|
Fan Y, He D, Chen L, Ge C. Association between the depressive symptom trajectories and all-cause mortality in Chinese middle-aged and elderly adults. Sci Rep 2025; 15:879. [PMID: 39762339 PMCID: PMC11704258 DOI: 10.1038/s41598-025-85177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Previous studies reported that depressive symptoms were associated with a high risk of all-cause mortality. However, the effect of different long-term depressive symptom trajectory patterns on the risk of all-cause mortality has not been evaluated. Our research aimed to explore the association between different depressive symptom trajectories and the risk of all-cause mortality in Chinese adults. The data we used were from the China Health and Retirement Longitudinal Study. In total, 13,624 subjects aged over 45 years were ultimately included in the analysis. Group-based trajectory modeling was used to identify the different trajectories of depressive symptoms. The multivariable Cox regression model was used to examine the association between long-term depressive symptom trajectories and all-cause mortality. The results show that a total of five depressive symptom trajectories were identified in our study, including stable-low, stable-moderate, increasing, decreasing and stable-high. Compared with individuals in the stable-low depressive symptom trajectories group, those in the increasing and stable-high trajectory groups possessed a greater mortality rate, with a multivariable-adjusted hazard ratio (95% CIs) for mortality were 1.30 (1.06, 1.60) and 1.59 (1.26, 2.02), respectively. In addition, we have not identified the significant risk of all-cause mortality in people with decreased and stable-moderate symptom trajectories. Moreover, the risk of all-cause mortality had an increasing trend among the different trajectory groups. In the sensitivity analysis, the association was robust in most of the subgroups. In conclusion, people with increasing and persistent higher depressive symptom trajectories were associated with an increased risk of all-cause mortality.
Collapse
Affiliation(s)
- Yayun Fan
- Department of Clinical Nutrition, Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, People's Republic of China
| | - Dingliu He
- Department of Clinical Nutrition, Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, People's Republic of China.
| | - Lin Chen
- Department of Obstetrical, Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, China
| | - Chunxia Ge
- Department of Clinical Nutrition, Yancheng Third People's Hospital, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, People's Republic of China.
| |
Collapse
|
6
|
Ejiohuo O, Bajia D, Pawlak J, Szczepankiewicz A. Asoprisnil as a Novel Ligand Interacting with Stress-Associated Glucocorticoid Receptor. Biomedicines 2024; 12:2745. [PMID: 39767652 PMCID: PMC11726916 DOI: 10.3390/biomedicines12122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background/objective: The glucocorticoid receptor (GR) is critical in regulating cortisol production during stress. This makes it a key target for treating conditions associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation, such as mental disorders. This study explores novel ligands beyond mifepristone for their potential to modulate GR with improved efficacy and safety. By investigating these interactions, we seek to identify new pharmacotherapeutic options for stress-related mental illness. Methods: The ligands asoprisnil, campestanol, and stellasterol were selected based on structural similarities to mifepristone (reference ligand) and evaluated for pharmacological and ADME (absorption, distribution, metabolism, and excretion) properties using the SwissADME database. Molecular docking with AutoDock 4.2.6 and molecular dynamics simulations were performed to investigate ligand-protein interactions with the human glucocorticoid receptor, and binding free energies were calculated using MMPBSA. Results: Pharmacokinetic analysis revealed that asoprisnil exhibited high gastrointestinal absorption and obeyed Lipinski's rule, while mifepristone crossed the blood-brain barrier. Toxicological predictions showed that mifepristone was active for neurotoxicity and immunotoxicity, while asoprisnil, campestanol, and stellasterol displayed lower toxicity profiles. Asoprisnil demonstrated the highest stability in molecular dynamics simulations, with the highest negative binding energy of -62.35 kcal/mol, when compared to mifepristone, campestanol, and stellasterol, with binding energies of -57.08 kcal/mol, -49.99 kcal/mol, and -46.69 kcal/mol, respectively. Conclusion: This makes asoprisnil a potentially favourable therapeutic candidate compared to mifepristone. However, further validation of asoprisnil's interaction, efficacy, and safety in stress-related mental disorders through experimental studies and clinical trials is needed.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Donald Bajia
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | | |
Collapse
|
7
|
Li W, Yang L, Chen H, Miao J, Wang Y, Zhou C, Chen Y, Kong Z, Shen C, Wu J, Li J, Zhu L, Li Z, Bian Y. Depression, stress, and tryptophan metabolism through the kynurenine pathway: treatment strategies from the perspective of Chinese herbal medicine. Metab Brain Dis 2024; 40:5. [PMID: 39546044 DOI: 10.1007/s11011-024-01461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024]
Abstract
The pathogenesis of depression is complex, involving abnormalities in tryptophan (TRP) metabolism through the kynurenine pathway (KP). Moreover, depression is closely related to the hypothalamic-pituitary-adrenal (HPA) axis, the gut-brain axis, neuroinflammation, and stress. These factors collectively influence the multidimensional pathological mechanisms of depression. TRP, a fundamental amino acid, serves as a precursor for neuroactive metabolites vital to physiological functions. Central to TRP metabolism is the KP, and the imbalance between neurotoxic and neuroprotective metabolites is closely related to the onset and progression of depression. Therefore, maintaining the balance of KP metabolites is important. In this review, we have investigated the role of the KP in depression and explored the complexity of KP dysregulation and its therapeutic importance. Here, we highlight how a deeper understanding of the KP and its regulation can pave the way for new treatment strategies. Specifically, we have summarized the latest advances in elucidating the key mechanisms of rate-limiting enzyme inhibitors, providing insights into their potential therapeutic efficacy. In addition, we have explored the emerging field of Chinese herbal medicine, discussing its potential to regulate KP metabolites and alleviate depressive symptoms, thereby expanding the treatment options for depression. Our findings emphasize the multifaceted nature of depression and the necessity of interdisciplinary research to fully utilize KP regulation and Chinese herbal medicine as strategies to advance the treatment of depression.
Collapse
Affiliation(s)
- Wen Li
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haozhi Chen
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Miao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutong Wang
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changlin Zhou
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyang Kong
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengyue Shen
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiafei Wu
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinyi Li
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Luoying Zhu
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yaoyao Bian
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
8
|
Park ES, Shin CY, Jeon SJ, Ham BJ. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol Ther (Seoul) 2024; 32:659-684. [PMID: 39428555 PMCID: PMC11535299 DOI: 10.4062/biomolther.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Viral infections are increasingly recognized as triggers for depressive disorders, particularly following the SARS-CoV-2 pandemic and the rise of long COVID. Viruses such as Herpes Simplex Virus (HSV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), and Human Immunodeficiency Virus (HIV) are linked to depression through complex neurobiological mechanisms. These include immune system dysregulation, chronic inflammation, and neurotransmitter imbalances that affect brain function and mood regulation. Viral activation of the immune system leads to the release of pro-inflammatory cytokines, resulting in neuroinflammation and associated depressive symptoms. Furthermore, specific viruses can disrupt neurotransmitter systems, including serotonin, dopamine, and glutamate, all of which are essential for mood stabilization. The unique interactions of different viruses with these systems underscore the need for virus-specific therapeutic approaches. Current broad-spectrum treatments often overlook the precise neurobiological pathways involved in post-viral depression, reducing their efficacy. This review emphasizes the need to understand these virus-specific interactions to create tailored interventions that directly address the neurobiological effects induced by each type of virus. These interventions may include immunomodulatory treatments that target persistent inflammation, antiviral therapies to reduce the viral load, or neuroprotective strategies that restore neurotransmitter balance. Precision medicine offers promising avenues for the effective management of virus-induced depression, providing patient-specific approaches that address the specific biological mechanisms involved. By focusing on the development of these targeted treatments, this review aims to pave the way for a new era in psychiatric care that fully addresses the root causes of depression induced by viral infections.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Wang M, Wang H, Feng Z, Wu S, Li B, Han F, Xiao F. Predicting Depression Among Chinese Patients with Narcolepsy Type 1: A Machine-Learning Approach. Nat Sci Sleep 2024; 16:1419-1429. [PMID: 39318394 PMCID: PMC11420898 DOI: 10.2147/nss.s468748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Objective Depression is a common psychiatric issue among patients with narcolepsy type 1 (NT1). Effective management requires accurate screening and prediction of depression in NT1 patients. This study aims to identify relevant factors for predicting depression in Chinese NT1 patients using machine learning (ML) approaches. Methods A total of 203 drug-free NT1 patients (aged 5-61), diagnosed based on the ICSD-3 criteria, were consecutively recruited from the Sleep Medicine Center at Peking University People's Hospital between September 2019 and April 2023. Depression, daytime sleepiness, and impulsivity were assessed using the Center for Epidemiologic Studies Depression Scale for Children (CES-DC) or the Self-Rating Depression Scale (SDS), the Epworth Sleepiness Scale for adult or children and adolescents (ESS or ESS-CHAD), and the Barratt Impulse Scale (BIS-11). Demographic characteristics and objective sleep parameters were also analyzed. Three ML models-Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM)-were used to predict depression. Model performance was evaluated using receiver operating curve (AUC), accuracy, precision, recall, F1 score, and decision curve analysis (DCA). Results The LR model identified hallucinations (OR 2.21, 95% CI 1.01-4.90, p = 0.048) and motor impulsivity (OR 1.10, 95% CI 1.02-1.18, p = 0.015) as predictors of depression. Among the ML models, SVM showed the best performance with an AUC of 0.653, accuracy of 0.659, sensitivity of 0.727, and F1 score of 0.696, reflecting its effectiveness in integrating sleep-related and psychosocial factors. Conclusion This study highlights the potential of ML models for predicting depression in NT1 patients. The SVM model shows promise in identifying patients at high risk of depression, offering a foundation for developing a data-driven, personalized decision-making tool. Further research should validate these findings in diverse populations and include additional psychological variables to enhance model accuracy.
Collapse
Affiliation(s)
- Mengmeng Wang
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Huanhuan Wang
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, People's Republic of China
- School of Nursing, Peking University, Beijing, People's Republic of China
| | - Zhaoyan Feng
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Shuai Wu
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Bei Li
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, People's Republic of China
- School of Nursing, Peking University, Beijing, People's Republic of China
| | - Fang Han
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Fulong Xiao
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
10
|
Newman M, Donahue HJ, Neigh GN. Connecting the dots: sex, depression, and musculoskeletal health. J Clin Invest 2024; 134:e180072. [PMID: 39286983 PMCID: PMC11405046 DOI: 10.1172/jci180072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Depression and multiple musculoskeletal disorders are overrepresented in women compared with men. Given that depression is a modifiable risk factor and improvement of depressive symptoms increases positive outcomes following orthopedic intervention, efforts to improve clinical recognition of depressive symptoms and increased action toward ameliorating depressive symptoms among orthopedic patients are positioned to reduce complications and positively affect patient-reported outcomes. Although psychosocial factors play a role in the manifestation and remittance of depression, it is also well appreciated that primary biochemical changes are capable of causing and perpetuating depression. Unique insight for novel treatments of depression may be facilitated by query of the bidirectional relationship between musculoskeletal health and depression. This Review aims to synthesize the diverse literature on sex, depression, and orthopedics and emphasize the potential for common underlying biological substrates. Given the overrepresentation of depression and musculoskeletal disorders among women, increased emphasis on the biological drivers of the co-occurrence of these disorders is positioned to improve women's health.
Collapse
Affiliation(s)
- Mackenzie Newman
- Department of Orthopaedic Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University College of Engineering, Richmond, Virginia, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
11
|
He Y, Wang K, Su N, Yuan C, Zhang N, Hu X, Fu Y, Zhao F. Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. J Cell Mol Med 2024; 28:e70099. [PMID: 39300699 PMCID: PMC11412916 DOI: 10.1111/jcmm.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Yuhong He
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Ke Wang
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Niri Su
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Chongshan Yuan
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Feng Zhao
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
12
|
Favoretto CA, Bertagna NB, Miguel TT, Quadros IMH. The CRF/Urocortin systems as therapeutic targets for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:97-152. [PMID: 39523064 DOI: 10.1016/bs.irn.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions. Extensive evidence in preclinical models support the involvement of CRF/Ucn targets in escalated alcohol drinking, as well as point to changes in CRF/Ucn brain function as a result of chronic alcohol exposure and/or withdrawal. It highlights the role of CRF and CRFR1-mediated signaling in conditions of excessive alcohol taking and seeking, including during various stages of withdrawal and relapse to alcohol. Besides its role in the hypothalamic-pituitary-adrenal (HPA) axis, the importance of extra-hypothalamic CRF pathways, especially in the extended amygdala, in the neurobiology of alcohol abuse and dependence is emphasized. Emerging roles for other targets of the CRF/Ucn system, such as CRF2 receptors, CRF-BP and Ucns in escalated alcohol drinking is also discussed. Finally, the limited translational value of CRF/Ucn interventions in stress-related and alcohol use disorders is discussed. So far, CRFR1 antagonists have shown little or no efficacy in human clinical trials, although a range of unexplored conditions and possibilities remain to be explored.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil
| | | | - Isabel M H Quadros
- Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil.
| |
Collapse
|
13
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
14
|
Li Z, Kong W, Park HY, Koo SJ, Bang M, Park JT, Lee E, An SK. Association of hair cortisol concentration with brain-derived neurotrophic factor gene methylation: The role of sex as a moderator. Stress Health 2024; 40:e3401. [PMID: 38581566 DOI: 10.1002/smi.3401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Hair cortisol concentration (HCC) reflects the long-term activity of the hypothalamus-pituitary-adrenal (HPA) axis in response to stress. Brain-derived neurotrophic factor DNA methylation (BDNF DNAM) may affect HCC, and sex and Val66Met may contribute to this association. Thus, the aim of this study was to investigate the associations between HCC and Brain-derived neurotrophic factor (BDNF) DNAM, and the moderating effects of Val66Met and sex. We recruited 191 healthy young participants (96 women, mean age 23.0 ± 2.6 years) and collected body samples to evaluate HCC, and to determine BDNF DNAM and Val66Met genotypes. We analyzed the effects of BDNF DNAM, sex, and Val66Met on HCC. We also evaluated the associations between BDNF DNAM and HCC in groups separated by sex and genotypes. We found a marked association of BDNF DNAM with HCC across men and women. After dividing the data by sex, a positive correlation of HCC with BDNF DNAM was found only in women. There was no substantial moderation effect of Val66Met genotypes on the association between BDNF DNAM and HCC. Therefore, BDNF DNAM was found to have positive association with HCC only in healthy young women, indicating that sex moderates the association of BDNF DNAM with long-term HPA axis activity.
Collapse
Affiliation(s)
- Zhenxu Li
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei University College of Medicine, Seoul, South Korea
| | - Wanji Kong
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Yoon Park
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Jun Koo
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program in Cognitive Science, Yonsei University, Seoul, South Korea
| | - Minji Bang
- Department of Psychiatry, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, South Korea
| | - Jung Tak Park
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Lee
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea
| | - Suk Kyoon An
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program in Cognitive Science, Yonsei University, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea
| |
Collapse
|
15
|
Guo Z, Long T, Yao J, Li Y, Xiao L, Chen M. Potential antidepressant effects of Traditional Chinese botanical drug formula Chaihu-Shugan-San and its active ingredients. Front Pharmacol 2024; 15:1337876. [PMID: 38628641 PMCID: PMC11019007 DOI: 10.3389/fphar.2024.1337876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Depression is a severe mental disorder that poses a significant threat to both the physical and mental wellbeing of individuals. Currently, there are various methods for treating depression, including traditional Chinese herbal formulations like Chaihu-Shugan-San (CSS), which have shown effective antidepressant effects in both clinical and animal research. Objective: This review aims to provide a comprehensive synthesis of evidence related to CSS, considering both preclinical and clinical studies, to uncover its potential multi-level, multi-pathway, and multi-target mechanisms for treating depression and identify its active ingredients. Methods: A thorough search was conducted in electronic databases, including PubMed, MEDLINE, Web of Science, Google Scholar, CNKI, and Wanfang, using keywords such as "Chaihu Shugan" and "depression" to retrieve relevant literature on CSS and its active ingredients. The review process adhered to the PRISMA guidelines. Results: This review consolidates the mechanisms underlying antidepressant effects of CSS and its active ingredients. It emphasizes its involvement in the regulation of monoaminergic neurotransmitter systems, synaptic plasticity, and the hypothalamic-pituitary-adrenal axis, among other aspects. Conclusion: CSS exerts a pivotal role in treating depression through various pathways, including the monoaminergic neurotransmitter system, the hypothalamic-pituitary-adrenal axis, synaptic plasticity, inflammation, brain-derived neurotrophic factor levels, and the brain-gut axis. This review facilitates a comprehensive understanding of the current state of CSS research, fostering an in-depth exploration of the etiological mechanisms of depression and the potential discovery of novel antidepressant drugs.
Collapse
Affiliation(s)
- Ziyi Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Tianjian Long
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianping Yao
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Xiao
- Zunyi Medical University, Zhuhai, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
| |
Collapse
|
16
|
Shi L, Luo J, Wei X, Xu X, Tu L. The protective role of ginsenoside Rg3 in heart diseases and mental disorders. Front Pharmacol 2024; 15:1327033. [PMID: 38469409 PMCID: PMC10926849 DOI: 10.3389/fphar.2024.1327033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Ginsenoside Rg3, a compound derived from Panax ginseng C. A. Mey., is increasingly recognized for its wide range of pharmacological effects. Under the worldwide healthcare challenges posed by heart diseases, Rg3 stands out as a key subject in modern research on Chinese herbal medicine, offering a novel approach to therapy. Mental illnesses are significant contributors to global disease mortality, and there is a well-established correlation between cardiac and psychiatric conditions. This connection is primarily due to dysfunctions in the sympathetic-adrenomedullary system (SAM), the hypothalamic-pituitary-adrenal axis, inflammation, oxidative stress, and brain-derived neurotrophic factor impairment. This review provides an in-depth analysis of Rg3's therapeutic benefits and its pharmacological actions in treating cardiac and mental health disorders respectively. Highlighting its potential for the management of these conditions, Rg3 emerges as a promising, multifunctional therapeutic agent.
Collapse
Affiliation(s)
- Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xizhen Xu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
17
|
Perna G, Spiti A, Torti T, Daccò S, Caldirola D. Biomarker-Guided Tailored Therapy in Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:379-400. [PMID: 39261439 DOI: 10.1007/978-981-97-4402-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This chapter provides a comprehensive examination of a broad range of biomarkers used for the diagnosis and prediction of treatment outcomes in major depressive disorder (MDD). Genetic, epigenetic, serum, cerebrospinal fluid (CSF), and neuroimaging biomarkers are analyzed in depth, as well as the integration of new technologies such as digital phenotyping and machine learning. The intricate interplay between biological and psychological elements is emphasized as essential for tailoring MDD management strategies. In addition, the evolving link between psychotherapy and biomarkers is explored to uncover potential associations that shed light on treatment response. This analysis underscores the importance of individualized approaches in the treatment of MDD that integrate advanced biological insights into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, Como, Italy.
- Humanitas SanpioX, Milan, Italy.
| | - Alessandro Spiti
- IRCCS Humanitas Research Hospital, Milan, Italy
- Psicocare, Humanitas Medical Care, Monza, Italy
| | - Tatiana Torti
- ASIPSE School of Cognitive-Behavioral-Therapy, Milan, Italy
| | - Silvia Daccò
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Humanitas SanpioX, Milan, Italy
- Psicocare, Humanitas Medical Care, Monza, Italy
| | - Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, Como, Italy
- Humanitas SanpioX, Milan, Italy
| |
Collapse
|
18
|
Agorastos A. Thematic Selection: Stress and Stress-related Disorders Neurobiology & Translational Aspects of Stress-related Disorders (Part 3). Curr Neuropharmacol 2024; 22:808-809. [PMID: 38284336 PMCID: PMC10845089 DOI: 10.2174/1570159x2205231107115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Affiliation(s)
- Agorastos Agorastos
- Assistant Professor of Psychiatry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|