1
|
Arslan GD, Dogan L, Dogan Z, Kiziltoprak H. Relationship between choroidal structure and myocardial collateral flow regulation in acute and chronic coronary heart disease. Int Ophthalmol 2025; 45:132. [PMID: 40159520 DOI: 10.1007/s10792-025-03515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE This study aimed to evaluate the relationship between coronary collateral filling, collateral size, and choroidal parameters in patients with acute and chronic coronary heart disease (CHD). METHODS Thirty-eight patients with acute CHD and 38 with chronic CHD who underwent diagnostic angiography in a cardiology clinic were included in this observational cross-sectional study. The control group comprised 32 healthy participants, and we examined both eyes of all participants. Diagnostic coronary angiograms were used to score the coronary collaterals, and choroidal parameters were measured in patients with CHD. RESULTS Choroidal vascular index (CVI) and subfoveal choroidal thickness (SFCT) were significantly lower in the chronic CHD group than in the acute CHD and control groups (p < 0.05). In the multinominal logistic regression analysis, collateral size had a significant association with both CVI (OR, 0.751; 95% CI, 0.596-0.947), and SFCT (OR, 0.986; 95% CI, 0.976-0.996) in patients with chronic CHD (p < 0.05). However, in the acute CHD group, no significant relationship was observed among choroidal parameters, collateral size, and filling. CONCLUSION Patients with chronic CHD had the lowest mean CVI and SFCT among the three groups, and this may be helpful in indicating chronic myocardial ischaemia. Moreover, an association was observed between larger collateral size and reduced CVI and SFCT in patients with chronic CHD, which may potentially be triggered by decreased angiogenic factors.
Collapse
Affiliation(s)
- Gurcan Dogukan Arslan
- Department of Ophthalmology, Istanbul Medicine Hospital, Goztepe District, 2366th Street, Bagcilar, 34214, Istanbul, Turkey.
| | - Levent Dogan
- Department of Ophthalmology, Tatvan State Hospital, Bitlis, Turkey
| | - Zeki Dogan
- Department of Cardiology, Istanbul Medicine Hospital, Istanbul, Turkey
| | - Hasan Kiziltoprak
- Department of Ophthalmology, Istanbul Medicine Hospital, Goztepe District, 2366th Street, Bagcilar, 34214, Istanbul, Turkey
| |
Collapse
|
2
|
He L, Wan M, Yang X, Meng H. Distant metastasis of oral squamous cell carcinoma: immune escape mechanism and new perspectives on treatment. Discov Oncol 2025; 16:257. [PMID: 40024975 PMCID: PMC11872995 DOI: 10.1007/s12672-025-01997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is frequently observed as the predominant malignancy affecting the oral cavity, with distant metastasis greatly affecting the treatment and long-term outlook for individuals with OSCC. Immune checkpoint inhibitors are a highly promising cancer treatment strategy currently available, but they are only successful for a small fraction of individuals with OSCC. Due to the insufficient understanding of the immune escape mechanisms in OSCC, coupled with disappointing treatment outcomes for patients with highly heterogeneous metastatic diseases, there is an urgent need for further exploration of immune target therapy strategies. This review discusses the mechanisms by which OSCC cells evade immune surveillance and attack, focusing on four aspects: metastasis-initiating cells, increased immune suppression, immune escape of dormant cells, and immune stromal crosstalk during metastasis. Additionally, we explore new areas in immune therapy for OSCC. In summary, our investigation offers fresh perspectives on the relationship between the tumor microenvironment and immune molecules, highlighting the importance of overcoming immune evasion for the development of novel therapies to manage OSCC metastasis and enhance patient outcomes.
Collapse
Affiliation(s)
- Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, 150081, China
| | - Meixuan Wan
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xinxin Yang
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
3
|
Zhang H, Liu M, Zhong H, Ma L, Liu Y, Liu C, Yang S, Wang B, An J, Song S, Cao Q. Mechanistic role of FN1 in LAIR-1 mediated downregulation of ovarian cancer cell proliferation. BMC Cancer 2025; 25:339. [PMID: 40000955 PMCID: PMC11853514 DOI: 10.1186/s12885-025-13692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE RNA-seq was used to explore the potential mechanism underlying human leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) inhibition of the proliferation and migration of ovarian cancer cells. METHOD A LAIR-1-overexpression cell model was established using a LAIR-1-lentivirus. After confirming and identifying the LAIR-1 expression cell clones by flow cytometry and RT-qPCR, the proliferation and migration of the cells were examined by CCK8 and scratch assays, and the differentially expressed genes (DEGs) were searched by RNA-seq and analyzed by GO and KEGG enrichment. String was used for protein interaction network analysis, and Cytoscape was used to identify key proteins. RESULTS LAIR-1 inhibited the proliferation and migration of ovarian cancer cells. LAIR-1 expression caused the upregulation of 83 genes and the downregulation of 80 genes. Among the DEGs, fibronectin 1 (FN1) was a key protein affecting the downstream FAK-MEK-ERK axis. KEGG enrichment analysis identified the MAPK pathway as the most obvious enrichment pathway, followed by PI3K-AKT pathway. CONCLUSION LAIR-1 downregulates FN1 to inhibit the FAK-MEK-ERK axis, as well as the proliferation and migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Huachang Zhang
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Mengke Liu
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Hao Zhong
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, P.R. China
| | - Li Ma
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Yunyi Liu
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Chuntong Liu
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Shude Yang
- School of Agriculture, Ludong University, 264025, Yantai, Shandong, P.R. China
| | - Bin Wang
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego (UCSD), LaJolla, CA92037, USA
| | - Shuling Song
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China.
| | - Qizhi Cao
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China.
| |
Collapse
|
4
|
Zhao G, Zhao L, Miao Y, Yang L, Huang L, Hu Z. HSPB1 Orchestrates the Inflammation-Associated Transcriptome Profile of Atherosclerosis in HUVECs. FRONT BIOSCI-LANDMRK 2025; 30:36306. [PMID: 40018940 DOI: 10.31083/fbl36306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Atherosclerosis (AS), with a profound inflammatory response, is the basis of cardiovascular diseases. Previous reports showed that heat shock protein family B member 1 (HSPB1) has a protective effect against AS, but the specific mechanism is still unclear. In this study, we aim to explore the functions and downstream targets of HSPB1 in human umbilical vein endothelial cells (HUVECs). METHODS Expression of the HSPB1 gene was knocked down in HUVECs. Cellular phenotype was then assessed and transcriptome data (RNA-seq) was analyzed to identify the potential targets regulated by HSPB1. Moreover, RNA-seq data for human fibroatheroma (GSE104140) from the gene expression omnibus (GEO) database was re-analyzed to verify the targets of HSPB1 in AS. RESULTS Silencing of HSPB1 significantly reduced apoptosis (p < 0.0001) and increased the proliferation (p < 0.05) of HUVECs. The 608 differentially expressed genes (DEGs) were identified after HSPB1 knockdown, including 423 upregulated genes. DEGs, including CXCL1, CXCL8, CXCL2, TRIB3, GAS5, SELE, and TNIP1, were enriched in inflammatory and immune response pathways. HSPB1 was also shown to affect alternative splicing patterns of hundreds of genes, especially those enriched in apoptotic processes, including ACIN1, IFI27, PAK4, UBE2D3, and FIS1. An overlapping gene set was found between the HSPB1-regulated and AS-induced transcriptome. This included 171 DEGs and 250 alternatively spliced genes that were also enriched in inflammatory/immune response- and apoptosis-associated pathways, respectively. CONCLUSION In summary, HSPB1 knockdown modulates the proliferation and apoptosis of HUVECs by regulating RNA levels and alternative splicing patterns. HSPB1 plays an important role in AS pathogenesis by modulating the inflammatory and immune response. This study provides novel insights for the investigation of future AS therapeutic strategies.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Li Zhao
- Department of Anesthesiology, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Yulin Miao
- Clinical Medical School, Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Lei Yang
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Lizhen Huang
- Clinical Medical School, Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Zhipeng Hu
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Gao C, Chen L, Zhao L, Su Y, Ma M, Zhang W, Hong X, Xiao L, Xu B, Hu T. Apatinib Degrades PD-L1 and Reconstitutes Colon Cancer Microenvironment via the Regulation of Myoferlin. Cancers (Basel) 2025; 17:524. [PMID: 39941891 PMCID: PMC11816266 DOI: 10.3390/cancers17030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND For most colorectal cancer (CRC) patients, expanding the benefits of immunotherapy, particularly through blocking programmed cell death-1 (PD-1) and its ligand (PD-L1), is crucial, especially in cases with limited response to neoadjuvant therapy. This study investigates the role of Myoferlin (MYOF) as a novel target in CRC immunotherapy. METHODS Human CRC cell lines (RKO, HCT116), normal intestinal epithelial cells (HIEC-6), and the murine CRC cell line MC38 were used to study the effects of apatinib and MYOF in CRC cells. RNA sequencing, the CPTAC and TCGA databases, and other molecular and cellular methods were applied to disclose the mechanisms involved. A series of mouse models were established to assess the effects of apatinib and MYOF knockdown on tumor progression, immune cell infiltration, and immune checkpoint protein response. RESULTS We found that MYOF is overexpressed in CRC and linked to immune cell infiltration and checkpoint expression. Suppression of MYOF expression significantly inhibited CRC cell proliferation and migration, as well as reduced PD-L1 protein levels. Integrative analysis showed that apatinib modulates MYOF expression via VEGFR2, resulting in decreased PD-L1 expression, increased CD8+ T cell infiltration, and reduced pro-tumor M2 macrophages. Animal experiments further revealed that apatinib treatment or MYOF knockdown enhanced the efficacy of immune checkpoint blockade (ICB) in CRC. CONCLUSIONS These findings highlight novel antitumor mechanisms of MYOF and suggest that combining apatinib with ICB therapy may improve CRC treatment outcomes, offering a promising strategy to enhance immune responses.
Collapse
Affiliation(s)
- Chunyi Gao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Lu Chen
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Lingying Zhao
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen 518038, China;
| | - Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Miaomiao Ma
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Xiaoting Hong
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Li Xiao
- Department of Oncology, Zhongshan Hospital of Xiamen University, Xiamen 361004, China;
| | - Beibei Xu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
6
|
Wang X, Zhang S, Wang S, Cao T, Fan H. Decoding oral cancer: insights from miRNA expression profiles and their regulatory targets. Front Mol Biosci 2025; 11:1521839. [PMID: 39935706 PMCID: PMC11810738 DOI: 10.3389/fmolb.2024.1521839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Oral cancer (OC) is a prevalent malignancy with high mortality rates, largely attributed to late diagnosis and limited therapeutic advancements. MicroRNAs (miRNAs), as critical regulators of gene expression, have emerged as key players in modulating plethora of cellular mechanisms. This study analyzed miRNA and gene expression profiles in OC using publicly available datasets from the Gene Expression Omnibus (GEO) to explore their roles in tumorigenesis. A total of 23 differentially expressed miRNAs (DEmiRs) and 1,233 differentially expressed genes (DEGs) were identified. Functional annotation and pathway enrichment analyses highlighted significant involvement of DEmiRs and their target genes in cell cycle-related processes, including enrichment in the nucleus, transcription factor activity, regulation of nucleosides, nucleotide and nucleic acids, cell growth and/or maintenance, mitotic cell cycle, mitotic M-M/G1 phases an DNA replication. Furthermore, different signaling cascades such as IGF signaling, PDGF signaling and LKB1 signaling and PLK1 signaling pathways were also found associated with DEmiR-related regulation of OC progression. Protein-protein interaction (PPI) network analysis identified key molecular hubs associated with DEmiR and DEGs in OC. Notably, most of these hub genes such as NEK2, NDC80, NUF2, PLK1, SMAD2, TP53, TPX2, TTK, UBE2C, WDHD1, WTAP, YWHAZ are directly or indirectly associated with cell cycle progression, underscoring the role of DEmiRs in driving tumor proliferation and survival in OC via dysregulating cell cycle. This study offers insights into the molecular mechanisms underlying OC and highlights miRNAs as potential biomarkers and therapeutic targets to disrupt the cancerous cell cycle and improve treatment outcomes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Shuang Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Shuyi Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Cao
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Hong Fan
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Miao X, Chen T, Lang Z, Wu Y, Wu X, Zhu Z, Xu RX. Design, fabrication, and application of bioengineering vascular networks based on microfluidic strategies. J Mater Chem B 2025; 13:1252-1269. [PMID: 39691980 DOI: 10.1039/d4tb02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Vascularization is a critical component of tissue engineering research and is essential for enhancing the success rate of tissue construction and function. Over the past decade, researchers have explored various methods to construct in vitro vascular networks, including 3D printing, cell sphere technology, and microfluidics. Microfluidic technology has garnered significant attention due to its notable advantages in precision, controllability, flexibility, and applicability. It can be primarily classified into two modes: (i) the pre-designed mode, which involves creating vascular networks by pre-designing vascular channels and seeding endothelial cells, encompassing microfluidic chips and microfluidic spinning technologies; and (ii) the self-assembly mode, where cell spheres are fabricated using microfluidic technology and subsequently self-assemble into vascular networks. In this review, we first provide a brief overview of the normal physiological and pathological characteristics of vascular networks, followed by a discussion of the factors to be considered in designing in vitro vascular networks, and conclude with an examination of the classification of technologies for the preparation of microfluidic vascular networks and recent advancements. It is anticipated that in vitro vascular network models will soon be successfully applied in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Xiaoping Miao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqiang Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ronald X Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Lin WY, Wen HP, Li JY, Wang JM, Feng HJ, Huang Z, Li R, Zeng L, Huang L. Compact Molecular Conformation of Prodrugs Enhances Photocleaving Performance for Tumor Vascular Growth Inhibition. Adv Healthc Mater 2025; 14:e2402690. [PMID: 39460488 DOI: 10.1002/adhm.202402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Highly spatiotemporal-resolved photomodulation demonstrates promise for investigating key biological events in vivo and in vitro, such as cell signaling pathways, neuromodulation, and tumor treatment without side effects. However, enhancing the performance of photomodulation tools remains challenging due to the limitations of the physicochemical properties of the photoactive molecules. Here, a compact, stable intramolecular π-π stacking conformation forming between the target molecule (naproxen) and the perylene-based photoremovable protecting group is discovered to confine the motion of the photolabile bond and then enhance the photocleavage quantum yield. In conjunction with a red-absorbing photosensitizer, the photocleavage wavelength is extended to the red region via triplet-triplet annihilation. In particular, the triplet lifetime of the prodrug can be extended via the linked steric hindrance to improve the conversion yield via TTA. Using the new photomodulation tool, it is precisely photoreleased cyclooxygenase-2 inhibitors for tumor vascular growth suppression in vivo. In combination with cisplatin, over 90% efficient inhibition of malignant breast tumors is observed via the synergistic tumor treatment strategy. These findings provide a new concept for the rational design of efficient photocleavage and have implications for photomodulating cell signaling pathways in tumor therapy, as well as laying a solid foundation for the development of phototherapeutic approaches.
Collapse
Affiliation(s)
- Wen-Yue Lin
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Ping Wen
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jia-Yao Li
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Juan-Mei Wang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong-Juan Feng
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi Huang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ran Li
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Le Zeng
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Ling Huang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Song D, Fan G, Chang M. Research Progress on Glioma Microenvironment and Invasiveness Utilizing Advanced Multi-Parametric Quantitative MRI. Cancers (Basel) 2024; 17:74. [PMID: 39796702 PMCID: PMC11719598 DOI: 10.3390/cancers17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery. These factors are closely associated with the complex molecular characteristics of the tumors, the internal heterogeneity, and the relevant external microenvironment. The complete removal of gliomas presents challenges due to their infiltrative growth pattern along the white matter fibers and perivascular space. Therefore, it is crucial to comprehensively understand the molecular features of gliomas and analyze the internal tumor heterogeneity in order to accurately characterize and quantify the tumor invasion range. The multi-parameter quantitative MRI technique provides an opportunity to investigate the microenvironment and aggressiveness of glioma tumors at the cellular, blood perfusion, and cerebrovascular response levels. Therefore, this review examines the current applications of advanced multi-parameter quantitative MRI in glioma research and explores the prospects for future development.
Collapse
Affiliation(s)
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| | - Miao Chang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| |
Collapse
|
10
|
Ren R, Zhang Z, Zhai S, Yang J, Tusong B, Wang J. Efficacy and safety of ramucirumab for gastric or gastro-esophageal junction adenocarcinoma: a systematic review and meta-analysis. Eur J Clin Pharmacol 2024; 80:1697-1714. [PMID: 39102039 DOI: 10.1007/s00228-024-03734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Based on the comparison of ramucirumab monoclonal antibody with control treatments in randomized controlled trials, this study aims to elucidate the role of ramucirumab monoclonal antibody in cancer therapy and its potential side effects, providing scientific evidence for clinical treatment. METHODS PubMed, Embase, Cochrane, and Web of Science were searched systematically to obtain the trials on ramucirumab in the treatment of gastric or gastroesophageal junction (GEJ) adenocarcinoma up to April 13, 2023. We included randomized controlled trials (RCTs) evaluating the efficacy and safety of ramucirumab as monotherapy and in combination with other chemotherapy agents as interventions for treating gastric or gastroesophageal junction (GEJ) adenocarcinoma. RESULTS After screening 2200 studies, we finally included 8 eligible studies (involving a total of 3,283 participants). Meta-analysis results showed that compared to the control group, ramucirumab monotherapy significantly improved overall survival (OS) (hazard ratio [HR] = 0.77, 95% confidence interval [CI] [0.67, 0.89]) and progression-free survival (PFS) (HR = 0.48, 95% CI [0.40, 0.58]). Similar results were obtained for ramucirumab combined with paclitaxel. In the treatment combining ramucirumab with paclitaxel, compared to monotherapy, three severe adverse reactions (grade ≥ 3) were observed with significantly increased risks (OR > 2). These include proteinuria (OR = 5.37, 95% CI [1.22, 23.54]), hypertension (OR = 4.02, 95% CI [2.63, 6.14]), and gastrointestinal perforation (OR = 4.64, 95% CI [1.00, 21.60]). Subgroup analysis further indicated that ramucirumab is effective in both non-East Asian and East Asian populations, with East Asian patients more prone to developing proteinuria, while having a lower incidence of hypertension. Additionally, ramucirumab demonstrated comparable efficacy between first-line and second-line treatments, with a higher incidence of proteinuria observed in second-line therapy. CONCLUSION Ramucirumab significantly improves the prognosis of patients with gastric or gastroesophageal junction adenocarcinoma. When used in combination with paclitaxel, close monitoring of adverse reactions such as proteinuria (especially in East Asian populations), hypertension (especially in non-East Asian populations), and gastrointestinal perforation is essential.
Collapse
Affiliation(s)
- Ruiqi Ren
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Zhewei Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Shaokun Zhai
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jiahui Yang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - BaihaiTihan Tusong
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jingzhou Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
11
|
Long Y, Dan Y, Jiang Y, Ma J, Zhou T, Fang L, Wang Z. Colorectal Cancer Cell-Derived Extracellular Vesicles Promote Angiogenesis Through JAK/STAT3/VEGFA Signaling. BIOLOGY 2024; 13:873. [PMID: 39596828 PMCID: PMC11591796 DOI: 10.3390/biology13110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Angiogenesis plays a crucial role in the growth of colorectal cancer (CRC). Recent studies have identified extracellular vesicles (EVs) in the tumor microenvironment as important mediators of cell-to-cell communication. However, the specific role and mechanisms of CRC-derived EVs in regulating tumor angiogenesis remain to be further investigated. METHODS EVs were isolated from the conditioned medium of the CRC cells using ultracentrifugation. We investigated the effects of HT-29-derived EVs on tumor growth and angiogenesis in a subcutaneous HT-29 CRC tumor model in mice. Additionally, we evaluated the impact of HT-29-derived EVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, bioinformatics analysis was performed to identify relevant signaling pathways, and pathway inhibitors were used to block the activation of these pathways, aiming to elucidate their roles in angiogenesis. RESULTS We found that HT-29-derived EVs can promote tumor growth and angiogenesis in vivo, as well as significantly enhance the proliferation, migration, and tube formation of HUVECs. Bioinformatics analysis revealed that HT-29-derived EVs may regulate angiogenesis through the JAK/STAT3 signaling pathway. Specifically, we observed that CRC-derived EVs promoted the phosphorylation of STAT3 (p-STAT3) and the expression of VEGFA in the nucleus of HUVECs. Treatment with the STAT3 inhibitor Stattic reduced the nuclear expression of p-STAT3, which impaired its function as a transcription factor, thereby inhibiting VEGFA expression and the pro-angiogenic effects of CRC-derived EVs. CONCLUSIONS EVs derived from CRC cells promote CRC tumor angiogenesis by regulating VEGFA through the JAK/STAT3 pathway in endothelial cells.
Collapse
Affiliation(s)
- Yuqing Long
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Dan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yao Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Tao Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| |
Collapse
|
12
|
Wu F, Li D. YB1 and its role in osteosarcoma: a review. Front Oncol 2024; 14:1452661. [PMID: 39497723 PMCID: PMC11532169 DOI: 10.3389/fonc.2024.1452661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
YB1 (Y box binding protein 1), a multifunctional protein capable of binding to DNA/RNA, is present in most cells and acts as a splicing factor. It is involved in numerous cellular processes such as transcription, translation, and DNA repair, significantly affecting cell proliferation, differentiation, and apoptosis. Abnormal expression of this protein is closely linked to the formation of various malignancies (osteosarcoma, nasopharyngeal carcinoma, breast cancer, etc.). This review examines the multifaceted functions of YB1 and its critical role in osteosarcoma progression, providing new perspectives for potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Dapeng Li
- Affiliated Hospital of Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
13
|
Li J, Yu K, Chen D, Luo G, Jia J. Predictive value of serum HIF-1α/HIF-2α and YKL-40 levels for vascular invasion and prognosis of follicular thyroid cancer. Clinics (Sao Paulo) 2024; 79:100486. [PMID: 39277981 PMCID: PMC11419804 DOI: 10.1016/j.clinsp.2024.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE This study investigated the significance of serum hypoxia-inducible factor (HIF)-1α/HIF-2 α and Chitinase 3-Like protein 1 (YKL-40) levels in the assessment of vascular invasion and prognostic outcomes in patients with Follicular Thyroid Cancer (FTC). METHODS This prospective study comprised 83 patients diagnosed with FTC, who were subsequently categorized into a recurrence group (17 cases) and a non-recurrence group (66 cases). The pathological features of tumor vascular invasion were classified. Serum HIF-1α/HIF-2α and YKL-40 were quantified using a dual antibody sandwich enzyme-linked immunosorbent assay, while serum Thyroglobulin (Tg) levels were measured using an electrochemiluminescence immunoassay method. The Spearman test was employed to assess the correlation between serum factors, and the predictive value of diagnostic factors was determined using receiver operating characteristic curve analysis. A Cox proportional hazards regression model was utilized to analyze independent factors influencing prognosis. RESULTS Serum HIF-1α, HIF-2α, YKL-40, and Tg were elevated in patients exhibiting higher vascular invasion. A significant positive correlation was observed between Tg and HIF-1α, as well as between HIF-1α and YKL-40. The cut-off values for HIF-1α and YKL-40 in predicting recurrence were 48.25 pg/mL and 60.15 ng/mL, respectively. Patients exceeding these cut-off values experienced a lower recurrence-free survival rate. Furthermore, serum levels surpassing the cut-off value, in conjunction with vascular invasion (v2+), were identified as independent risk factors for recurrence in patients with FTC. CONCLUSION Serum HIF-1α/HIF-2α and YKL-40 levels correlate with vascular invasion in FTC, and the combination of HIF-1α and YKL-40 predicts recurrence in patients with FTC.
Collapse
Affiliation(s)
- Jiulong Li
- Department of Clinical Laboratory, Gaoping District People's Hospital of Nanchong, Nanchong City, Sichuan Province, China
| | - Kuai Yu
- Department of Clinical Laboratory, The People's Hospital of Wusheng, Guang'an City, Sichuan Province, China
| | - Dingchuan Chen
- Department of Clinical Laboratory, Sichuan Gem Flower Hospital, Chengdu City, Sichuan Province, China
| | - Guangcheng Luo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Jiedeng Jia
- Department of Vascular Surgery, Gaoping District People's Hospital of Nanchong, Nanchong City, Sichuan Province, China.
| |
Collapse
|
14
|
Li W, Wang H, Zhao J, Xia J, Sun X. scHyper: reconstructing cell-cell communication through hypergraph neural networks. Brief Bioinform 2024; 25:bbae436. [PMID: 39276328 PMCID: PMC11401449 DOI: 10.1093/bib/bbae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 08/07/2024] [Indexed: 09/16/2024] Open
Abstract
Cell-cell communications is crucial for the regulation of cellular life and the establishment of cellular relationships. Most approaches of inferring intercellular communications from single-cell RNA sequencing (scRNA-seq) data lack a comprehensive global network view of multilayered communications. In this context, we propose scHyper, a new method that can infer intercellular communications from a global network perspective and identify the potential impact of all cells, ligand, and receptor expression on the communication score. scHyper designed a new way to represent tripartite relationships, by extracting a heterogeneous hypergraph that includes the source (ligand expression), the target (receptor expression), and the relevant ligand-receptor (L-R) pairs. scHyper is based on hypergraph representation learning, which measures the degree of match between the intrinsic attributes (static embeddings) of nodes and their observed behaviors (dynamic embeddings) in the context (hyperedges), quantifies the probability of forming hyperedges, and thus reconstructs the cell-cell communication score. Additionally, to effectively mine the key mechanisms of signal transmission, we collect a rich dataset of multisubunit complex L-R pairs and propose a nonparametric test to determine significant intercellular communications. Comparing with other tools indicates that scHyper exhibits superior performance and functionality. Experimental results on the human tumor microenvironment and immune cells demonstrate that scHyper offers reliable and unique capabilities for analyzing intercellular communication networks. Therefore, we introduced an effective strategy that can build high-order interaction patterns, surpassing the limitations of most methods that can only handle low-order interactions, thus more accurately interpreting the complexity of intercellular communications.
Collapse
Affiliation(s)
- Wenying Li
- School of Mathematics and System Science, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang 830017, China
| | - Haiyun Wang
- School of Mathematics and System Science, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang 830017, China
| | - Jianping Zhao
- School of Mathematics and System Science, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang 830017, China
| | - Junfeng Xia
- School of Mathematics and System Science, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang 830017, China
- Institute of Physical Science and Information Technology, Anhui University, No. 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Xiaoqiang Sun
- School of Mathematics, Sun Yat-sen University, No. 135 Xingang Xi Road, Haizhu District, Guangzhou, Guangdong 510275, China
| |
Collapse
|
15
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
16
|
Reang J, Sharma V, Yadav V, Tonk RK, Majeed J, Sharma A, Sharma PC. Redefining the significance of quinoline containing compounds as potent VEGFR-2 inhibitors for cancer therapy. Med Chem Res 2024; 33:1079-1099. [DOI: 10.1007/s00044-024-03252-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 01/03/2025]
|
17
|
Li L, Hossain SM, Eccles MR. The Role of the PAX Genes in Renal Cell Carcinoma. Int J Mol Sci 2024; 25:6730. [PMID: 38928435 PMCID: PMC11203709 DOI: 10.3390/ijms25126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) is a significant oncological challenge due to its heterogeneous nature and limited treatment options. The PAX developmental gene family encodes nine highly conserved transcription factors that play crucial roles in embryonic development and organogenesis, which have been implicated in the occurrence and development of RCC. This review explores the molecular landscape of RCC, with a specific focus on the role of the PAX gene family in RCC tumorigenesis and disease progression. Of the various RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most prevalent, characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene. Here, we review the published literature on the expression patterns and functional implications of PAX genes, particularly PAX2 and PAX8, in the three most common RCC subtypes, including ccRCC, papillary RCC (PRCC), and chromophobe RCC (ChRCC). Further, we review the interactions and potential biological mechanisms involving PAX genes and VHL loss in driving the pathogenesis of RCC, including the key signaling pathways mediated by VHL in ccRCC and associated mechanisms implicating PAX. Lastly, concurrent with our update regarding PAX gene research in RCC, we review and comment on the targeting of PAX towards the development of novel RCC therapies.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
| | - Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
18
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
19
|
Xu L, Li J, Hou N, Han F, Sun X, Li Q. 20(S)-Ginsenoside Rh2 inhibits hepatocellular carcinoma by suppressing angiogenesis and the GPC3-mediated Wnt/β‑catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:688-696. [PMID: 38584523 PMCID: PMC11177114 DOI: 10.3724/abbs.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 04/09/2024] Open
Abstract
20(S)-Ginsenoside Rh2 has significant anti-tumor effects in various types of cancers, including human hepatocellular carcinoma (HCC). However, its molecular targets and mechanisms of action remain largely unknown. Here, we aim to elucidate the potential mechanisms by which Rh2 suppresses HCC growth. We first demonstrate the role of Rh2 in inhibiting angiogenesis. We observe that Rh2 effectively suppresses cell proliferation and induces apoptosis in HUVECs. Furthermore, Rh2 significantly inhibits HepG2-stimulated HUVEC proliferation, migration and tube formation, accompanied by the downregulation of VEGF and MMP-2 expressions. We also reveal that Rh2 inhibits HCC growth through the downregulation of glypican-3-mediated activation of the Wnt/β-catenin pathway. We observe a dose-dependent inhibition of proliferation and induction of apoptosis in HepG2 cells upon Rh2 treatment, which is mediated by the inhibition of glypican-3/Wnt/β-catenin signaling. Moreover, downregulation of glypican-3 expression enhances the effects of Rh2 on the glypican-3/Wnt/β-catenin signaling pathway, resulting in greater suppression of tumor growth in HepG2 cells. Collectively, our findings shed light on the molecular mechanisms through which Rh2 modulates HCC growth, which involve the regulation of angiogenesis and the glypican-3/Wnt/β-catenin pathway. These insights may pave the way for the development of novel therapeutic strategies targeting these pathways for the treatment of HCC.
Collapse
Affiliation(s)
- Linfei Xu
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Jing Li
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Ningning Hou
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Fang Han
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Xiaodong Sun
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Qinying Li
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| |
Collapse
|
20
|
Guo J, Zhao L, Duan M, Yang Z, Zhao H, Liu B, Wang Y, Deng L, Wang C, Jiang X, Jiang X. Demethylases in tumors and the tumor microenvironment: Key modifiers of N 6-methyladenosine methylation. Biomed Pharmacother 2024; 174:116479. [PMID: 38537580 DOI: 10.1016/j.biopha.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.
Collapse
Affiliation(s)
- Junchen Guo
- Departmentof Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liang Zhao
- Department of Anorectal Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110002, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liping Deng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Chen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110002, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
21
|
Xu BB, Jin N, Liu JC, Liao AQ, Lin HY, Qin XY. Arene-Arene Coupled Disulfamethazines (or Sulfadiazine)-Phenanthroline-Metal(II) Complexes were Synthesized by In Situ Reactions and Inhibited the Growth and Development of Triple-Negative Breast Cancer through the Synergistic Effect of Antiangiogenesis, Anti-Inflammation, Pro-Apoptosis, and Cuproptosis. J Med Chem 2024. [PMID: 38634624 DOI: 10.1021/acs.jmedchem.3c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The novel metal(II)-based complexes HA-Cu, HA-Co, and HA-Ni with phenanthroline, sulfamethazine, and aromatic-aromatic coupled disulfamethazines as ligands were synthesized and characterized. HA-Cu, HA-Co, and HA-Ni all showed a broad spectrum of cytotoxicity and antiangiogenesis. HA-Cu was superior to HA-Co and HA-Ni, and even superior to DDP, showing significant inhibitory effect on the growth and development of tripe-negative breast cancer in vivo and in vitro. HA-Cu exhibited observable synergistic effects of antiproliferation, antiangiogenesis, anti-inflammatory, pro-apoptosis, and cuproptosis to effectively inhibited tumor survival and development. The molecular mechanism was confirmed that HA-Cu could downregulate the expression of key proteins in the VEGF/VEGFR2 signaling pathway and the expression of inflammatory cytokines, enhance the advantage of pro-apoptotic protein Bax, and enforce cuproptosis by weakening the expression of FDX1 and enhancing the expression of HSP70. Our research will provide a theoretical and practical reference for the development of metal-sulfamethazine and its derivatives as chemotherapy drugs for cancer treatment.
Collapse
Affiliation(s)
- Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ji-Cheng Liu
- Nanning Institute for Food and Drug Control, Nanning, Guangxi 530007, China
| | - Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| |
Collapse
|
22
|
Huang W, Wang C, Zhang H. Eriodictyol inhibits the motility, angiogenesis and tumor growth of hepatocellular carcinoma via NLRP3 inflammasome inactivation. Heliyon 2024; 10:e24401. [PMID: 38317873 PMCID: PMC10839802 DOI: 10.1016/j.heliyon.2024.e24401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
NLRP3 involves in the development of hepatocellular carcinoma (HCC). Eriodictyol has shown its inhibitory effect on HCC cell proliferation. However, the underlying mechanism of eriodictyol in HCC is still unclear. This study aimed to explore the effect of and mechanism of eriodictyol on HCC. In this study, compared with eriodictyol (0 μM) group, eriodictyol significantly suppressed HepG2 cells (eriodictyol of 25, 50 and 100 μM) and Huh-7 cells (eriodictyol of 50 and 100 μM) viability, invasion, tube formation, metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions with IC50 of 45.63 μM and 78.26 μM in vitro, respectively. Besides, eriodictyol significantly repressed NLRP3 expression, and reduced the protein levels of NLRP3 inflammasome-related proteins, adapter protein ASC, caspase-1, interleukin (IL)-18, and IL-1β in HepG2 (eriodictyol of 25, 50 and 100 μM) and Huh-7 cells (eriodictyol of 50 and 100 μM), respectively. Meanwhile, compared with control group, NLRP3 overexpression reversed the anti-metastatic effects of 100 μM eriodictyol on HCC cells invasion, tube formation, and metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions, whereas NLRP3 knockdown enhanced the anti-metastatic effects of 100 μM eriodictyol on HCC cells. In vivo, compared with control group, eriodictyol significantly reduced the tumor growth, liver damage, inhibited the activation of NLRP3 inflammasome, and improved liver function, whereas NLRP3 overexpressing neutralized the anti-tumor effects of eriodictyol and degraded liver function. Hence, eriodictyol inhibited HCC cell viability, motility, angiogenesis and tumor growth via NLRP3 inflammasome inactivation both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Huang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
23
|
Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, Lin L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol 2024; 8:31. [PMID: 38341519 DOI: 10.1038/s41698-024-00522-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tumor drug resistance emerges from the interaction of two critical factors: tumor cellular heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) constitute essential components of the TME. M2-like TAMs are essential in facilitating tumor metastasis as well as augmenting the drug resistance of tumors. This review encapsulates the mechanisms that M2-like TAMs use to promote tumor drug resistance. We also describe the emerging therapeutic strategies that are currently targeting M2-like TAMs in combination with other antitumor drugs, with some still undergoing clinical trial evaluation. Furthermore, we summarize and analyze various existing approaches for developing novel drugs that target M2-like TAMs to overcome tumor resistance, highlighting how targeting M2-like TAMs can effectively stop tumor growth, metastasis, and overcome tumor drug resistance.
Collapse
Affiliation(s)
- Shujing Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiamin Luo
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
24
|
Xu Y, Shao B, Zhang Y. The significance of targeting lysosomes in cancer immunotherapy. Front Immunol 2024; 15:1308070. [PMID: 38370407 PMCID: PMC10869645 DOI: 10.3389/fimmu.2024.1308070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Lysosomes are intracellular digestive organelles that participate in various physiological and pathological processes, including the regulation of immune checkpoint molecules, immune cell function in the tumor microenvironment, antigen presentation, metabolism, and autophagy. Abnormalities or dysfunction of lysosomes are associated with the occurrence, development, and drug resistance of tumors. Lysosomes play a crucial role and have potential applications in tumor immunotherapy. Targeting lysosomes or harnessing their properties is an effective strategy for tumor immunotherapy. However, the mechanisms and approaches related to lysosomes in tumor immunotherapy are not fully understood at present, and further basic and clinical research is needed to provide better treatment options for cancer patients. This review focuses on the research progress related to lysosomes and tumor immunotherapy in these.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Yafeng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
- Institute for Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Chen M, Li D, Meng X, Sun Y, Liu R, Sun T. Review of isolation, purification, structural characteristics and bioactivities of polysaccharides from Portulaca oleracea L. Int J Biol Macromol 2024; 257:128565. [PMID: 38061516 DOI: 10.1016/j.ijbiomac.2023.128565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Portulaca oleracea L., also known as purslane, affiliates to the Portulacaceae family. It is an herbaceous succulent annual plant distributed worldwide. P. oleracea L. is renowned for its nutritional value and medicinal value, which has been utilized for thousands of years as Traditional Chinese Medicine (TCM). The extract derived from P. oleracea L. has shown efficacy in treating various diseases, including intestinal dysfunction and inflammation. Polysaccharides from P. oleracea L. (POP) are the primary constituents of the crude extract which have been found to have various biological activities, including antioxidant, antitumor, immune-stimulating, and intestinal protective effects. While many publications have highlighted on the structural identification and bioactivity evaluation of POP, the underlying structure-activity relationship of POP still remains unclear. In view of this, this review aims to focus on the extraction, purification, structural features and bioactivities of POP. In addition, the potential structure-activity relationship and the developmental perspective for future research of POP were also explored and discussed. The current review would provide a valuable research foundation and the up-to-date information for the future development and application of POP in the field of the functional foods and medicine.
Collapse
Affiliation(s)
- Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
26
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
27
|
Tan A, Nong L, Wang H, Jia Y, Zhong W, Qin F, Wang H, Tang J, Liu Y, Lu Y. Phase II study of apatinib plus exemestane in estrogen receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer. Cancer Biol Ther 2023; 24:2265055. [PMID: 37831547 PMCID: PMC10578185 DOI: 10.1080/15384047.2023.2265055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
PURPOSE Apatinib is a tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR)-2. This study was conducted to assess the efficacy and safety of apatinib combined with exemestane in patients with estrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). METHODS This single-center, single-arm phase II study enrolled patients with ER+/HER2- MBC progressed on previous letrozole or anastrozole. Stratified analysis was performed according to the number of chemotherapy regimens for metastatic disease. The primary endpoint was progression free survival (PFS). Secondary endpoints included objective response rate (ORR), disease control rate (DCR), clinical benefit rate (CBR), overall survival (OS) and toxicity. Patients received apatinib at a starting dose of 500 mg/d and exemestane 25 mg/d on days 1-28 of each 4-week cycle. RESULTS Thirty patients were enrolled with median four prior anticancer therapies. Eighty percent of patients received chemotherapy for metastatic disease. The median PFS (mPFS) and OS were 5.6 (95%CI: 4.3-6.9) months and 15.7 (95% CI: 9.7-21.7) months, respectively. The ORR, DCR, and CBR were 21.4%, 71.4%, and 46.4%, respectively. Patients with 0-1 line chemotherapy for MBC showed a slightly longer mPFS compared to those with ≥2 lines chemotherapy (mPFS: 6.4 months vs 4.8 months, P = .090). Most of the AEs were grade 1/2. One patient (3.3%) who suffered bone marrow metastases experienced grade 4 thrombocytopenia, and 14 experienced grade 3 AEs. Fifty percent of patients were given reduced dose for apatinib. CONCLUSIONS Apatinib plus exemestane exhibited objective efficacy in patients with ER+/HER2- MBC who have failed multiple lines of treatment. The AEs of apatinib required close monitoring and most of patients were well tolerated.
Collapse
Affiliation(s)
- Aihua Tan
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Li Nong
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hongxue Wang
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yuxian Jia
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Wuning Zhong
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Fanghui Qin
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Han Wang
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jing Tang
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yan Liu
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yongkui Lu
- Department of Breast, Bone & Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
28
|
Manicardi V, Gugnoni M, Sauta E, Donati B, Vitale E, Torricelli F, Manzotti G, Piana S, Longo C, Ghini F, Ciarrocchi A. Ex vivo mapping of enhancer networks that define the transcriptional program driving melanoma metastasis. Mol Oncol 2023; 17:2728-2742. [PMID: 37408506 DOI: 10.1002/1878-0261.13485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Mortality from vmelanoma is associated with metastatic disease, but the mechanisms leading to spreading of the cancer cells remain obscure. Spatial profiling revealed that melanoma is characterized by a high degree of heterogeneity, which is established by the ability of melanoma cells to switch between different phenotypical stages. This plasticity, likely a heritage from embryonic pathways, accounts for a relevant part of the metastatic potential of these lesions, and requires the rapid and efficient reorganization of the transcriptional landscape of melanoma cells. A large part of the non-coding genome cooperates to control gene expression, specifically through the activity of enhancers (ENHs). In this study, we aimed to identify ex vivo the network of active ENHs and to outline their cooperative interactions in supporting transcriptional adaptation during melanoma metastatic progression. We conducted a genome-wide analysis to map active ENHs distribution in a retrospective cohort of 39 melanoma patients, comparing the profiles obtained in primary (N = 19) and metastatic (N = 20) melanoma lesions. Unsupervised clustering showed that the profile for acetylated histone H3 at lysine 27 (H3K27ac) efficiently segregates lesions into three different clusters corresponding to progressive stages of the disease. We reconstructed the map of super-ENHs (SEs) and cooperative ENHs that associate with metastatic progression in melanoma, which showed that cooperation among regulatory elements is a mandatory requirement for transcriptional plasticity. We also showed that these elements carry out specialized and non-redundant functions, and indicated the existence of a hierarchical organization, with SEs on top as masterminds of the entire transcriptional program and classical ENHs as executors. By providing an innovative vision of how the chromatin landscape of melanoma works during metastatic spreading, our data also point out the need to integrate functional profiling in the analysis of cancer lesions to increase definition and improve interpretation of tumor heterogeneity.
Collapse
Affiliation(s)
- Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | | | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | | | - Caterina Longo
- Skin Cancer Unit, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Francesco Ghini
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| |
Collapse
|
29
|
Yang W, Li X, He J, Xuan Q, Si H, Yao W. Efficacy and safety of immune checkpoint inhibitors combined with anti-VEGF therapy in the treatment of unresectable or advanced liver cancer: a systematic review. Immunopharmacol Immunotoxicol 2023; 45:770-779. [PMID: 37228221 DOI: 10.1080/08923973.2023.2215404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE This study aimed to evaluate the clinical effects and safety of immune checkpoint inhibitors (ICIs) combined with anti-VEGF therapy for the treatment of unresectable or advanced liver cancer. METHOD Related databases were searched from inception to December 2022 to identify randomized controlled studies and clinical trials that evaluated the combination of ICIs and anti-VEGF therapy for the treatment of unresectable liver cancer. The outcome index was extracted and analyzed by RevMan5.4.ResultsA total of 8 clinical trials were included. In terms of efficacy, the intervention group had longer OS and PFS for unresectable or advanced liver cancer than the control group. In terms of safety, (1) Adverse events of all grades showed that the combination treatment led to significantly higher risks of urinary system disorders, cardiovascular system disorder, blood system disorders and liver dysfunction than the control treatment. Compared with monotherapy, the combination treatment led to lower risks of gastrointestinal disorders. (2) Adverse events above grade 3 showed that, compared with the control treatment, the combination treatment led to significantly higher risks of urinary system disorders, blood systeam disorders, cardiovascular system disorders and liver dysfunction. Additionally, compared with monotherapy, the combination treatment led to significantly lower risks of gastrointestinal disorders. CONCLUSIONS ICIs combined with anti-VEGF therapy exerts significant clinical effects in patients with unresectable or advanced liver cancer, can prolong the survival of these patients and can improve their quality of life. However, clinical attention should be given to the occurrence of adverse reactions.
Collapse
Affiliation(s)
- Wenchao Yang
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, P.R. China
| | - Xiaofang Li
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, P.R. China
| | - Jiana He
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, P.R. China
| | - Qingqing Xuan
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, P.R. China
| | - Haiyan Si
- Department of Gastroenterology, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, P.R. China
| | - Weifen Yao
- Department of Infectious Disease, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, P.R. China
| |
Collapse
|
30
|
Zhang XD, Yu WH, Liu MM, Liu R, Wu H, Wang Z, Hai CX. Pentoxifylline inhibits phosgene-induced lung injury via improving hypoxia. Drug Chem Toxicol 2023; 46:1100-1107. [PMID: 36220803 DOI: 10.1080/01480545.2022.2131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Inhalation of high concentrations of phosgene often causes pulmonary edema, which obstructs the airway and causes tissue hypoxia. There is currently no specific antidote. This study was performed to investigate the effect behind pentoxifylline (PTX) treatment for phosgene-induced lung injury in rat models. Rats were exposed to phosgene. The protein levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and occludin proteins in lung tissue were determined. The effect of both prophylactic and therapeutic administration of PTX (50 mg/kg and 100 mg/kg) was evaluated. The lung permeability index and HIF-1α protein level increased, the arterial blood oxygenation index (PaO2/FIO2 ratio) and occludin protein level decreased significantly 6 h after phosgene exposure (P < 0.05). PTX exerted protective effects by HIF-1α-VEGF-occludin signaling pathway to some extent. Moreover, prophylactic, but not therapeutic administration of PTX (100 mg/kg), exhibited a significant protective effect. Pretreatment with PTX protected against phosgene-induced lung injury, possibly by inhibiting differential expression of HIF-1α, VEGF, and occludin.
Collapse
Affiliation(s)
- Xiao-di Zhang
- Department of Toxicology, School of Public Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei-Hua Yu
- Department of Toxicology, School of Public Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Meng-Meng Liu
- Department of Health Service, Logistics College of Chinese People's Armed Police Force, Tianjin, China
| | - Rui Liu
- Department of Toxicology, School of Public Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Hao Wu
- Department of Toxicology, School of Public Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhao Wang
- Department of Toxicology, School of Public Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Chun-Xu Hai
- Department of Toxicology, School of Public Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Jia Y, Li X, Meng X, Lei J, Xia Y, Yu L. Anticancer perspective of 6-shogaol: anticancer properties, mechanism of action, synergism and delivery system. Chin Med 2023; 18:138. [PMID: 37875983 PMCID: PMC10594701 DOI: 10.1186/s13020-023-00839-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Cancer is a malignant disease that has plagued human beings all the time, but the treatment effect of commonly used anticancer drugs in clinical practice is not ideal by reason of their drug tolerance and Strong adverse reactions to patients. Therefore, it is imperative to find effective and low-toxic anticancer drugs. Many research works have shown that natural products in Chinese herbal medicine have great anticancer potential, such as 6-shogaol, a monomer composition obtained from Chinese herbal ginger, which has been confirmed by numerous in vitro or vivo studies to be an excellent anti-cancer active substance. In addition, most notably, 6-shogaol has different selectivity for normal and cancer cells during treatment, which makes it valuable for further research and clinical development. Therefore, this review focus on the anti-cancer attributes, the mechanism and the regulation of related signaling pathways of 6-shogaol. In addition, its synergy with commonly used anticancer drugs, potential drug delivery systems and prospects for future research are discussed. This is the first review to comprehensively summarize the anti-cancer mechanism of 6-shogaol, hoping to provide a theoretical basis and guiding significance for future anti-cancer research and clinical development of 6-shogaol.
Collapse
Affiliation(s)
- Yaoxia Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Li
- Jianyang Chinese Medicine Hospital, Chengdu, 641400, China
| | - Xiangqi Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Jinjie Lei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Yangmiao Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Lingying Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
32
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
33
|
Lu S, Sun X, Zhou Z, Tang H, Xiao R, Lv Q, Wang B, Qu J, Yu J, Sun F, Deng Z, Tian Y, Li C, Yang Z, Yang P, Rao B. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation. Front Immunol 2023; 14:1235575. [PMID: 37799727 PMCID: PMC10548240 DOI: 10.3389/fimmu.2023.1235575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Bazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD's active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an "herb-ingredient-target" network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer. Results BZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the "herb-ingredient-target" network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles. Conclusion BZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Shuai Lu
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Xibo Sun
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Zhongbao Zhou
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Huazhen Tang
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Ruixue Xiao
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Qingchen Lv
- Medical Laboratory College, Hebei North University, Zhangjiakou, China
| | - Bing Wang
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxuan Yu
- First Clinical Medical College, Binzhou Medical University, Yantai, China
| | - Fang Sun
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhuoya Deng
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuying Tian
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Cong Li
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Penghui Yang
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Benqiang Rao
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| |
Collapse
|
34
|
Bokhari SMZ, Hamar P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors. Int J Mol Sci 2023; 24:13317. [PMID: 37686121 PMCID: PMC10487419 DOI: 10.3390/ijms241713317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the key regulators of vasculogenesis in normal and oncological development. VEGF-A is the most studied angiogenic factor secreted by malignant tumor cells under hypoxic and inflammatory stress, which made VEGF-A a rational target for anticancer therapy. However, inhibition of VEGF-A by monoclonal antibody drugs led to the upregulation of VEGF-D. VEGF-D was primarily described as a lymphangiogenic factor; however, VEGF-D's blood angiogenic potential comparable to VEGF-A has already been demonstrated in glioblastoma and colorectal carcinoma. These findings suggested a role for VEGF-D in facilitating malignant tumor growth by bypassing the anti-VEGF-A antiangiogenic therapy. Owing to its high mitogenic ability, higher affinity for VEGFR-2, and higher expression in cancer, VEGF-D might even be a stronger angiogenic driver and, hence, a better therapeutic target than VEGF-A. In this review, we summarized the angiogenic role of VEGF-D in blood vasculogenesis and its targetability as an antiangiogenic therapy in cancer.
Collapse
Affiliation(s)
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| |
Collapse
|
35
|
Fan R, Wei JC, Xu BB, Jin N, Gong XY, Qin XY. A novel chiral oxazoline copper(II)-based complex inhibits ovarian cancer growth in vitro and in vivo by regulating VEGF/VEGFR2 downstream signaling pathways and apoptosis factors. Dalton Trans 2023; 52:11427-11440. [PMID: 37539728 DOI: 10.1039/d3dt01648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A novel chiral oxazoline copper(II)-based complex {[Cu(C13H14NO3S)2]}2 (Cu-A) was synthesized by an in situ reaction using L-methioninol, 4-hydroxyisophthalaldehyde, sodium hydroxide and copper(II) nitrate trihydrate as reactants. Its crystal structure was characterized. In vitro, Cu-A was superior to cis-dichlorodiammineplatinum (DDP) in cytotoxicity and angiogenesis inhibition. Cu-A significantly induced apoptosis of ovarian cancer cells (SKOV3) and human umbilical vein endothelial cells (HUVECs), showing significant anti-ovarian cancer and anti-angiogenesis effects. Notably, Cu-A significantly inhibits the growth of ovarian cancer in nude mice xenografted with SKOV3 cells, and it is less renal toxic than DDP. The molecular mechanism of anti-ovarian cancer and anti-angiogenesis is possibly that it down-regulates the expression of the proteins ERK1/2, AKT, FAK, and VEGFR2 and their phosphorylated proteins p-ERK1/2, p-AKT, p-FAK, and p-VEGFR2 in the VEGF/VEGFR2 signal transduction pathway to inhibit SKOV3 cell and HUVEC proliferation, induce apoptosis, suppress migration and metastasis, and inhibit angiogenesis. What's more, Cu-A significantly inhibits ovarian tumor growth in vivo by inhibiting tumor cells from inducing vascular endothelial cells to form their own vasculature and by inhibiting the expression of the anti-apoptotic protein Bcl-2 and up-regulating the expression of the pro-apoptotic proteins Caspase-9 and Bax to induce apoptosis of tumor cells.
Collapse
Affiliation(s)
- Rong Fan
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Jing-Chen Wei
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Xiao-Yi Gong
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| |
Collapse
|
36
|
Sheng Y, Dang X, Zhang H, Rui W, Wang J, Cheng H, Qiu T, Zhang Y, Ding Y, Yao Z, Pang H, Ren Y. Correlations between intravoxel incoherent motion-derived fast diffusion and perfusion fraction parameters and VEGF- and MIB-1-positive rates in brain gliomas: an intraoperative MR-navigated, biopsy-based histopathologic study. Eur Radiol 2023; 33:5236-5246. [PMID: 36941492 DOI: 10.1007/s00330-023-09506-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVES To explore the correlations between histopathologic findings and intravoxel incoherent motion (IVIM)-derived perfusion and diffusion parameters in brain gliomas. METHODS Thirty-two biopsy samples from twenty-one patients with newly diagnosed gliomas from a previous prospective cohort study were retrospectively analyzed. All patients underwent diffusion-weighted MRI with 22 b values (0-5000 s/mm2), followed by intraoperative MR-guided biopsy surgery and surgical resection. All 32 biopsy samples underwent immunohistochemical staining followed by quantitative analysis of cell density (cellularity), percent of MIB-1 (Ki67)-positive expression (pMIB-1), number of CD34-stained vessels (CD34-MVD), and percent of VEGF-positive expressing cells (pVEGF) using a multispectral phenotyping microscope. Based on the co-registered localized biopsy, correlation analysis was performed between the IVIM-derived biexponential model-based parameters (Dfast1500 and Dfast5000, Dslow1500 and Dslow5000, PF1500 and PF5000) and the above four pathological biomarkers and glioma grades. RESULTS Significant positive correlations were revealed between Dfast5000 and pVEGF (rho (r) = 0.466, p = 0.007), and Dfast1500 and pVEGF (r = 0.371, p = 0.037). A significant negative correlation was revealed between PF5000 with pMIB-1 (r = - 0.456, p = 0.01). Moderate to good positive correlations were shown between Dfast5000 and glioma grades (r = 0.509, p = 0.003) and Dfast1500 and glioma grades (r = 0.476, p = 0.006). CONCLUSIONS IVIM-DWI-derived Dfast and PF correlate, respectively, with intratumor pVEGF and pMIB-1. When using the wide-high b value scheme, IVIM-derived Dfast and PF tend to demonstrate better efficacy in evaluating malignancy-related characteristics such as angiogenesis and cellular proliferation in gliomas. KEY POINTS • Intravoxel incoherent motion-diffusion-weighted imaging (IVIM-DWI)-derived fast diffusion (Dfast) and perfusion fraction (PF) can quantitatively reflect intratumor pVEGF and pMIB-1. • IVIM-DWI-derived Dfast and PF tend to demonstrate better efficacy in evaluating glioma malignancy when an optimized scheme is used. • IVIM-DWI-derived Dfast5000 and PF5000 are promising non-invasive parameters correlating with pVEGF and pMIB-1 in gliomas.
Collapse
Affiliation(s)
- Yaru Sheng
- Radiology Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xuefei Dang
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Hua Zhang
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wenting Rui
- Radiology Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Wang
- Radiology Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haixia Cheng
- Neuropathology Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tianming Qiu
- Neurosurgery Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yong Zhang
- MR Research, GE Healthcare, 1 Huatuo Road, Shanghai, 201203, China
| | - Yueyue Ding
- Department of Echocardiology, Children's Hospital, Suzhou University, Suzhou, 215000, China
| | - Zhenwei Yao
- Radiology Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haopeng Pang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, #197 Rui Jin Er Road, Shanghai, 200025, China.
- Department of Integrative Oncology, Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Radiology Department of Huashan Hospital, Fudan University, Mid 12 Wulumuqi Road, Shanghai, 200040, China.
| | - Yan Ren
- Radiology Department of Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
37
|
Chen LC, Mokgautsi N, Kuo YC, Wu ATH, Huang HS. In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines 2023; 11:2011. [PMID: 37509650 PMCID: PMC10376976 DOI: 10.3390/biomedicines11072011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor angiogenesis and lymphangiogenesis pathways have been identified as important therapeutic targets in non-small cell lung cancer (NSCLC). Bevacizumab, which is a monoclonal antibody, was the initial inhibitor of angiogenesis and lymphangiogenesis that received approval for use in the treatment of advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. Despite its usage, patients may still develop resistance to the treatment, which can be attributed to various histological subtypes and the initiation of treatment at advanced stages of cancer. Due to their better specificity, selectivity, and safety compared to chemotherapy, small molecules have been approved for treating advanced NSCLC. Based on the development of multiple small-molecule antiangiogenic drugs either in house and abroad or in other laboratories to treat NSCLC, we used a quinoline-derived small molecule-HN-N07-as a potential target drug for NSCLC. Accordingly, we used computational simulation tools and evaluated the drug-likeness properties of HN-N07. Moreover, we identified target genes, resulting in the discovery of the target BIRC5/HIF1A/FLT4 pro-angiogenic genes. Furthermore, we used in silico molecular docking analysis to determine whether HN-N07 could potentially inhibit BIRC5/HIF1A/FLT4. Interestingly, the results of docking HN-N07 with the BIRC5, FLT4, and HIF1A oncogenes revealed unique binding affinities, which were significantly higher than those of standard inhibitors. In summary, these results indicate that HN-N07 shows promise as a potential inhibitor of oncogenic signaling pathways in NSCLC. Ongoing studies that involve in vitro experiments and in vivo investigations using tumor-bearing mice are in progress, aiming to evaluate the therapeutic effectiveness of the HN-N07 small molecule.
Collapse
Affiliation(s)
- Lung-Ching Chen
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
38
|
Marchioni A, Tonelli R, Samarelli AV, Cappiello GF, Andreani A, Tabbì L, Livrieri F, Bosi A, Nori O, Mattioli F, Bruzzi G, Marchioni D, Clini E. Molecular Biology and Therapeutic Targets of Primitive Tracheal Tumors: Focus on Tumors Derived by Salivary Glands and Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:11370. [PMID: 37511133 PMCID: PMC10379311 DOI: 10.3390/ijms241411370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Primary tracheal tumors are rare, constituting approximately 0.1-0.4% of malignant diseases. Squamous cell carcinoma (SCC) and adenoid cystic carcinoma (ACC) account for about two-thirds of these tumors. Despite most primary tracheal cancers being eligible for surgery and/or radiotherapy, unresectable, recurrent and metastatic tumors may require systemic treatments. Unfortunately, the poor response to available chemotherapy as well as the lack of other real therapeutic alternatives affects the quality of life and outcome of patients suffering from more advanced disease. In this condition, target therapy against driver mutations could constitute an alternative to chemotherapy, and may help in disease control. The past two decades have seen extraordinary progress in developing novel target treatment options, shifting the treatment paradigm for several cancers such as lung cancer. The improvement of knowledge regarding the genetic and biological alterations, of major primary tracheal tumors, has opened up new treatment perspectives, suggesting the possible role of biological targeted therapies for the treatment of these rare tumors. The purpose of this review is to outline the state of knowledge regarding the molecular biology, and the preliminary data on target treatments of the main primary tracheal tumors, focusing on salivary-gland-derived cancers and squamous cell carcinoma.
Collapse
Affiliation(s)
- Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Anna Valeria Samarelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Gaia Francesca Cappiello
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Alessandro Andreani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Francesco Livrieri
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Annamaria Bosi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Ottavia Nori
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | | | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Otolaryngology Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Daniele Marchioni
- Otolaryngology Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| |
Collapse
|
39
|
Shao F, Lai X, Tong L, Li L, Ye D, Jin L, Xu C. Correlation between color doppler flow pattern and molecular biology in elderly patients with colon cancer. BMC Gastroenterol 2023; 23:232. [PMID: 37430251 DOI: 10.1186/s12876-023-02870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE To investigate the correlation between the grade and type of color Doppler flow imaging (CDFI) and tumor-related cytokines in elderly patients with colon cancer. METHODS Seventy-six elderly patients with colorectal cancer admitted to Zhejiang Provincial People's Hospital from July 2020 to June 2022 were selected. CDFI was used to analyze the blood flow grade and distribution type of tumor tissues, and ELISA was used to detect the levels of tumor-related cytokines in serum. Preoperative clinical data were collected and analyzed, and the correlation between measured cytokine levels and CDFI analysis results was further explored. RESULTS CDFI blood flow grade showed significant difference in the different lengths, invasion depths and lymph node metastasis of tumors (all P < 0.001). In addition, serum levels of TNF-α, IL-6 and VEGF also showed statistical difference in all above different tumor-related factors (all P < 0.001). Further Pearson correlation analysis showed that CDFI blood flow grade and distribution types were both significantly positively correlated with above serum cytokine levels (r > 0, all P < 0.001). Kaplan-Meier survival analysis showed that both CDFI blood flow grade and distribution types were poor prognostic factors in elderly patients with colon cancer. Regression analysis showed that serum levels of TNF-α, IL-6 and VEGF were independent risk factors for poor prognosis of colon cancer in elderly patients. CONCLUSION CDFI blood flow grade and tumor tissue distribution have potential significant correlations with tumor-associated cytokines in the serum of colon cancer patients. CDFI blood flow grading technique provides an important imaging method for dynamic observation of angiogenesis and blood flow changes in elderly patients with colon cancer. Abnormal changes in serum levels of tumor-related factors can be used as sensitive indicators to evaluate the therapeutic effect and prognosis of colon cancer.
Collapse
Affiliation(s)
- Fei Shao
- Rehabilitation Medcine Center, Department of Geriatric VIP No. 3 (Department of Clinical Psychology), Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuxiu Lai
- Cardiovascular Center, Department of Geriatric VIP No. 6 (Department of Geriatric Medicine), Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lulu Tong
- Rehabilitation Medicine Center, Department of Rehabilitation, Encephalopathy Rehabilitation Ward, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Linxiao Li
- Rehabilitation Medcine Center, Department of Geriatric VIP No. 3 (Department of Clinical Psychology), Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Da Ye
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Linlin Jin
- Rehabilitation Medcine Center, Department of Geriatric VIP No. 3 (Department of Clinical Psychology), Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chunyan Xu
- Cardiovascular Center, Department of Geriatric VIP No. 5 (Department of Geriatric Medicine), Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
40
|
Ocran E, Chornenki NLJ, Bowman M, Sholzberg M, James P. Gastrointestinal bleeding in von Willebrand patients: special diagnostic and management considerations. Expert Rev Hematol 2023; 16:575-584. [PMID: 37278227 DOI: 10.1080/17474086.2023.2221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Severe and recurrent gastrointestinal (GI) bleeding caused by angiodysplasia is a significant problem in patients with von Willebrand disease (VWD) and in those with acquired von Willebrand syndrome (AVWS). At present, angiodysplasia-related GI bleeding is often refractory to standard treatment including replacement therapy with von Willebrand factor (VWF) concentrates and continues to remain a major challenge and cause of significant morbidity in patients despite advances in diagnostics and therapeutics. AREAS COVERED This paper reviews the available literature on GI bleeding in VWD patients, examines the molecular mechanisms implicated in angiodysplasia-related GI bleeding, and summarizes existing strategies in the management of bleeding GI angiodysplasia in patients with VWF abnormalities. Suggestions are made for further research directions. EXPERT OPINION Bleeding from angiodysplasia poses a significant challenge for individuals with abnormal VWF. Diagnosis remains a challenge and may require multiple radiologic and endoscopic investigations. Additionally, there is a need for enhanced understanding at a molecular level to identify effective therapies. Future studies of VWF replacement therapies using newer formulations as well as other adjunctive treatments to prevent and treat bleeding will hopefully improve care.
Collapse
Affiliation(s)
- Edwin Ocran
- Department of Medicine, Queen's University, Kingston, Canada
| | | | | | - Michelle Sholzberg
- Division of Hematology-Oncology, St. Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada
| | - Paula James
- Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
41
|
Lu L, Wang L, Zhao L, Liao J, Zhao C, Xu X, Wang F, Zhang X. A Novel Blood-Brain Barrier-Penetrating and Vascular-Targeting Chimeric Peptide Inhibits Glioma Angiogenesis. Int J Mol Sci 2023; 24:ijms24108753. [PMID: 37240099 DOI: 10.3390/ijms24108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The high vascularization of glioma highlights the potential value of anti-angiogenic therapeutics for glioma treatment. Previously, we designed a novel vascular-targeting and blood-brain barrier (BBB)-penetrating peptide, TAT-AT7, by attaching the cell-penetrating peptide TAT to a vascular-targeting peptide AT7, and we demonstrated that TAT-AT7 could target binding to the vascular endothelial growth factor receptor 2 (VEGFR-2) and Neuropilin-1 (NRP-1), which are both highly expressed in endothelial cells. TAT-AT7 has been proven to be a good targeting peptide which could effectively deliver the secretory endostatin gene to treat glioma via the TAT-AT7-modified polyethyleneimine (PEI) nanocomplex. In the current study, we further explored the molecular binding mechanisms of TAT-AT7 to VEGFR-2 and NRP-1 and its anti-glioma effects. Accordingly, TAT-AT7 was proven to competitively bind to VEGFR-2 and NRP-1 and prevent VEGF-A165 binding to the receptors by the surface plasmon resonance (SPR) assay. TAT-AT7 inhibited endothelial cells' proliferation, migration, invasion, and tubule formation, as well as promoted endothelial cells' apoptosis in vitro. Further research revealed that TAT-AT7 inhibited the phosphorylation of VEGFR-2 and its downstream PLC-γ, ERK1/2, SRC, AKT, and FAK kinases. Additionally, TAT-AT7 significantly inhibited angiogenesis of zebrafish embryo. Moreover, TAT-AT7 had a better penetrating ability and could penetrate the BBB into glioma tissue and target glioma neovascularization in an orthotopic U87-glioma-bearing nude mice model, and exhibited the effect of inhibiting glioma growth and angiogenesis. Taken together, the binding and function mechanisms of TAT-AT7 were firstly revealed, and TAT-AT7 was proven to be an effective and promising peptide for the development of anti-angiogenic drugs for targeted treatment of glioma.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Longkun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Liao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohan Xu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
42
|
Tao Y, Li P, Zhao C, Mu Z, Li Y, Yuan S, Wei Y. Plasma Markers for Early Prediction of Radiation-Induced Myocardial Damage. J Interferon Cytokine Res 2023; 43:173-181. [PMID: 37062819 PMCID: PMC10122238 DOI: 10.1089/jir.2022.0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/13/2023] [Indexed: 04/18/2023] Open
Abstract
There is no sensitive and effective method to predict radiation-induced myocardial damage (RIMD). The aim of this study was to explore effective plasma biomarkers for early prediction of RIMD after radiotherapy (RT) in lung cancer patients and in a rat model. Biomarker levels were measured in plasma samples collected before and after thoracic RT from 17 lung cancer patients. For the animal model, a single radiation dose of 40 Gy was delivered to the cardiac apex of female Wistar rats. Control rats received sham irradiation (0 Gy). Dynamic plasma biomarker detection and histopathological analysis to confirm RIMD were performed in rats up to 6 months after RT. In lung cancer patients, the plasma caspase-3 concentration was significantly increased after thoracic RT (P = 0.0479), with increasing but nonsignificant trends observed for caspase-1, CCL2, vascular endothelial growth factor (VEGF), interleukin-1β, and IL-6 (P > 0.05). Changes in caspase-3, VEGF, and IL-6 correlated significantly with mean heart dose (P < 0.05). In the RIMD rat model, caspase-1, caspase-3, CCl-2, VEGF, CCl-5, and TGF-β1 levels were significantly elevated in the first week post-RT (P < 0.05), which was earlier than pathological changes. Myocardial tissue of the RIMD rats also showed significant macrophage infiltration at 1 month (P < 0.01) and fibrosis at 6 months postradiation (P < 0.0001). Macrophage infiltration correlated significantly with plasma caspase-3, CCL2, CCL5, VEGF, and TGF-β1 levels from 3 weeks to 2 months post-RT. Increased plasma caspase-1, caspase-3, CCl-2, and VEGF levels were detected before RIMD-related pathological changes, indicating their clinical potential as biomarkers for early prediction of RIMD.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Pei Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chenglong Zhao
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhengshuai Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuanghu Yuan
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Cheeloo College of Medicine, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Yuchun Wei
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
43
|
Sansone C, Pistelli L, Calabrone L, Del Mondo A, Fontana A, Festa M, Noonan DM, Albini A, Brunet C. The Carotenoid Diatoxanthin Modulates Inflammatory and Angiogenesis Pathways In Vitro in Prostate Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12020359. [PMID: 36829917 PMCID: PMC9952135 DOI: 10.3390/antiox12020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Xanthophylls, a group of carotenoids, have attracted attention as human health benefit compounds thanks to their functionality and bioavailability. The great antioxidant and anti-inflammatory abilities of diatoxanthin (Dt), a photoprotective xanthophyll synthetized by diatoms, were recently documented. This study investigates the capacity of Dt to intercept prostate cancer progression in vitro on different human cell lines, exploring its role against cancer proliferation and angiogenesis. Our results highlighted the chemopreventive role of Dt already at low concentration (44.1 pM) and suggest that the Dt-induced cancer cell death occurred through oxidative stress mechanisms. This hypothesis was supported by variations on the expression of key genes and proteins. Oxidative stress cell deaths (e.g., ferroptosis) are recently described types of cell death that are closely related to the pathophysiological processes of many diseases, such as tumors. Nonetheless, the interest of Dt was further strengthened by its ability to inhibit angiogenesis. The results are discussed considering the actual progress and requirements in cancer therapy, notably for prostate cancer.
Collapse
Affiliation(s)
- Clementina Sansone
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: (C.S.); (C.B.)
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
| | - Luana Calabrone
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, Italian National Research Council (CNR), 80078 Pozzuoli, Italy
| | - Marco Festa
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
| | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adriana Albini
- IRCSS European Institute of Oncology (IEO), 20141 Milan, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
- Correspondence: (C.S.); (C.B.)
| |
Collapse
|
44
|
Mao N, Wu X, Wang C, Mao H, Wei J. Effect of Moxibustion Combined With Cisplatin on Tumor Microenvironment Hypoxia and Vascular Normalization in Lewis Lung Cancer Mice. Integr Cancer Ther 2023; 22:15347354231198195. [PMID: 37694878 PMCID: PMC10498697 DOI: 10.1177/15347354231198195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
PURPOSE This study was developed to evaluate the effects of moxibustion on tumor microenvironmental hypoxia in a murine model of Lewis lung carcinoma (LLC). METHODS Twenty-four tumor-bearing mice were randomized into tumor group (T), tumor + cisplatin group (TC), tumor + moxibustion group (TM), and tumor + cisplatin + moxibustion group (TMC) (n = 6/group). Six age-matched C57BL/6 mice were employed as control group (Ctrl). A tumor model was established by implanting LLC cells into the right flank of each mouse. Animals in the TM group received moxibustion treatment at the ST36 (bilateral) and GV4 acupoints on the day of visible tumor formation. Moxibustion treatment was performed every other day for a total of 7 sessions. Animals in the TC group were intraperitoneally injected with cisplatin (3 mg/kg) on day 3 after visible tumor formation, and this treatment was performed every 3 days for 4 times. Animals in the TMC group underwent combined moxibustion and chemotherapy treatment, following the same conditions as outlined above. Following treatment, the concentrations of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), CD31, and Ki67 were measured using ELISA, Western blot, and immunohistochemical staining. RESULTS Compared to the tumor group, treatment in the TM, TC, and TCM groups resulted in varying reductions in tumor growth (P < .001 or P < .05), while tumor microenvironmental hypoxia was alleviated as evidenced by the downregulation of HIF-1α, VEGFA, and CD31(P < .001-P < .05). CONCLUSION Our results suggest that a combined approach of moxibustion and cisplatin can alleviate intratumoral hypoxia, promote vascular normalization, and slow the growth of LLC tumors in mice.
Collapse
Affiliation(s)
- Ni Mao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaofeng Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
45
|
Chen M, Tong C, Wu Q, Zhong Z, He Q, Zeng L, Xiao L. 6-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail Pathway. Integr Cancer Ther 2023; 22:15347354231172732. [PMID: 37157810 DOI: 10.1177/15347354231172732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
6-Shogaol from ginger has anti-inflammatory, anti-oxidation and anti-cancer effects. Aim of the Study: To study the effects and possible mechanisms of 6-Shogaol on inhibiting the migration of colon cancer cells Caco2 and HCT116 and prove the effects on proliferation and apoptosis. Materials and methods: The cells were treated with 6-Shogaol at the concentrations of 20, 40, 60, 80, and 100 µM, the cytotoxicity was tested by Colony formation assays and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and the Western blot was used to evaluate IKKβ/NF-κB/Snail pathway and EMT-related proteins. In addition, in order to eliminate the interference of proliferation inhibition on the experiment, Caco2 cells were treated with 6-Shogaol at the concentrations of 0, 40, and 80 µM, HCT116 cells were treated with 6-Shogaol at the concentrations of 0, 20, and 40 µM, apoptosis was measured by Annex V/PI staining, and migration was measured by Wound healing assays and Transwell test. Results: 6-Shogaol significantly inhibited the growth of cells. The maximum inhibitory concentration of half of them was 86.63 µM in Caco2 cells and 45.25 µM in HCT116 cells. At 80 µM and 40 µM concentrations, 6-Shogaol significantly promoted apoptosis of colon cancer Caco2 cells and HCT116 cells, and also significantly inhibited cell migration (P < .05). In addition, Western blot analysis showed that at 80 µM dose of 6-Shogaol significantly reduced MMP-2, N-cadherin, IKKβ, P-NF-κB and Snail expression in Caco2 cells (P < .05). 40 µM dose of 6-Shogaol significantly reduced VEGF, IKKβ, and P-NF-κB expression, and MMP-2, N-cadherin and Snail was significantly decreased at 60 µM of 6-Shogaol in HCT116 cells(P < .05). However, there was no significant change in E-cadherin in Caco2 cells, and the expression of E-cadherin protein in HCT116 cells decreased. Conclusion: This study proposes and confirms that 6-Shogaol can significantly inhibit the migration of colon cancer cells Caco2 and HCT116, and its mechanism may be produced by inhibiting EMT through IKKβ/NF-κB/Snail signaling pathway. It was also confirmed that 6-Shogaol inhibited the proliferation and promoted apoptosis of Caco2 and HCT116 cells.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR,, China
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Chiin Tong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR,, China
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR,, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou, Guangdong, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Zhenghong Zhong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR,, China
| | - Qida He
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR,, China
| | - Li Zeng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR,, China
| | - Lu Xiao
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
46
|
Martinelli S, Amore F, Canu L, Maggi M, Rapizzi E. Tumour microenvironment in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1137456. [PMID: 37033265 PMCID: PMC10073672 DOI: 10.3389/fendo.2023.1137456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Elena Rapizzi,
| |
Collapse
|
47
|
IL-1β, an important cytokine affecting Helicobacter pylori-mediated gastric carcinogenesis. Microb Pathog 2023; 174:105933. [PMID: 36494022 DOI: 10.1016/j.micpath.2022.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) is prevalent around the world and responsible for gastric cancer (GC). The development of GC from gastritis is closely associated with the bacterial virulence and the body's immune response ability. In this process, interleukin-1β (IL-1β) plays an important role. Under H. pylori infection, IL-1β is highly expressed that result in gastric acid inhibition, GC-related gene methylations and disfunctions, angiogenesis. Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediates IL-1β maturation in cells such as macrophages, neutrophils and dendritic cells. But how does IL-1β get released across the cell membrane still unclear. In this review, we focus on the secretion mechanism of IL-1β across the membrane, and to explore the role of IL-1β in the progression of GC.
Collapse
|
48
|
Luo T, Bai L, Zhang Y, Huang L, Li H, Gao S, Dong X, Li N, Liu Z. Optimal treatment occasion for ultrasound stimulated microbubbles in promoting gemcitabine delivery to VX2 tumors. Drug Deliv 2022; 29:2796-2804. [PMID: 36047064 PMCID: PMC9448370 DOI: 10.1080/10717544.2022.2115163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ultrasound stimulated microbubbles (USMB) is a widely used technology that can promote chemotherapeutic delivery to tumors yet the best treatment occasion for USMB is unknown or ignored. We aimed to determine the optimal treatment occasion for USMB treatment to enhance tumor chemotherapy to achieve the highest drug concentration in tumors. Experiments were conducted on VX2 tumors implanted in 60 rabbits. Gemcitabine (GEM) was intravenously infused as a chemotherapeutic agent and USMB was administered before, during or after chemotherapy. USMB was conducted with a modified diagnostic ultrasound at 3 MHz employing short bursts (5 cycles and 0.125% duty cycle) at 0.26 MPa in combination with a lipid microbubble. Subsequently, tumor blood perfusion quantitation, drug concentration detection, and fluorescence microscopy were performed. The results showed that the group that received USMB treatment immediately after GEM infusion had the highest drug concentration in tumors, which was 2.83 times that of the control group. Fifteen tumors were then treated repeatedly with the optimal USMB-plus-GEM combination, and along with the GEM and the control groups, were studied for tumor growth, tumor cell proliferation, apoptosis, and related cytokine contents. The combined treatment significantly inhibited tumor growth and promoted apoptosis. The levels of related cytokines, including HIF-1α, decreased after six combination therapies. These results suggest that the optimal treatment occasion for USMB occurs immediately after chemotherapy and tumor hypoxia improves after multiple combination therapies.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luhua Bai
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Leidan Huang
- Department of Ultrasound, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shunji Gao
- Department of Ultrasound, General Hospital of Central Theatre Command, Wuhan, China
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
49
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
50
|
Yu H, Dejizhuoga, Huang W, Wang D, Gamaquzhen, Jia X, Feng H. The Expression and Clinical Significance of Sphingosine Kinase 1 and Vascular Endothelial Growth Factor in Endometrial Carcinoma. Emerg Med Int 2022; 2022:6716143. [PMID: 36186527 PMCID: PMC9519313 DOI: 10.1155/2022/6716143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of the study is to investigate the expression of sphingosine kinase 1 (SPHK1) and vascular endothelial growth factor (VEGF) in patients with endometrial carcinoma and its clinical significance. The tissues of 86 cases of patients with endometrial carcinoma and 54 cases of patients with endometrial atypical hyperplasia were collected. The expression of SPHK1 and VEGF in the tissue was detected by immunohistochemistry. The expression of SPHK1 in patients with endometrial carcinoma was compared with the clinicopathological data. Results. 69 cases (82.1%) of endometrial carcinoma were positive for SPHK1, which was higher than 2 cases (3.7%) of endometrial atypical hyperplasia (P < 0.05). The VEGF expression in 54 patients (62.8%) with endometrial carcinoma was higher than that in 12 patients with endometrial atypical hyperplasia (22.2%) (P < 0.05). There was a positive correlation between SPHK1 and VEGF expressions in endometrial carcinoma (c = 0.595). The expression of SPHK1 in endometrial cancer patients was different in different pathological types, FIGO stages, lymph node metastasis, ER, and PR positive or not, and the difference between the two groups was significant (P < 0.05). There was no difference in age, degree of differentiation, and depth of myometrial infiltration (P < 0.05). The expression of SPHK1 in patients with endometrial carcinoma is increased, which is helpful for early detection of patients with endometrial carcinoma, and may play a synergistic role with VEGF in the pathogenesis and development of endometrial carcinoma.
Collapse
Affiliation(s)
- Hong Yu
- Department of Pathology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China
| | - Dejizhuoga
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet 850000, China
| | - Wei Huang
- Department of Gynecology, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, China
| | - Donglian Wang
- Department of Gynecology, Hunan Maternal and Child Health Hospital, Changsha, Hunan 410000, China
| | - Gamaquzhen
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet 850000, China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet 850000, China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, China
| |
Collapse
|