1
|
Inhibition of SARS-CoV-2 Infection by Human Defensin HNP1 and Retrocyclin RC-101. J Mol Biol 2022; 434:167225. [PMID: 34487793 PMCID: PMC8413479 DOI: 10.1016/j.jmb.2021.167225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is an enveloped virus responsible for the COVID-19 pandemic. The emergence of new potentially more transmissible and vaccine-resistant variants of SARS-CoV-2 is an ever-present threat. Thus, it remains essential to better understand innate immune mechanisms that can inhibit the virus. One component of the innate immune system with broad antipathogen, including antiviral, activity is a group of cationic immune peptides termed defensins. The ability of defensins to neutralize enveloped and non-enveloped viruses and to inactivate numerous bacterial toxins correlate with their ability to promote the unfolding of proteins with high conformational plasticity. We found that human neutrophil α-defensin HNP1 binds to SARS-CoV-2 Spike protein with submicromolar affinity that is more than 20 fold stronger than its binding to serum albumin. As such, HNP1, as well as a θ-defensin retrocyclin RC-101, both interfere with Spike-mediated membrane fusion, Spike-pseudotyped lentivirus infection, and authentic SARS-CoV-2 infection in cell culture. These effects correlate with the abilities of the defensins to destabilize and precipitate Spike protein and inhibit the interaction of Spike with the ACE2 receptor. Serum reduces the anti-SARS-CoV-2 activity of HNP1, though at high concentrations, HNP1 was able to inactivate the virus even in the presence of serum. Overall, our results suggest that defensins can negatively affect the native conformation of SARS-CoV-2 Spike, and that α- and θ-defensins may be valuable tools in developing SARS-CoV-2 infection prevention strategies.
Collapse
|
2
|
Xiong W, Zhou C, Yin S, Chai J, Zeng B, Wu J, Li Y, Li L, Xu X. Fejerlectin, a Lectin-like Peptide from the Skin of Fejervarya limnocharis, Inhibits HIV-1 Entry by Targeting Gp41. ACS OMEGA 2021; 6:6414-6423. [PMID: 33718732 PMCID: PMC7948434 DOI: 10.1021/acsomega.1c00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is mainly transmitted by sexual intercourse, and effective microbicides preventing HIV-1 transmission are still required. Amphibian skin is a rich source of defense peptides with antiviral activity. Here, we characterized a lectin-like peptide, fejerlectin (RLCYMVLPCP), isolated from the skin of the frog Fejervarya limnocharis. Fejerlectin showed significant hemagglutination and d-(+)-galacturonic acid-binding activities. Furthermore, fejerlectin suppressed the early entry of HIV-1 into target cells by binding to the N-terminal heptad repeat of HIV-1 gp41 and preventing 6-HB formation and Env-mediated membrane fusion. Fejerlectin is the smallest lectin-like peptide identified to date and represents a new and promising platform for anti-HIV-1 drug development.
Collapse
Affiliation(s)
- Weichen Xiong
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Chenliang Zhou
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Shuwen Yin
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
- Department
of Pharmacy, Sun Yat-sen University Cancer
Center, State Key Laboratory of Oncology in South China, Collaborative
Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinwei Chai
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Baishuang Zeng
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Yibin Li
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Lin Li
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Xueqing Xu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| |
Collapse
|
3
|
Murugan NA, Raja KMP, Saraswathi NT. Peptide-Based Antiviral Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:261-284. [PMID: 34258744 DOI: 10.1007/978-981-16-0267-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three types of chemical entities, namely, small organic molecules (organics), peptides, and biologics, are mainly used as drug candidates for the treatment of various diseases. Even though the peptide drugs are known since 1920 in association with the clinical use of insulin, only a limited number of peptides are currently used for therapeutics due to various disadvantages associated with them such as limited serum and blood stability, oral bioavailability, and permeability. Since, through chemical modifications and structure tuning, many of these limitations can be overcome, peptide-based drugs are gaining attention in pharmaceutical research. As of today, there are more than 60 peptide-based drugs approved by FDA, and over 150 peptides are in the advanced clinical studies. In this book chapter, the peptide-based lead compounds and drugs available for treating various viral diseases and their advantages and disadvantages when compared to small molecules drugs are discussed.
Collapse
Affiliation(s)
- N Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - K Muruga Poopathi Raja
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India.
| | - N T Saraswathi
- School of Chemical & Biotechnology, Sastra Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
4
|
|
5
|
Brice DC, Diamond G. Antiviral Activities of Human Host Defense Peptides. Curr Med Chem 2020; 27:1420-1443. [PMID: 31385762 PMCID: PMC9008596 DOI: 10.2174/0929867326666190805151654] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
Peptides with broad-spectrum antimicrobial activity are found widely expressed throughout nature. As they participate in a number of different aspects of innate immunity in mammals, they have been termed Host Defense Peptides (HDPs). Due to their common structural features, including an amphipathic structure and cationic charge, they have been widely shown to interact with and disrupt microbial membranes. Thus, it is not surprising that human HDPs have activity against enveloped viruses as well as bacteria and fungi. However, these peptides also exhibit activity against a wide range of non-enveloped viruses as well, acting at a number of different steps in viral infection. This review focuses on the activity of human host defense peptides, including alpha- and beta-defensins and the sole human cathelicidin, LL-37, against both enveloped and non-enveloped viruses. The broad spectrum of antiviral activity of these peptides, both in vitro and in vivo suggest that they play an important role in the innate antiviral defense against viral infections. Furthermore, the literature suggests that they may be developed into antiviral therapeutic agents.
Collapse
Affiliation(s)
- David C. Brice
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| |
Collapse
|
6
|
Niu S, Jahejo AR, Jia FJ, Li X, Ning GB, Zhang D, Ma HL, Hao WF, Gao WW, Zhao YJ, Gao SM, Li GL, Li JH, Yan F, Gao RK, Bi YH, Han LX, Gao GF, Tian WX. Transcripts of antibacterial peptides in chicken erythrocytes infected with Marek's disease virus. BMC Vet Res 2018; 14:363. [PMID: 30463541 PMCID: PMC6249751 DOI: 10.1186/s12917-018-1678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chicken erythrocytes are involved in immunity through binding of toll-like receptors (TLRs) with their ligands to activate downstream signaling and lead to cytokine production in erythrocytes. Some avian β-defensins (AvBDs) are constitutively expressed in tissues and some others can be induced by various bacteria and viruses. However, the expression of AvBDs in erythrocytes has not yet been studied extensively. RESULTS The transcripts of eight AvBDs (AvBD1 to AvBD7, and AvBD9) and liver-expressed antimicrobial peptide-2 (LEAP-2) were found in normal chicken erythrocytes. The expression levels of AvBD2, 4 and 7 were significantly increased (P < 0.01), whereas the levels of AvBD1, 6 and 9 were significantly decreased (P < 0.01) after Marek's disease virus (MDV) infection. The mRNA expression level of LEAP-2 was not significantly changed after MDV infection. Highest viral nucleic acid (VNA) of MDV in the feather tips among the tested time points was found at 14 days post-infection (d.p.i.). In addition, 35 MD5-related gene segments were detected in the erythrocytes at 14 d.p.i. by transcriptome sequencing. CONCLUSIONS These results suggest that the AvBDs in chicken erythrocytes may participate in MDV-induced host immune responses.
Collapse
Affiliation(s)
- Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Fa-Jie Jia
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Guan-Bao Ning
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Hai-Li Ma
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Wei-Fang Hao
- Taiyuan Center for Disease Control and Prevention, Taiyuan, 030024, China
| | - Wen-Wei Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Jun Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Shi-Min Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Gui-Lan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Jian-Hui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Fang Yan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Rong-Kun Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Hai Bi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Ling-Xia Han
- Department of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - George F Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China. .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
7
|
Tan D, Hu H, Tong X, Han M, Wu S, Ding X, Dai F, Lu C. Comparative Analysis of the Integument Transcriptomes between Stick Mutant and Wild-Type Silkworms. Int J Mol Sci 2018; 19:ijms19103158. [PMID: 30322193 PMCID: PMC6214029 DOI: 10.3390/ijms19103158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
In insects, the integument provides mechanical support for the whole body and protects them from infections, physical and chemical injuries, and dehydration. Diversity in integument properties is often related to body shape, behavior, and survival rate. The stick (sk) silkworm is a spontaneous mutant with a stick-like larval body that is firm to the touch and, thus, less flexible. Analysis of the mechanical properties of the cuticles at day 3 of the fifth instar (L5D3) of sk larvae revealed higher storage modulus and lower loss tangent. Transcriptome sequencing identified a total of 19,969 transcripts that were expressed between wild-type Dazao and the sk mutant at L5D2, of which 11,596 transcripts were novel and detected in the integument. Differential expression analyses identified 710 upregulated genes and 1009 downregulated genes in the sk mutant. Gene Ontology (GO) enrichment analysis indicated that four chitin-binding peritrophin A domain genes and a chitinase gene were upregulated, whereas another four chitin-binding peritrophin A domain genes, a trehalase, and nine antimicrobial peptides were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two functional pathways, namely, fructose and mannose metabolism and tyrosine metabolism, were significantly enriched with differentially-expressed transcripts. This study provides a foundation for understanding the molecular mechanisms underlying the development of the stiff exoskeleton in the sk mutant.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
VanCompernolle S, Smith PB, Bowie JH, Tyler MJ, Unutmaz D, Rollins-Smith LA. Inhibition of HIV infection by caerin 1 antimicrobial peptides. Peptides 2015; 71:296-303. [PMID: 26026377 DOI: 10.1016/j.peptides.2015.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022]
Abstract
The major mode of transmission of the human immunodeficiency virus (HIV) is by sexual intercourse. In the effort to halt the spread of HIV, one measure that holds great promise is the development of effective microbicides that can prevent transmission. Previously we showed that several amphibian antimicrobial peptides (AMPs) completely inhibit HIV infection of T cells while maintaining good viability of the T cell targets. These peptides also inhibited the transfer of HIV by dendritic cells (DCs) to T cells when added up to 8h after virus exposure. Here we report on the anti-HIV activity of 18 additional structurally related caerin 1 family peptides in comparison with our previous best candidate caerin 1.9. Nine peptides were equally effective or more effective in the inhibition of T cell infection and disruption of the HIV envelope as caerin 1.9. Of those nine peptides, three peptides (caerin 1.2, caerin 1.10, and caerin 1.20) exhibited excellent inhibition of HIV infectivity at low concentrations (12-25μM) and limited toxicity against target T cells and endocervical epithelial cells. There was a direct correlation between the effectiveness of the peptides in disruption of the viral envelope and their capacity to inhibit infection. Thus, several additional caerin 1 family peptides inhibit HIV infection have limited toxicity for vaginal epithelial cells, and would be good candidates for inclusion in microbicide formulations.
Collapse
Affiliation(s)
- Scott VanCompernolle
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Patricia B Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - John H Bowie
- Department of Chemistry, The University of Adelaide, Australia
| | - Michael J Tyler
- Department of Environmental Biology, The University of Adelaide, Australia
| | - Derya Unutmaz
- Department of Microbiology, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, United States
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology, and of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Defensins are a major family of antimicrobial peptides expressed predominantly in neutrophils and epithelial cells, and play important roles in innate immune defense against infectious pathogens. Their biological functions in and beyond innate immunity, structure and activity relationships, mechanisms of action, and therapeutic potential continue to be interesting research topics. This review examines recent progress in our understanding of alpha and theta-defensins - the two structural classes composed of members of myeloid origin. RECENT FINDINGS A novel mode of antibacterial action is described for human enteric alpha-defensin 6, which forms structured nanonets to entrap bacterial pathogens and protect against bacterial invasion of the intestinal epithelium. The functional multiplicity and mechanistic complexity of defensins under different experimental conditions contribute to a debate over the role of enteric alpha-defensins in mucosal immunity against HIV-1 infection. Contrary to common belief, hydrophobicity rather than cationicity plays a dominant functional role in the action of human alpha-defensins; hydrophobicity-mediated high-order assembly endows human alpha-defensins with an extraordinary ability to acquire structural diversity and functional versatility. Growing evidence suggests that theta-defensins offer the best opportunity for therapeutic development as a novel class of broadly active anti-infective and anti-inflammatory agents. SUMMARY Defensins are the 'Swiss army knife' in innate immunity against microbial pathogens. Their modes of action are often reminiscent of the story of 'The Blind Men and the Elephant'. The functional diversity and mechanistic complexity, as well as therapeutic potential of defensins, will continue to attract attention to this important family of antimicrobial peptides.
Collapse
|
10
|
Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol 2013; 425:4965-80. [PMID: 24095897 PMCID: PMC3842434 DOI: 10.1016/j.jmb.2013.09.038] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
Abstract
Defensins are an effector component of the innate immune system with broad antimicrobial activity. Humans express two types of defensins, α- and β-defensins, which have antiviral activity against both enveloped and non-enveloped viruses. The diversity of defensin-sensitive viral species reflects a multitude of antiviral mechanisms. These include direct defensin targeting of viral envelopes, glycoproteins, and capsids in addition to inhibition of viral fusion and post-entry neutralization. Binding and modulation of host cell surface receptors and disruption of intracellular signaling by defensins can also inhibit viral replication. In addition, defensins can function as chemokines to augment and alter adaptive immune responses, revealing an indirect antiviral mechanism. Nonetheless, many questions regarding the antiviral activities of defensins remain. Although significant mechanistic data are known for α-defensins, molecular details for β-defensin inhibition are mostly lacking. Importantly, the role of defensin antiviral activity in vivo has not been addressed due to the lack of a complete defensin knockout model. Overall, the antiviral activity of defensins is well established as are the variety of mechanisms by which defensins achieve this inhibition; however, additional research is needed to fully understand the role of defensins in viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Jason G. Smith
- University of Washington School of Medicine, Box 357735, 1705 North East Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
11
|
A cholesterol tag at the N terminus of the relatively broad-spectrum fusion inhibitory peptide targets an earlier stage of fusion glycoprotein activation and increases the peptide's antiviral potency in vivo. J Virol 2013; 87:9223-32. [PMID: 23804636 DOI: 10.1128/jvi.01153-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In previous work, we designed peptides that showed potent inhibition of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) infections in chicken embryos. In this study, we demonstrate that peptides modified with cholesterol or 3 U of polyethylene glycol (PEG3) conjugated to the peptides' N termini showed even more promising antiviral activities when tested in animal models. Both cholesterol- and cholesterol-PEG3-tagged peptides were able to protect chicken embryos from infection with different serotypes of NDV and IBV when administered 12 h prior to virus inoculation. In comparison, the untagged peptides required intervention closer to the time of viral inoculation to achieve a similar level of protection. Intramuscular injection of cholesterol-tagged peptide at 1.6 mg/kg 1 day before virus infection and then three times at 3-day intervals after viral inoculation protected 70% of the chickens from NDV infection. We further demonstrate that the cholesterol-tagged peptide has an in vivo half-life greater than that of untagged peptides. It also has the potential to cross the blood-brain barrier to enter the avian central nervous system (CNS). Finally, we show that the cholesterol-tagged peptide could play a role before the viral fusion peptide's insertion into the host cell and thereby target an earlier stage of fusion glycoprotein activation. Our findings are of importance for the further development of antivirals with broad-spectrum protective effects.
Collapse
|
12
|
Abstract
Synthesis and large-scale manufacturing technologies are now available for the commercial production of even the most complex peptide anti-infectives. Married with the potential of this class of molecule as the next generation of effective, resistance-free and safe antimicrobials, and a much better understanding of their biology, pharmacology and pharmacodynamics, the first regulatory approvals and introduction into clinical practice of these promising drug candidates will likely be soon. This is a key juncture in the history/life cycle of peptide anti-infectives and, perhaps, their commercial and therapeutic potential is about to be realized. This review highlights the promise of these agents as the next generation of therapeutics and summarizes the challenges faced in, and lessons learned from, the past.
Collapse
|
13
|
A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion. PLoS One 2013; 8:e55478. [PMID: 23393582 PMCID: PMC3564752 DOI: 10.1371/journal.pone.0055478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/23/2012] [Indexed: 11/19/2022] Open
Abstract
Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.
Collapse
|
14
|
Eade CR, Cole AL, Diaz C, Rohan LC, Parniak MA, Marx P, Tarwater PM, Gupta P, Cole AM. The anti-HIV microbicide candidate RC-101 inhibits pathogenic vaginal bacteria without harming endogenous flora or mucosa. Am J Reprod Immunol 2013; 69:150-8. [PMID: 23167830 PMCID: PMC3541468 DOI: 10.1111/aji.12036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/08/2012] [Indexed: 02/02/2023] Open
Abstract
PROBLEM Vaginal microbicides represent a promising approach for preventing heterosexual HIV transmission. However, preclinical evaluation should be conducted to ensure that microbicides will be safe for human cells and healthy microflora of the female reproductive tract. One microbicide candidate, RC-101, has been effective and well tolerated in preliminary cell culture and macaque models. However, the effect of RC-101 on primary vaginal tissues and resident vaginal microflora requires further evaluation. METHOD OF STUDY We treated primary vaginal tissues and vaginal bacteria, both pathogenic and commensal, with RC-101 to investigate effects of this microbicide. RESULTS RC-101 was well tolerated by host tissues, and also by commensal vaginal bacteria. Simultaneously, pathogenic vaginal bacteria, which are known to increase susceptibility to HIV acquisition, were inhibited by RC-101. CONCLUSIONS By establishing vaginal microflora, the specific antibacterial activity of RC-101 may provide a dual mechanism of HIV protection. These findings support advancement of RC-101 to clinical trials.
Collapse
Affiliation(s)
- Colleen R. Eade
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - Amy L. Cole
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - Camila Diaz
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - Lisa C. Rohan
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, USA
- Magee Women’s Research Institute and the Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Preston Marx
- Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Patrick M. Tarwater
- Department of Biostatistics, Texas Tech University Health Sciences Center, 4800 Alberta, El Paso, Texas 79905, USA
| | - Phalguni Gupta
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | - Alexander M. Cole
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| |
Collapse
|
15
|
Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. J Virol 2012; 87:2835-45. [PMID: 23269800 DOI: 10.1128/jvi.02209-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) infection is still one of the common causes of sexually transmitted diseases worldwide. The prevalence of HSV strains resistant to traditional nucleoside antiviral agents has led to the development of novel antiviral drugs. Human alpha-defensin 5 (HD5), a kind of endogenous antimicrobial peptide expressed in the epithelia of the small intestine and urogenital tract, displays natural antiviral activity. Based on arginine-rich features and adaptive evolution characteristics of vertebrate defensins, we conducted a screen for HD5 derivatives with enhanced anti-HSV-2 activity by a single arginine substitution at the adaptive evolution sites. Cell protection assay and temporal antiviral studies showed that HD5 and its mutants displayed affirmatory but differential anti-HSV-2 effects in vitro by inhibiting viral adhesion and entry. Inspiringly, the E21R-HD5 mutant had significantly higher antiviral activity than natural HD5, which is possibly attributed to the stronger binding affinity of the E21R-HD5 mutant with HSV-2 capsid protein gD, indicating that E21R mutation can increase the anti-HSV-2 potency of HD5. In a mouse model of lethal HSV-2 infection, prophylactic and/or therapeutic treatment with E21R-HD5 via intravaginal instillation remarkably alleviated the symptoms and delayed disease progress and resulted in about a 1.5-fold-higher survival rate than in the HD5 group. Furthermore, the E21R variant exhibited a 2-fold-higher antiviral potency against HIV-1 over parental HD5 in vitro. This study demonstrates that arginine mutagenesis at appropriate evolution sites may significantly enhance the antiviral activity of HD5, which also paves a facile way to search for potent antiviral drugs based on natural antimicrobial peptides.
Collapse
|
16
|
Furci L, Tolazzi M, Sironi F, Vassena L, Lusso P. Inhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS One 2012; 7:e45208. [PMID: 23028850 PMCID: PMC3459904 DOI: 10.1371/journal.pone.0045208] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND α-defensin-5 (HD5) is a key effector of the innate immune system with broad anti-bacterial and anti-viral activities. Specialized epithelial cells secrete HD5 in the genital and gastrointestinal mucosae, two anatomical sites that are critically involved in HIV-1 transmission and pathogenesis. We previously found that human neutrophil defensins (HNP)-1 and -2 inhibit HIV-1 entry by specific bilateral interaction both with the viral envelope and with its primary cellular receptor, CD4. Despite low amino acid identity, human defensin-5 (HD5) shares with HNPs a high degree of structural homology. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate that HD5 inhibits HIV-1 infection of primary CD4(+) T lymphocytes at low micromolar concentration under serum-free and low-ionic-strength conditions similar to those occurring in mucosal fluids. Blockade of HIV-1 infection was observed with both primary and laboratory-adapted strains and was independent of the viral coreceptor-usage phenotype. Similar to HNPs, HD5 inhibits HIV-1 entry into the target cell by interfering with the reciprocal interaction between the external envelope glycoprotein, gp120, and CD4. At high concentrations, HD5 was also found to downmodulate expression of the CXCR4 coreceptor, but not of CCR5. Consistent with its broad spectrum of activity, antibody competition studies showed that HD5 binds to a region overlapping with the CD4- and coreceptor-binding sites of gp120, but not to the V3 loop region, which contains the major determinants of coreceptor-usage specificity. CONCLUSION/SIGNIFICANCE These findings provide new insights into the first line of immune defense against HIV-1 at the mucosal level and open new perspectives for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Lucinda Furci
- Unit of Human Virology, Department of Biological and Technological Research, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | |
Collapse
|