1
|
Muhammed MT, Er M, Akkoc S. Molecular modeling and cytotoxic activity studies of oxirane-2-carboxylate derivatives. J Biomol Struct Dyn 2024:1-12. [PMID: 39544072 DOI: 10.1080/07391102.2024.2428826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 11/17/2024]
Abstract
In this study, five 3-aryloxirane-2-carboxylate derivatives were prepared, and the antiproliferative activities of molecules were screened in lung and colon cancer cell lines. The results showed that molecules had antiproliferative activity on cancerous cells with IC50 values under 100 µM. Furthermore, all of the molecules were found to have a much higher cytotoxic effect than cisplatin in colon cancer cells. The interactions of the relatively active compounds to the crucial enzyme in cancer cell proliferation, cyclin-dependent kinase 1 (CDK1), were investigated using molecular docking. The stability of the resulting CDK1-compound complexes procured from the docking was also assessed through molecular dynamics (MD) simulations. Then, the binding affinity of compounds 2-3a and 2-3c to the target enzyme was computed by MMPBSA. The molecular docking study demonstrated that the two most active compounds could bind to the enzyme. The binding potential of 2-3a is anticipated to be higher as it had one more conventional hydrogen bond and a slightly lower binding energy than compound 2-3c. The MD simulation study exhibited that the two compounds formed a stable complex with the enzyme. On the other hand, the MMPBSA energy computation implicated a slightly higher binding affinity for compound 2-3c toward the enzyme. Furthermore, electrical and frontier molecular orbital analysis of all of the tested compounds was conducted by density functional theory (DFT) studies. Compound 2-3a is anticipated to be the most chemically stable as it gave the highest energy gap value in the DFT analysis.
Collapse
Affiliation(s)
- Muhammed Tilahun Muhammed
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Suleyman Demirel University, Isparta, Türkiye
| | - Mustafa Er
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta, Türkiye
| | - Senem Akkoc
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| |
Collapse
|
2
|
Noser AA, El-Barbary AA, Salem MM, El Salam HAA, Shahien M. Synthesis and molecular docking simulations of novel azepines based on quinazolinone moiety as prospective antimicrobial and antitumor hedgehog signaling inhibitors. Sci Rep 2024; 14:3530. [PMID: 38347004 PMCID: PMC10861550 DOI: 10.1038/s41598-024-53517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
A series of novel azepine derivatives based on quinazolinone moiety was synthesized through the reaction of quinazolinone chalcones (2a-d) either with 2-amino aniline in acidic medium to give diazepines (3a-d) or with 2-aminophenol to offer oxazepine (4a-d). The structure of the synthesized compounds was confirmed via melting points, elemental analyses, and different spectroscopic techniques. Moreover, these newly compounds mode of action was investigated in-silico using molecular docking against the outer membrane protein A (OMPA), exo-1,3-beta-glucanase for their antimicrobial activity, and against Smoothened (SMO), transcription factor glioma-associated homology (SUFU/GLI-1), the main proteins of Hedgehog signaling pathway to inspect their anticancer potential. Our results showed that, diazepine (3a) and oxazepine (4a) offered the highest binding energy against the target OMPA/ exo-1,3-beta-glucanase proteins and exhibited the potent antimicrobial activities against E. coli, P. aeruginosa, S. aureus, B. subtilis, C. Albicans and A. flavus. As well, diazepine (3a) and oxazepine (4a) achieved the best results among the other compounds, in their binding energy against the target SMO, SUFU/GLI-1 proteins. The in-vitro cytotoxic study was done for them on panel of cancer cell lines HCT-116, HepG2, and MCF-7 and normal cell line WI-38. Conclusively, it was revealed that molecular docking in-silico simulations and the in-vitro experiments were agreed. As a result, our findings elucidated that diazepine (3a) and oxazepine (4a), have the potential to be used as antimicrobial agents and as possible cancer treatment medications.
Collapse
Affiliation(s)
- Ahmed A Noser
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - A A El-Barbary
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hayam A Abd El Salam
- Green Chemistry Department, National Research Centre, Dokki, GizaCairo, 12622, Egypt
| | - Mohamed Shahien
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Akkoc S, Sahin D, Muhammed MT, Yıldız M, Ilhan IO. Synthesis, characterization, antiproliferative activity, docking, and molecular dynamics simulation of new 1,3-dihydro-2 H-benzimidazol-2-one derivatives. J Biomol Struct Dyn 2023; 42:11495-11507. [PMID: 37787572 DOI: 10.1080/07391102.2023.2262601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
Cancer is a global public health problem that affects millions each year. Novel anticancer drug candidates are in need to treat various cancers and to overcome the resistance that exists against drugs in use. Benzimidazole derivatives have been reported as anticancer agents. These lead us to synthesize similar benzimidazole derivatives and investigate their anticancer activity. In this study, six new 1,3-dihydro-2H-benzimidazol-2-one-based molecules (2a-f) were synthesized. The structures of these molecules were verified by spectroscopic methods. The antiproliferative activities of molecules 2a-f were screened against a panel of human cancer cell lines, including the liver, colon, lung, and breast. The molecules were also tested towards normal human lung cell line to determine their selectivity. The results demonstrated that compound 2d had the highest cytotoxic effect compared to compounds 2a-c, 2e, and 2f against DLD-1 and MDA-MB-231 cell lines. The binding potential of the relatively active compound, 2d, with three targets was investigated through molecular docking. The stability of target-compound complexes procured from the docking was explored through molecular dynamics (MD) simulation. The docking and MD simulation studies revealed that compound 2d had the highest potential to bind to GALR3 among the targets. Furthermore, the computational pharmacokinetic study demonstrated that the synthesized compounds had drug-like properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| | - Dicle Sahin
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
| | - Mustafa Yıldız
- Department of Nuclear Medicine, Faculty of Medicine, Suleyman Demirel University, Isparta, Türkiye
| | - Ilhan Ozer Ilhan
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
4
|
Gökçe B, Muhammed MT. Evaluation of in vitro effect, molecular docking, and molecular dynamics simulations of some dihydropyridine-class calcium channel blockers on human serum paraoxonase 1 (hPON1) enzyme activity. Biotechnol Appl Biochem 2023; 70:1707-1719. [PMID: 37071114 DOI: 10.1002/bab.2467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/11/2023] [Indexed: 04/19/2023]
Abstract
Paraoxonase 1 (PON1) was purified 148.80-fold in 37.92% yield by hydrophobic interaction chromatography technique. The purity of PON1 was checked by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with a single band of 43 kDa. The in vitro effects of nine different calcium channel blockers on PON1 activity were evaluated. All drugs strongly decreased PON1 activity, and IC50 levels were between 13.987 ± 0.59 and 238.104 ± 2.14 μM, Ki values between 8.58 ± 0.36 and 111 ± 1.27 μM. The drugs with the strongest inhibitory effect were nisoldipine with 13.987 ± 0.59 μM and nicardipine with 20.158 ± 0.43 μM. The mechanism of action for the inhibition of the enzyme by nisoldipine and nicardipine was investigated through molecular docking. The stability of enzyme-ligand complexes obtained from the docking was explored through molecular dynamics simulation. The binding affinity of the ligands toward the enzyme was also investigated through MMPBSA (molecular mechanics Poisson-Boltzmann surface area method). The computational analysis demonstrated these compounds could inhibit the enzyme. Nisoldipine had the strongest binding, and its complex was the most stable one. Furthermore, nicardipine was found to have the highest affinity toward the enzyme.
Collapse
Affiliation(s)
- Başak Gökçe
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
| |
Collapse
|
5
|
Erzurumlu Y, Dogan HK, Catakli D, Aydogdu E, Muhammed MT. Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. J Cell Commun Signal 2023; 17:793-811. [PMID: 36696010 PMCID: PMC10409964 DOI: 10.1007/s12079-022-00720-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
The tumorigenic properties of prostate cancer are regulated by advanced hormonal regulation-mediated complex molecular signals. Therefore, characterizing the regulation of these signal transduction systems is crucial for understanding prostate cancer biology. Recent studies have shown that endoplasmic reticulum (ER)-localized protein quality control mechanisms, including ER-associated degradation (ERAD) and unfolded protein response (UPR) signaling contribute to prostate carcinogenesis and to the development of drug resistance. It has also been determined that these systems are tightly regulated by androgens. However, the role of estrogenic signaling in prostate cancer and its effects on protein quality control mechanisms is not fully understood. Herein, we investigated the regulatory effects of estrogens on ERAD and UPR and their impacts on prostate carcinogenesis. We found that estrogens strongly regulated the ERAD components and IRE1⍺ branch of UPR by Er⍺/β/AR axis. Besides, estrogenic signaling rigorously regulated the tumorigenicity of prostate cancer cells by promoting c-Myc expression and epithelial-mesenchymal transition (EMT). Moreover, estrogenic signal blockage significantly decreased the tumorigenic features of prostate cancer cells. Additionally, simultaneous inhibition of androgenic/estrogenic signals more efficiently inhibited tumorigenicity of prostate cancer cells, including proliferation, migration, invasion and colonial growth. Furthermore, computational-based molecular docking, molecular dynamics simulations and MMPBSA calculations supported the estrogenic stimulation of AR. Present findings suggested that ERAD components and IRE1⍺ signaling are tightly regulated by estrogen-stimulated AR and Er⍺/β. Our data suggest that treatment approaches targeting the co-inhibition of androgenic/estrogenic signals may pave the way for new treatment approaches to be developed for prostate cancer. The present model of the impact of estrogens on ERAD and UPR signaling in androgen-sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Esra Aydogdu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
6
|
Erzurumlu Y, Muhammed MT. Triiodothyronine positively regulates endoplasmic reticulum-associated degradation (ERAD) and promotes androgenic signaling in androgen-dependent prostate cancer cells. Cell Signal 2023:110745. [PMID: 37271348 DOI: 10.1016/j.cellsig.2023.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Thyroid hormones (THs) play crucial roles in numerous physiological processes of nearly all mammalian tissues, including differentiation and metabolism. Deterioration of TH signaling has been associated with several pathologies, including cancer. The effect of highly active triiodothyronine (T3) has been investigated in many in vivo and in vitro cancer models. However, the role of T3 on cancerous prostate tissue is controversial. Recent studies have focused on the characterization of the supportive roles of the endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) signaling in prostate cancer (PCa) and investigating new hormonal regulation patterns, including estrogen, progesterone and 1,25(OH)2D3. Additionally, androgenic signaling controlled by androgens, which are critical in PCa progression, has been shown to be regulated by other steroid hormones. While the effects of T3 on ERAD and UPR are unknown today, the impact on androgenic signaling is still not understood in PCa. Therefore, we aimed to investigate the molecular action of T3 on the ERAD mechanism and UPR signaling in PCa cells and also extensively examined the effect of T3 on androgenic signaling. Our data strongly indicated that T3 tightly regulates ERAD and UPR signaling in androgen-dependent PCa cells. We also found that T3 stimulates androgenic signaling by upregulating AR mRNA and protein levels and enhancing its nuclear translocation. Additionally, advanced computational studies supported the ligand binding effect of T3 on AR protein. Our data suggest that targeting thyroidal signaling should be considered in therapeutic approaches to be developed for prostate malignancy in addition to other steroidal regulations.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Turkey.
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| |
Collapse
|
7
|
Arslan G, Gökçe B, Muhammed MT, Albayrak Ö, Önkol T, Özçelik AB. Synthesis, DFT Calculations, and Molecular Docking Study of Acetohydrazide‐Based Sulfonamide Derivatives as Paraoxonase 1 Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Gülnur Arslan
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| | - Başak Gökçe
- Department of Biochemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Özlem Albayrak
- Department of Biochemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Tijen Önkol
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| | - Azime Berna Özçelik
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| |
Collapse
|
8
|
Erzurumlu Y, Aydogdu E, Dogan HK, Catakli D, Muhammed MT, Buyuksandic B. 1,25(OH) 2 D 3 induced vitamin D receptor signaling negatively regulates endoplasmic reticulum-associated degradation (ERAD) and androgen receptor signaling in human prostate cancer cells. Cell Signal 2023; 103:110577. [PMID: 36567009 DOI: 10.1016/j.cellsig.2022.110577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Steroid hormone signaling is critical in the tumor progression and the regulation of physiological mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer. 1,25(OH)2 D3 is an active metabolite of vitamin D classified as a steroid hormone. It exhibits anti-tumor effects, including angiogenesis and suppression of cell cycle progression. Moreover, progressively reducing expression levels of vitamin D receptor (VDR) are observed in many cancer types, including the prostate. In the present study, we investigated the molecular action of 1,25(OH)2 D3 on ERAD, UPR and androgenic signaling. We found that 1,25(OH)2 D3 negatively regulated the expression level of ERAD components and divergently controlled the inositol-requiring enzyme 1⍺ (IRE1⍺) and protein kinase RNA-like ER kinase (PERK) branches of UPR in LNCaP human prostate cancer cells. Also, similar results were obtained with another human prostate cancer cell line, 22Rv1. More strikingly, we found that androgenic signaling is negatively regulated by VDR signaling. Also, molecular docking supported the inhibitory effect of 1,25(OH)2 D3 on AR signaling. Moreover, we found VDR signaling suppressed tumor progression by decreasing c-Myc expression and reducing the epithelial-mesenchymal transition (EMT). Additionally, 1,25(OH)2 D3 treatment significantly inhibited the 3D-tumor formation of LNCaP cells. Our results suggest that further molecular characterization of the action of VDR signaling in other cancer types such as estrogenic signal in breast cancer will provide important contributions to a better understanding of the roles of steroid hormone receptors in carcinogenesis processes.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Esra Aydogdu
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Buket Buyuksandic
- Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
9
|
MUHAMMED MT, ER M, AKKOC S. Molecular Modeling and In Vitro Antiproliferative Activity Studies of Some Imidazole and Isoxazole Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Synthesis of novel carboxamide- and carbohydrazide-benzimidazoles as selective butyrylcholinesterase inhibitors. Mol Divers 2022; 26:2863-2876. [PMID: 35780204 DOI: 10.1007/s11030-022-10476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Selectively inhibiting butyrylcholinesterase (BChE) is hypothesized to help in the management of Alzheimer's disease (AD). Several studies have determined a correlation between the increased activity of BChE and the onset of AD. An advantage of BChE over acetylcholinesterase inhibition is that absence of BChE activity does not lead to obvious physiological disturbance. However, currently no BChE inhibitors are available commercially as potential therapeutics for AD. In our continuous effort to find potent BChE inhibitors for Alzheimer's disease, a total of 22 novel benzimidazoles with diversified substitutions were synthesized and evaluated for their anticholinesterase activities in this study. Among the synthesized compounds, 2j and 3f were found to exhibit potent and selective BChE inhibition with IC50 values of 1.13 and 1.46 μM, respectively. Molecular docking studies were carried out to rationalize the observed inhibitory activities. The compounds were predicted to have high penetration across the blood-brain barrier. Moreover, cell proliferative studies were also performed to evaluate the toxicity profile of the interested compounds. Compound 3f was found to be a potent and selective butyrylcholinesterase inhibitor with an IC50 value of 1.46 µM.
Collapse
|