1
|
Ajiboye BO, Famusiwa CD, Amuda MO, Afolabi SO, Ayotunde BT, Adejumo AA, Akindele AFI, Oyinloye BE, Owolabi OV, Genovese C, Ojo OA. Attenuation of PI3K/AKT signaling pathway by Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic male rats. Biochem Biophys Rep 2024; 38:101735. [PMID: 38799115 PMCID: PMC11127474 DOI: 10.1016/j.bbrep.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes is a group of medical conditions characterized by the body's inability to effectively control blood glucose levels, due to either insufficient insulin synthesis in type 1 diabetes or inadequate insulin sensitivity in type 2 diabetes. According to this research, the PI3K/AKT pathway of Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic rats was studied. We purchased and used a total of forty (40) male Wistar rats for the study. We divided the animals into five (5) different groups: normal control (Group A), diabetic control (Group B), low dose (150 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (LDOGFL) (Group C), high dose (300 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (HDOGFL) (Group D), and 200 mg/kg of metformin (MET) (Group E). Streptozotocin induced all groups except Group A, which serves as the normal control group. The experiment lasted for 21 days, following which we sacrificed the animals and harvested their brains for biochemical analysis on the 22nd day. We carried out an analysis that included reduced glutathione (GSH), glutathione transferases (GST), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), along with GLUT4, MDA, pro-inflammatory cytokines, NO, neurotransmitters, cholinergic enzyme activities, cardiolipin, and the gene expression of PI3K/AKT. The obtained result indicates that the flavonoid-rich extracts of O. gratissimum significantly enhanced the levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin. The levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin, were significantly increased by gratissimum. Moreover, the extracts decrease the levels of MDA, pro-inflammatory cytokines, NO, neurotransmitters, and cholinergic enzyme activities. Additionally, the flavonoid-rich extracts of O. gratissimum significantly improved the AKT and PI3K gene expressions in diabetic rats. gratissimum had their AKT and PI3K gene expressions significantly (p < 0.05) improved. The findings indicate that O. gratissimum leaf flavonoids have the potential to treat diabetes mellitus. gratissimum leaf flavonoids possess therapeutic potential in themselves and can be applied in the management of diabetes mellitus. Although further analysis can be carried out in terms of isolating, profiling, or purifying the active compounds present in the plant's extract.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Courage Dele Famusiwa
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Monsurah Oluwaseyifunmi Amuda
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Stephen Oluwaseun Afolabi
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Benjamin Temidayo Ayotunde
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Adedeji A. Adejumo
- Department of Environmental Management and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Ajoke Fehintola Idayat Akindele
- Department of Biosciences and Biotechnology, Environmental Management and Toxicology Unit, Faculty of Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Claudia Genovese
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean Via Empedocle, 58,95128, Catania, Italy
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Osun State, Nigeria
- Good Health and Well being (SDG 03) Research Clusters, Bowen University, Iwo, Nigeria
| |
Collapse
|
2
|
Mooko T, Bala A, Tripathy S, Kumar CS, Mahadevappa CP, Chaudhary SK, Matsabisa MG. Cannabis Sativa L. Flower and Bud Extracts inhibited In vitro Cholinesterases and b-Secretase Enzymes Activities: Possible Mechanisms of Cannabis use in Alzheimer Disease. Endocr Metab Immune Disord Drug Targets 2021; 22:297-309. [PMID: 33618651 DOI: 10.2174/1871530321666210222124349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/19/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND There are anecdotal claims on the use of Cannabis sativa L. in the treatment of Alzheimer's disease, but there is lack of scientific data to support the efficacy and safety of Cannabis sativa L. for Alzheimer's disease. AIM The aim of the study was to evaluate the effect of aerial parts of Cannabis sativa L. on the cholinesterases and β-secretase enzyme activity as one of the possible mechanisms of Alzheimer's disease. METHODS The phytochemical and heavy metal contents were analysed. The extracts were screened for acetylcholinesterase, butyrylcholinesterase and β-secretase activity. Cytotoxicity of extracts was performed in normal vero and pre-adipocytes cell lines. The extracts were characterized using high performance thin layer chromatography and high-performance liquid chromatography for their chemical fingerprints. Alkaloids, flavonoids and glycosides were present amongst the tested phytochemicals. Cannabidiol concentrations were comparatively high in the hexane and dichloromethane than in dichloromethane: methanol (1:1) and methanol extracts. RESULTS Hexane and dichloromethane extracts showed a better inhibitory potential towards cholinesterase activity, while water, hexane, dichloromethane: methanol (1:1) and methanol showed an inhibitory potential towards β-secretase enzyme activity. All extracts showed no cytotoxic effect on pre-adipocytes and vero cells after 24- and 48-hours of exposure. CONCLUSION Therefore, this may explain the mechanism through which AD symptoms may be treated and managed by Cannabis sativa L. extracts.
Collapse
Affiliation(s)
- Teboho Mooko
- Department of Pharmacology, Indigenous Knowledge System Unit, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300. South Africa
| | - Asis Bala
- Department of Pharmacology, Indigenous Knowledge System Unit, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300. South Africa
| | - Satyajit Tripathy
- Department of Pharmacology, Indigenous Knowledge System Unit, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300. South Africa
| | - Chethan S Kumar
- Department of Pharmacology, Indigenous Knowledge System Unit, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300. South Africa
| | - Chandrashekara P Mahadevappa
- Department of Pharmacology, Indigenous Knowledge System Unit, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300. South Africa
| | - Sushil K Chaudhary
- Department of Pharmacology, Indigenous Knowledge System Unit, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300. South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, Indigenous Knowledge System Unit, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300. South Africa
| |
Collapse
|