1
|
RIP140 inhibits glycolysis-dependent proliferation of breast cancer cells by regulating GLUT3 expression through transcriptional crosstalk between hypoxia induced factor and p53. Cell Mol Life Sci 2022; 79:270. [PMID: 35501580 PMCID: PMC9061696 DOI: 10.1007/s00018-022-04277-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Glycolysis is essential to support cancer cell proliferation, even in the presence of oxygen. The transcriptional co-regulator RIP140 represses the activity of transcription factors that drive cell proliferation and metabolism and plays a role in mammary tumorigenesis. Here we use cell proliferation and metabolic assays to demonstrate that RIP140-deficiency causes a glycolysis-dependent increase in breast tumor growth. We further demonstrate that RIP140 reduces the transcription of the glucose transporter GLUT3 gene, by inhibiting the transcriptional activity of hypoxia inducible factor HIF-2α in cooperation with p53. Interestingly, RIP140 expression was significantly associated with good prognosis only for breast cancer patients with tumors expressing low GLUT3, low HIF-2α and high p53, thus confirming the mechanism of RIP140 anti-tumor activity provided by our experimental data. Overall, our work establishes RIP140 as a critical modulator of the p53/HIF cross-talk to inhibit breast cancer cell glycolysis and proliferation.
Collapse
|
2
|
Cam ME, Ertas B, Alenezi H, Hazar-Yavuz AN, Cesur S, Ozcan GS, Ekentok C, Guler E, Katsakouli C, Demirbas Z, Akakin D, Eroglu MS, Kabasakal L, Gunduz O, Edirisinghe M. Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111586. [PMID: 33321632 DOI: 10.1016/j.msec.2020.111586] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
The combination of oral antidiabetic drugs, pioglitazone, metformin, and glibenclamide, which also exhibit the strongest anti-inflammatory action among oral antidiabetic drugs, were loaded into chitosan/gelatin/polycaprolactone (PCL) by electrospinning and polyvinyl pyrrolidone (PVP)/PCL composite nanofibrous scaffolds by pressurized gyration to compare the diabetic wound healing effect. The combination therapies significantly accelerated diabetic wound healing in type-1 diabetic rats and organized densely packed collagen fibers in the dermis, it also showed better regeneration of the dermis and epidermis than single drug-loaded scaffolds with less inflammatory cell infiltration and edema. The formation of the hair follicles started in 14 days only in the combination therapy and lower proinflammatory cytokine levels were observed compared to single drug-loaded treatment groups. The combination therapy increased the wettability and hydrophilicity of scaffolds, demonstrated sustained drug release over 14 days, has high tensile strength and suitable cytocompatibility on L929 (mouse fibroblast) cell and created a suitable area for the proliferation of fibroblast cells. Consequently, the application of metformin and pioglitazone-loaded chitosan/gelatin/PCL nanofibrous scaffolds to a diabetic wound area offer high bioavailability, fewer systemic side effects, and reduced frequency of dosage and amount of drug.
Collapse
Affiliation(s)
- Muhammet Emin Cam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey.
| | - Busra Ertas
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Hussain Alenezi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Department of Manufacturing Engineering, College of Technological Studies, PAAET, 13092 Kuwait City, Kuwait
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Sumeyye Cesur
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gul Sinemcan Ozcan
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Ceyda Ekentok
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul 34722, Turkey
| | - Ece Guler
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Christina Katsakouli
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Zehra Demirbas
- Department of Clinical Microbiology and Infectious Diseases, School of Medicine, Gazi University, Ankara 06510, Turkey
| | - Dilek Akakin
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Mehmet Sayip Eroglu
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey; Chemistry Group Laboratories, TUBITAK-UME, Kocaeli 41470, Turkey
| | - Levent Kabasakal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
3
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
4
|
Glyburide and retinoic acid synergize to promote wound healing by anti-inflammation and RIP140 degradation. Sci Rep 2018; 8:834. [PMID: 29339732 PMCID: PMC5770422 DOI: 10.1038/s41598-017-18785-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/17/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation underlies the development of metabolic diseases and individuals with metabolic disease often also suffer from delayed wound healing due to prolonged inflammation. Resolving inflammation provides a therapeutic strategy in treating metabolic diseases. We previously showed that during an anti-inflammatory response when macrophages were alternatively (M2) polarized, retinoic acid (RA) dramatically activated arginase 1 gene (Arg1), a gene crucial for wound healing. Here we report that a widely used sulfonylurea drug for type 2 diabetes mellitus (T2DM), glyburide, enhances the anti-inflammatory response and synergizes with RA to promote wound healing. Our data also delineate the mechanism underlying glyburide’s anti-inflammatory effect, which is to stimulate the degradation of a pro-inflammatory regulator, Receptor Interacting Protein 140 (RIP140), by activating Ca2+/calmodulin-dependent protein kinase II (CamKII) that triggers specific ubiquitination of RIP140 for degradation. By stimulating RIP140 degradation, glyburide enhances M2 polarization and anti-inflammation. Using a high-fat diet induced obesity mouse model to monitor wound healing effects, we provide a proof-of-concept for a therapeutic strategy that combining glyburide and RA can significantly improve wound healing. Mechanistically, this study uncovers a new mechanism of action of glyburide and a new pathway modulating RIP140 protein degradation that is mediated by CamKII signaling.
Collapse
|
5
|
Aziz MH, Chen X, Zhang Q, DeFrain C, Osland J, Luo Y, Shi X, Yuan R. Suppressing NRIP1 inhibits growth of breast cancer cells in vitro and in vivo. Oncotarget 2016; 6:39714-24. [PMID: 26492163 PMCID: PMC4741857 DOI: 10.18632/oncotarget.5356] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/03/2015] [Indexed: 11/25/2022] Open
Abstract
Earlier age at menarche is a major risk factor for breast cancer. Our previous study identified Nrip1 (also known as Rip140) as a candidate gene for delaying female sexual maturation (FSM) and found that knocking out Nrip1 could significantly delay FSM in mice. To investigate the effects of NRIP1 in breast cancer we used human cell lines and tissue arrays along with an in vivo study of DMBA-induced carcinogenesis in Nrip1 knockout mice. Analysis of tissue arrays found that NRIP1 is elevated in tumors compared to cancer adjacent normal tissue. Interestingly, in benign tumors NRIP1 levels are higher in the cytosol of stromal cells, but NRIP1 levels are higher in the nuclei of epithelial cells in malignancies. We also found overexpression of NRIP1 in breast cancer cell lines, and that suppression of NRIP1 by siRNA in these cells significantly induced apoptosis and inhibited cell growth. Furthermore, in vivo data suggests that NRIP1 is upregulated in DMBA-induced breast cancer. Importantly, we found that DMBA-induced carcinogenesis is suppressed in Nrip1 knockdown mice. These findings suggest that NRIP1 plays a critical role in promoting the progression and development of breast cancer and that it may be a potential therapeutic target for the new breast cancer treatments.
Collapse
Affiliation(s)
- Moammir H Aziz
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Xundi Chen
- Department of Medical Microbiology and Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Qi Zhang
- Zhongda Hospital, Southeast University of China, Nanjing 210009, China
| | - Chad DeFrain
- Department of Pathology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Jared Osland
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Yizhou Luo
- Department of Oncology, Nanjing Junxie Hospital, Nanjing 210002, China
| | - Xin Shi
- Zhongda Hospital, Southeast University of China, Nanjing 210009, China
| | - Rong Yuan
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA.,Department of Medical Microbiology and Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| |
Collapse
|
6
|
Lei C, Jiao Y, He B, Wang G, Wang Q, Wang J. RIP140 down-regulation alleviates acute lung injury via the inhibition of LPS-induced PPARγ promoter methylation. Pulm Pharmacol Ther 2016; 37:57-64. [PMID: 26921464 DOI: 10.1016/j.pupt.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
Abstract
Seriously inflammatory response of the lungs can induce acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) which are serious public health threats due to their high patient morbidity and mortality. While RIP140 is known to modulate proinflammatory cytokine production during an inflammatory response, its role in ALI/ARDS is unclear. In this study, we examined RIP140 and PPARγ protein expression in RAW 264.7 cells and lung tissue following LPS-induced ALI. RIP140 shRNA adenoviral knockdown significantly elevated PPARγ expression, inhibited TNF-α, IL-1β, and IL-6 production in vivo and in vitro. Conversely, treatment with a PPARγ antagonist (GW9662) reversed these outcomes. Furthermore, co-IP showed that endogenous and exogenous RIP140 interacted with DNMT3b in RAW 264.7 cells. Bisulfite conversion, pyrosequencing and activity assays demonstrated that PPARγ promoter methylation levels were increased and that PPARγ transcriptional activity was inhibited following LPS treatment in macrophages. Nevertheless, RIP140 knockdown reduced PPARγ promoter methylation levels and restored its transcriptional activity. These results indicate that RIP140 knockdown can inhibit the production of inflammation mediators and remit ALI via the repression of DNMT3b mediated PPARγ promoter methylation.
Collapse
Affiliation(s)
- Chuanjiang Lei
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Yan Jiao
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Bingfeng He
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Guansong Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Qin Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Jianchun Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China.
| |
Collapse
|
7
|
Liu PS, Lin YW, Lee B, McCrady-Spitzer SK, Levine JA, Wei LN. Reducing RIP140 expression in macrophage alters ATM infiltration, facilitates white adipose tissue browning, and prevents high-fat diet-induced insulin resistance. Diabetes 2014; 63:4021-31. [PMID: 24969109 PMCID: PMC4238008 DOI: 10.2337/db14-0619] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue macrophage (ATM) recruitment and activation play a critical role in obesity-induced inflammation and insulin resistance (IR). The mechanism regulating ATM activation and infiltration remains unclear. In this study, we found receptor interacting protein 140 (RIP140) can regulate the dynamics of ATM that contribute to adipose tissue remodeling. A high-fat diet (HFD) elevates RIP140 expression in macrophages. We generated mice with RIP140 knockdown in macrophages using transgenic and bone marrow transplantation procedures to blunt HFD-induced elevation in RIP140. We detected significant white adipose tissue (WAT) browning and improved systemic insulin sensitivity in these mice, particularly under an HFD feeding. These mice have decreased circulating monocyte population and altered ATM profile in WAT (a dramatic reduction in inflammatory classically activated macrophages [M1] and expansion in alternatively activated macrophages [M2]), which could improve HFD-induced IR. These studies suggest that reducing RIP140 expression in monocytes/macrophages can be a new therapeutic strategy in treating HFD-induced and inflammation-related diseases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adipose Tissue, Brown/immunology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Animals
- Diet, High-Fat/adverse effects
- Gene Knockout Techniques
- Insulin Resistance/immunology
- Macrophage Activation/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Nuclear Receptor Interacting Protein 1
Collapse
Affiliation(s)
- Pu-Ste Liu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | - Bomi Lee
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | | | | | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
8
|
Hatzoglou M, Snider MD, Maruvada P. It's all about balance: cellular responses to nutrients and development of disease. Adv Nutr 2014; 5:558-60. [PMID: 25469394 PMCID: PMC4188232 DOI: 10.3945/an.114.006544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Responding to nutrient availability is an important homeostatic mechanism in the growth, development, and function of cells and tissues. However, these adaptations can also play a role in the development of disease. Our symposium, “Cellular Responses to Nutrients and Development of Disease," presented research about how cells sense nutrients and how the resulting signal transduction controls cellular processes from gene transcription to impacting various pathophysiologic processes. Dr. Michael Kilberg discussed the transcription program triggered by amino acid limitation that leads to growth arrest in normal cells and sustained growth in tumor cells. Dr. Noa Noy elaborated on the role of lipid-binding proteins in retinoic acid signaling, focusing on fatty acid-binding protein 5 (FABP5), which promotes cell growth by delivering this molecule to the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ). Dr. Li-Na Wei discussed the many functions of the protein receptor interacting protein 140 (RIP140) as a coregulator of nuclear receptors and as a cytoplasmic protein that regulates insulin-stimulated glucose uptake, lipolysis, and inflammation. Dr. Ruma Banerjee presented state-of-the-art approaches for studying the gaseous signaling molecule hydrogen sulfide (H2S), discussing its concentrations, metabolism, and functions in the regulation of redox signaling. Finally, Dr. Maria Hatzoglou described how the stress-induced increases in amino acid transport, mammalian target of rapamycin (mTOR) signaling, and protein synthesis in pancreatic β-cells can contribute to the progression of diabetes.
Collapse
Affiliation(s)
| | - Martin D. Snider
- Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH; and
| | - Padma Maruvada
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
9
|
Emotional regulatory function of receptor interacting protein 140 revealed in the ventromedial hypothalamus. Brain Behav Immun 2014; 40:226-34. [PMID: 24726835 PMCID: PMC4102625 DOI: 10.1016/j.bbi.2014.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/13/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein (RIP140) is a transcription co-regulator highly expressed in macrophages to regulate inflammatory and metabolic processes. However, its implication in neurological, cognitive and emotional conditions, and the cellular systems relevant to its biological activity within the central nervous system are currently less clear. A transgenic mouse line with macrophage-specific knockdown of RIP140 was generated (MΦRIPKD mice) and brain-region specific RIP140 knockdown efficiency evaluated. Mice were subjected to a battery of tests, designed to evaluate multiple behavioral domains at naïve or following site-specific RIP140 re-expression. Gene expression analysis assessed TNF-α, IL-1β, TGF-1β, IL1-RA and neuropeptide Y (NPY) expression, and in vitro studies examined the effects of macrophage's RIP140 on astrocytes' NPY production. We found that RIP140 expression was dramatically reduced in macrophages within the ventromedial hypothalamus (VMH) and the cingulate cortex of MΦRIPKD mice. These animals exhibited increased anxiety- and depressive-like behaviors. VMH-targeted RIP140 re-expression in MΦRIPKD mice reversed its depressive- but not its anxiety-like phenotype. Analysis of specific neurochemical changes revealed reduced astrocytic-NPY expression within the hypothalamus of MΦRIPKD mice, and in vitro analysis confirmed that conditioned medium of RIP140-silnenced macrophage culture could no longer stimulate NPY production from astrocytes. The current study revealed an emotional regulatory function of macrophage-derived RIP140 in the VMH, and secondary dysregulation of NPY within hypothalamic astrocyte population, which might be associated with the observed behavioral phenotype of MΦRIPKD mice. This study highlights RIP140 as a novel target for the development of potential therapeutic and intervention strategies for emotional regulation disorders.
Collapse
|
10
|
Nautiyal J, Christian M, Parker MG. Distinct functions for RIP140 in development, inflammation, and metabolism. Trends Endocrinol Metab 2013; 24:451-9. [PMID: 23742741 DOI: 10.1016/j.tem.2013.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) regulate tissue development and function by controlling transcription from distinct sets of genes in response to fluctuating levels of hormones or cues that modulate receptor activity. Such target gene activation or repression depends on the recruitment of coactivators or corepressors that lead to chromatin remodelling in the vicinity of target genes. Similarly to receptors, coactivators and corepressors often serve pleiotropic functions, and Nrip1 (RIP140) is no exception, playing roles in animal development and physiology. At first sight, however, RIP140 is unusual in its ability to function either as a coactivator or as a corepressor, and also serve a cytoplasmic role. The functions of RIP140 in different tissues will be summarised together with its potential contribution to disease.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
11
|
Lapierre M, Docquier A, Castet-Nicolas A, Jalaguier S, Teyssier C, Augereau P, Cavaillès V. Dialogue between estrogen receptor and E2F signaling pathways: The transcriptional coregulator RIP140 at the crossroads. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410a3006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|